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Abstract. This paper investigates the application of a new form of neuron activation functions 
that are based on the fuzzy membership functions derived from the theory of fuzzy systems. 
On the basis of the results regarding neuron models with fuzzy activation functions, we created 
the models of fuzzy-neural networks. These fuzzy-neural network models differ from 
conventional networks that employ the fuzzy inference systems using the methods of neural 
networks. While conventional fuzzy-neural networks belong to the first type, fuzzy-neural 
networks proposed here are defined as the second-type models. The simulation results show 
that the proposed second-type model can successfully solve the problem of the property 
prediction for time – dependent signals. Neural networks with fuzzy impulse activation 
functions can be widely applied in many fields of science, technology and mechanical 
engineering to solve the problems of classification, prediction, approximation, etc. 

1. Introduction 
Artificial neural networks (NNs) are a computational approach that was developed based on the way 
the brain solves problems. To model biological neural systems, the elements of artificial NNs (neuron 
model) imitate the properties and functioning of biological neurons [1]. In recent years, we have seen 
increasing interest in NNs, as well as their successful applications in various fields, such as business, 
medicine, science, mechanical engineering, geology, etc. NNs have also been used to solve the 
problems of forecasting, classification, management, etc. In this paper, we propose the new model of 
fuzzy-neural networks (FNNs), in which the fuzzy membership functions (MFs) are used as activation 
functions. 

2. Modeling of membership functions as the activation functions 
In previous studies, the activation functions of NNs usually take the forms of a unit step function, a 
linear threshold or sigmoid function [2]. Moreover, impulse and Gaussian distribution functions [3] 
can be used for activation functions in an effort to simplify the structures of NNs. The results of the 
above-mentioned studies have revealed the complexity of activation function selections for the 
development of NNs. To this end, it is necessary to study the validity for a new model that utilizes 
MFs from the fuzzy system theory [4, 5] as NN activation functions. 

According to literature [6], the fuzzy number is a convex, normalized fuzzy set which membership 
function is at least segmentally continuous and has the functional value at precisely one of the x 
values. This point x is referred to as the mean value of the fuzzy number. 

The support of a fuzzy set is a crisp set and is defined as follows: 
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( ) [ ] ( ) [ ]supp , : 0, , .L R A L RA S S x x S Sµ= > ∀ ∈  

Similarly, the core (kernel) of a fuzzy set is a crisp set: 

( ) [ ] ( ) [ ]ker , : 1, ,K .L R A L RA K K x x Kµ= = ∀ ∈  

Thus, a fuzzy number is defined by four specific points: 
, , ,L L R RA S K K S= .    (1) 

However, the fuzzy number will be only completely determined by equation (1) if we know the 
type of MF. When creating a computer application, we use the MF LR-type, which is defined by the 
following expression [7]: 
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Equation (2) offers a large variety of MF selections, among which the triangular, trapezoidal and 
piecewise continuous polynomials are the most commonly-used. 

In this paper, we propose a new form of MFs using triangular fuzzy number N = 〈A, B, C〉: 
( ) ( ) ( ) ( ) ( ) ( ) ( )L Rx f x H x A H B x f x H x B H C xµ = ⋅ − ⋅ − + ⋅ − ⋅ − ,     (3) 

where ( )Lf x , ( )Rf x  respectively denote the left and right parts of the MF, which is given by a second-
order polynomial, ( )H x  is the Heaviside unit function [4]. 

If ( )Lf x , ( )Rf x  are second-order polynomials and '( ) 0Lf x = , '( ) 0Rf x =  at the characteristic points 
of the fuzzy values, the MF given by equation (2) could be modified by one of the four following 
expressions: 

'( ) 0;
'( ) 0.

L

R

f A
f C

=
 =

 (4); 
'( ) 0;
'( ) 0.

L

R

f B
f B

=
 =

 (5); 
'( ) 0;
'( ) 0.

L

R

f A
f B

=
 =

(6); 
'( ) 0;
'( ) 0.

L

R

f B
f C

=
 =

(7) 

The shapes of MFs using triangular fuzzy numbers based on the conditions given by equation (4) - 
equation (7) are shown in figure 1 

c) d)

a) b)

 

Figure 1. MFs with additional conditions: a) Conditions by equation (4); 
b) Conditions by equation (5); c) Conditions by equation (6); d) Condition 
by equation (7). 
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In next sections, we will investigate the feasibility of fuzzy neuron models and FNNs using these 
MFs as activation functions. 

3. Models of fuzzy neurons 
According to [8], a FNN is a clear neural network with a feed-forward signal based on a multi-layer 
architecture using AND – OR neurons  

An AND–neuron is a neuron, in which the multiplication operation of weight w  and input x  is 
modeled by conorm ( , )S w x  , and the addition operation of weights is expressed by norm ( , )T w x . 

An OR–neuron is a neuron, in which the multiplication operation of weight w  and input x  is 
modelled by norm ( , )T w x , and the addition operation of weights is given by conorm ( , )S w x .   

The concepts of T–norm and S–conorm were discussed in [8, 9]. T–norm and S–conorm are 
functions with special properties. They are the actual functions of two variables that are defined in the 
interval of [0, 1]×[0, 1], and the values of these functions are in the range of [0, 1]. The models of 
AND–fuzzy neurons and OR–fuzzy neurons are shown in figure 2.  

b)

а)

 

Figure 2. Models of fuzzy neurons: 
a) AND–neuron; b) OR–neuron 

The FNN, which is mentioned above, is termed the first-type FNN. The present paper proposes the 
second-type FNN model, whose activation functions have the forms of the MFs given by figure 1. 

We can observe that in the first-type FNN model, the fuzzy relationships between neurons are 
similar to those between the elements of NNs, i.e., the first-type FNNs utilize fuzzy inference systems 
by NN methods. For the second-type FNN model, fuzziness is an attribute of neurons. While 
developing the structural representations for FNNs, it is found that it is necessary to study the third 
type of FNN, which is the combination of the first and second types. 

4. Application of second-type FNNs to determine the fundamental frequency of signals with 
white noise  
For many technical applications, it is necessary to identify several important characteristics, such as 
the frequency and the phase of a fundamental signal that can be interfered by some types of noise. 
This noise is usually modeled by white noise, which has a constant spectral power density distributed 
over the whole frequency domain.  

In this paper, we investigate the feasibility of the second-type model of FNNs for the problem of 
determining the fundamental frequency of a time-dependent signal with noise. The methods of so-
called ‘theory of experiment’ [10] are used to process the data of the experiment. 

A signal used in this study is given as the combination of a sinusoidal signal and a white noise 
function: 
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1 2sin(2 )y a ft a rπ= × + ×    (8) 
where 1a  is an amplitude of the fundamental sinusoidal signal, 2a  is a constant related to the 
magnitude of the noise, r  denotes a random function, which values are within the interval of [0,1], f is 
the frequency of the fundamental sinusoidal signal.  

The duration from 0 to 0.005 s is studied with 500 time steps, and fundamental frequency f is set 
between 1 and 2 Hz . Therefore, a set of discrete values of function ( )y t  corresponding to the 500 
time steps is used as an input to our FNN. A second-type FNN is applied to predict frequency f. 
Similar problems may arise in many applications of FNN, especially in the mechanical engineering. 

A multilayer unidirectional network is used to create our FNN. The network consists of an input 
layer, a hidden layer and an output layer. The hidden layer comprises 10 neurons with fuzzy activation 
functions of types a) or d). A linear activation function is employed for the output layer. The program 
selects 70% of the input values for the training process; while the rest 30% are used for the validation 
process. The training process is based on the Levenberg-Marquardt algorithm. 
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Figure 3. 'Network structure 

Table 1. Test results 

Fundamental 
frequency f ( Hz ) 

Test results with  
MF of type а) 

Test results with  
MF of type d) 

1 1.030 1.165 
1.2 1.379 1.332 
1.4 1.516 1.373 
1.6 1.606 1.678 
1.8 1.739 1.758 
2 2.012 2.046 

 
Figure 4. Test results 
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5. Conclusions 
From the test results it follows that the model of second-type fuzzy neurons and fuzzy neural networks 
can successfully solve the problems of predicting the properties of time–dependent signals. Therefore, 
neural networks with fuzzy impulse activation functions may be widely used in many fields of science, 
technology and mechanical engineering for some problems regarding classification, prediction, 
approximation, etc. However, these models require significant computing resources while dealing with 
the time series prediction problems. According to Moore’s law [11], the number of elements of a 
single chip doubles every 18 months. Hence, with the fast development of state-of-the-art computers, 
this problem can be handled soon. For the next study, we will focus on solving the problem regarding 
computational cost. 
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