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              Abstract. In the study, hydroxyapatite-gelatin composite powders were synthesized 

from simulated body fluid (SBF) with gelatin content ranging from 1 to 3 wt. %.  It was 

established that all the samples were single-phase and represented hydroxyapatite. The surface 

and morphological characteristics of the produced hydroxyapatite-gelatin (HAG) based 

coatings were studied. Uniform deposition of the composite on the titanium substrate surface 

(VT1-0) was found to occur on etched titanium samples. It is shown that exposure of titanium 

substrates with hydroxyapatite-gelatin (HAG) based coating to powerful ion beam can 

stimulate further growth of crystals and regeneration of the surface. 

1. Introduction  

Titanium and titanium alloys are currently used to replace bone defects; however, in some cases, these 

materials are rejected by the human body, which leads to repeat operations, extended rehabilitation of 

patients and increased cost of operation. This problem may be solved through the formation of a 

bioactive calcium phosphate layer on a metal substrate. A number of methods are currently used to 

form these coatings, including calcium-phosphate deposition on smooth and structured surfaces of 

metals and alloys (current-free deposition, isostatic compression, electrophoresis, chemical vapor 

deposition, plasma spraying and etc.) [1–8]. 

The disadvantage of all the above methods is insufficient adhesion of the coatings to the metal 

substrate. Strong chemical bonding between the coating and the substrate can be formed through 

fusion temperatures 1073–1273 K, which results in a hard diffusion layer. However, mismatches 

between the synthesized surface of the material and the implant result in significant stresses that cause 

damage of the coating during cooling. 

An alternative method is formation of biomimetic coatings on metals and their alloys [9–11]. In 

this case, the implant–bone bonding develops through the biomimetic formation of an active 

carbonate-hydroxyapatite (HA) layer on the material surface. This layer is formed as a result of the 

transition of calcium ions from the implant material into the fluid which composition is similar, as an 

example, to that of the simulated body fluid (SBF). Biomimetic apatite coatings may be formed on an 

inert material stable to dissolution, polymer as an example. This method has been successfully used 

for coating various polymeric materials, including the surface of fibers or fabrics. These can be used to 

make implantable structures, such as matrices for bone regeneration through cellular techniques. The 

imparted properties of these structures can be similar to those of the natural bone tissue, including high 

fracture resistance and low modulus of elasticity. 
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Initially, the biomimetic method was used to form apatite layers on bioglass and bioglass-ceramics, 

which in themselves are the source of calcium ions. This method was extended to polymeric and 

metallic materials. Hydroxyapatite based coatings are highly effective for osteointegration of metal 

implants in the bone. Titanium implants with these coatings are used in dentistry and orthopedics.  

Thus, this formation of hydroxyapatite based coatings by biomimetic method stands out from the 

existing variety of methods to form a bioactive calcium phosphate coating on titanium and titanium 

alloys as a controversial one, and it requires further investigation. In this research, we aimed to 

produce a biomimetic gelatin-calcium-phosphate coating on the VT1-0 titanium alloy and to determine 

its composition and physicochemical properties. 

 

2. Materials and methods 

Hydroxyapatite was synthesized from the solution with a model medium close in its electrolyte 

composition to the human extracellular fluid [12]. During the synthesis, 500 ml of the K2HPO4, 

NaHCO3, Na2SO4 and NaCl solution with the addition of gelatin was introduced into 500 ml of the 

CaCl2 and MgCl2 solution. The total volume of the mixture was 1 liter and the pH of the solution was 

7.40 (with acidity correction error ± 0.05) with HCl or NaOH solution (20%). The crystallization time 

was 48 hours. After settling, the solution was filtered using a folded filter (blue ribbon). A portion of 

the supernatant was taken for chemical analyzes and the pH of the final solution was measured. After 

filtration, the filter cake was washed with water (V=50 ml) and dried in a drying box.  

A VT1-0 grade titanium alloy was used for the study. This material has high tensile strength; it is 

highly biocompatible, non-toxic and corrosion resistant. Its characteristics are similar to the 

mechanical properties of the bone tissue. The surface of the samples was polished and etched; the 

etchant composition was HNO3, NaF (1:1).  

For deposition of hydroxyapatite on the VT1-0 titanium surface, 15 mm*15 mm*1.2 mm titanium 

plates were made. A part of the titanium plates was further exposed to powerful ion beam (PIB) and 

subjected to laser ablation. 

Synthesis of the coatings on the plates for the HA system was performed in the presence of 1%, 2%  

and 3% gelatin. A hydroxyapatite suspension was prepared with the addition of gelatin, and then the 

titanium substrate samples were immerged in the suspension. The pH was 7.4, which corresponds to 

the physiological pH value.  

The dependencies of the HA crystal growth and the coated surface areas for the VT1-0 titanium 

alloy with etched and untreated surfaces was studied by optical microscopy. The first observation was 

carried out after 3 day soaking in the solution, then observations were performed with an interval of 6 

days.  After applying the GA-gelatin layer onto the titanium plates, they were exposed to powerful ion 

beam using the “Temp” setup with the ion current density j=100 A/cm
2 
and the number of pulses n=1. 

To measure the limiting wetting angle, we used a technique based on measuring the geometric 

parameters of the droplets (diameter and height) of the liquid wetting the surface. The titanium sample 

surface was pre-degreased with ethyl alcohol solution, and a droplet of the suspension was released 

from a glass capillary with a diameter of about 0.2 mm on the surface. The geometrical parameters of 

the droplet were measured with a Neophot 2   optical microscope using a micrometer screw.  

The phase composition of the prepared suspend was investigated by XRD (DRON-3) and IR 

spectroscopy (“FT-02” spectrophotometer). The peaks in the diffraction patterns were identified using 

the JCPDS card files and the software DifWin4.0 and Crystallographica Search-Match. The surface 

morphology was studied using optical microscopes Neophot 2 and MBS-9, and a scanning electron 

microscope JEOL JSM-6610LV.  

 
3. Results and Discussion 

HA were synthesized in the presence of 1 to 3 wt.% gelatin. It was found that when the gelatin content 

was 1 wt.%, HA crystallization was insufficient, whereas when the gelatin content was 3 wt.%, 

modified HA crystalline was formed that was identified by optical microscopy (figure 1).  
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Figure 1. Crystallized HA powder in the presence of 3% gelatin solution (100х magnification). 

 

As can be seen from the figure, the HA crystals formed in the presence of gelatin are of large sizes. 

The XRD results showed that the samples synthesized in the simulated body fluid under varying 

concentration of gelatin are single-phase and represent hydroxyapatite. 

During formation of the coatings based on the synthesized composites (figure 2), dendritic crystals 

are seen to start growing on the plate edge. 

 

    a.     b. 

Figure 2. Surface morphology of the hydroxyapatite crystals grown on the VT1 titanium alloy surface 

in the presence of gelatin after 3 day soaking in the solution: etched surface (a), polished surface (b) 

(100x magnification). 

 

The crystallization rate was found to depend on the technique used for treating the implant surface. 

More rapid growth of crystals was observed in the microsections of the polished samples, whereas on 

the etched samples, dendritic growth occurred in bulk defects caused by etching. 

The next observation of the titanium sample surface was carried out after 9 day soaking in the 

model solution. Figure 3 shows the surface morphology of the samples coated with hydroxyapatite 

during crystallization in the 3 wt.% gelatin solution.  

 

3

XII International Conference Radiation-thermal Effects and Processes in Inorganic Materials         IOP Publishing
IOP Conf. Series: Materials Science and Engineering 168 (2017) 012063  doi:10.1088/1757-899X/168/1/012063



 
 
 
 
 
 

 
 

a. b. 
Figure 3. Surface morphology of the hydroxyapatite crystals grown on the VT1-0 titanium alloy 

surface in the presence of gelatin after 9 day soaking in the solution: polished surface (a), etched 

surface (b) (100x magnification). 

 

As can be seen from the figure, dendrites continue to grow on both the etched and polished surface 

of the titanium alloy; the dendrites grown on the polished surface are thicker and shorter, whereas 

those grown on the etched surface are longer and thinner. In our opinion, this is related to different 

treatment of the sample surface. The crystallization is found to start in the direction towards the 

sample center, and the HAG coated area on the metal substrate is ~20%. As the crystallization period 

was increased to 18 days (figure 4), the coating layer thickness increased. On the etched surface, it 

was ~70 µm, and on the polished one, it was ~50 µm. It is significant that when the HA-gelatin 

suspension was changed after three days, the increment in the thickness value was 20 µm for each 

sample, which is characteristic of the mechanism when crystals grow on the surface of the biopolymer 

that had already been formed.  

On the polished sample, the coating was loose, and it could be easily removed from the surface. On 

the etched surface, cracks were formed due to increased thickness of the resulting layer. 

According to the results obtained by scanning electron microscopy (figure  4), in all the cases, the 

HAG -gelatin coating was formed with characteristic hexagonal crystal structure. A greater layer 

thickness resulted in cracking. After applying the HAG-gelatin layer, the titanium plates were exposed 

to PIB using the “Temp” setup. Figure 5 shows the morphology of the HA-gelatin layer on the sample 

surfaces after exposure to PIB. Under PIB action, high temperature gradients caused melting of the 

titanium implant surface layer and partial mixing of the HAG -gelatin layer and the substrate. In some 

places, the HAG layer disintegrated. In our opinion, it was due to non-uniform coating thickness. It 

was found that PIB irradiation of the coatings synthesized from the model solution in the presence of 

gelatin lead to fusion of the coating layer and its reliable adhesion.  

This increases the biocompatibility of titanium implants, and crystallization of the HAG -gelatin 

composite on the sample surface may continue. 

The results obtained by scanning electron microscopy (figure 6) show that some part of the HAG 

gelatin coating particles are in the form of rods. The sample structure is porous and it has microcracks 

that also cause further crystal growth and in vivo biodegradation. 

The XRD of the coating (figure 7) indicated the reflexes of the original model – the VT1-0 

titanium alloy, HA-gelatin composite and the sample after irradiation. After irradiation, HA peaks 

could be observed, and the structure of the titanium substrate surface was not modified. Thus, it can be 

noted that the exposure of the coating to PIB results in firm adhesion of the HAG –gelatin layer 

crystallized from the model solution on the titanium substrate. The coating produced by this technique 

can be used for implant manufacturing. 
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Figure 4. Surface morphology of the hydroxyapatite crystals grown on the polished surface of the 

VT1-0 titanium alloy. 

 

a. b.  

Figure 5. Surface morphology of the hydroxyapatite crystals grown on the surface of the VT1 

titanium alloy obtained by optical microscopy after exposure to PIB: polished surface (a), etched 

surface (b). 

 

 

 
 

Figure 6. Surface morphology of the 

hydroxyapatite crystals grown on the polished 

surface of the VT1-0 titanium alloy after exposure 

to PIB. 

 

Figure 7. Diffraction pattern: GA-gelatin crystal 

sample (1); sample with HA crystals grown on 

the VT1-0 titanium alloy surface after irradiation 

(2); sample of the VT1-0 titanium alloy (3). 
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4. Conclusion 

HAG-gelatin powders are synthesized from the SBF solution with gelatin content varying from 1 to 3 

wt. %. It is established that all the samples synthesized in the medium of the model solution of the 

extracellular fluid at varying concentrations of gelatin are single-phase and represent hydroxyapatite.  

Enhanced HAG-gelatin  deposition on the titanium substrate surface is found to occur on etched 

samples. It is revealed that exposure of titanium substrates to PIB with j=100 A/cm
2
 makes possible 

further growth of HA crystals and regeneration of the metal implant surface.  
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