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Abstract An important aspect of modern automation is machine learning. Specifically, neural 
networks are used for environment analysis and decision making based on available data. This 
article covers the most frequently performed operations on floating-point numbers in artificial 
neural networks. Also, a selection of the optimum value of the bit to 14-bit floating-point 
numbers for implementation on FPGAs was submitted based on the modern architecture of 
integrated circuits. The description of the floating-point multiplication (multiplier) algorithm 
was presented. In addition, features of the addition (adder) and subtraction (subtractor) 
operations were described in the article. Furthermore, operations for such variety of neural 
networks as a convolution network - mathematical comparison of a floating point (‘less than’ 
and ‘greater than or equal’) were presented. In conclusion, the comparison with calculating 
units of Atlera was made. 

1.  Introduction 
Neural networks are of great importance in the modern world. They are used in problems of 
prediction, control and classification and in process automation. The scope may be vast, industrial, 
agricultural equipment, and automatic control of various air and ground equipment. For example, 
automation of warehouse loaders, agricultural harvester, autopilot in cars.  

Current researches are carried out in the direction of increasing the size of neural networks in order 
to improve accuracy of their work [1]. However increasing the size of network leads to an increase of 
the perform time. One of the ways to reduce the operating time of the neural network is the use of 
optimization algorithms. The other way is to experiment with computing architecture of NN. Today, 
most of the studies are primarily focused at the software level [2-5].  

However, if the optimization of calculations is made at the hardware level, it will be possible to 
achieve better performance in a system of small size. Also, hardware systems require less power than 
others do. But this task is not as simple as building a network in hardware as this is only one part of 
the work. For normal operation, the network must be trained. But hardware implementation of 
learning is not trivial. Since there are many program implementation of learning algorithms, it is 
simpler to train the network at the program level than to transfer the parameters trained network to 
hardware.  

2.  Numbers representation 
To transfer the parameters (weights) of the network, firstly, it is necessary to determine in which form 
they should be stored. Most of the neural networks are working with single precision floating point 

MEACS2016                                                                                                                                        IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012044    doi:10.1088/1757-899X/177/1/012044

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

mailto:zoev.ivan@yandex.ru
http://creativecommons.org/licenses/by/3.0


numbers, rarely with double-precision ones. However, in a hardware implementation, there is a 
problem the number of logical cells required to implement. And the smaller the bitness of the number, 
the less logic cells are required for the operation with it. Table 1 shows the number of cells required, 
depending on the bitness of a number of different accuracies. 

 
Table 1. Dependence of logic cells’ numbers on representation of floating point bitness. 

Bitness of 
floating point 

Multiplication Addition Comparison 
LUT REG Multiplier LUT REG LUT REG 

Fp16 75 27 1 
(18x18) 

240 29 44 35 

Fp32 127 32 1 
(27x27) 

524 45 82 67 

Fp64 307 38 4 
(27x27) 

1121 107 167 133 

 
The smallest bitness, according to the IEEE 754 standard, is represented with a half floating point 

[6], which is also supported by Nvidia graphic cards manufacturers, and it can accelerate the process 
of training neural networks [7]. 

If we consider the multiplication operation of floating point numbers and compare them with the 
field-programmable gate array (FPGA) architecture, in which hardware implementation is made, then 
we can note an interesting feature. For example, Cyclone V has special units for multiplying (DSP – a 
digital signal processor), which contain the hard multipliers size and number: 3 - 9x9, 2 - 18x18, 1-
27x27[8]. In order to save DSP data blocks, it is logical to use variation with the largest number of 
multipliers. For example, there is only one configuration in Spartan 6 by Xilinx ― 18x18, but it can 
operate at a higher clock frequency [9]. 

If we go back to the representation of numbers and look at the part of the number that is multiplied 
(10-bit mantissa + 1 implicit bit), we will find that it is necessary to use an 11x11 multiplier. 
Therefore, DSP multipliers of 18x18 size will be used to implement this multiplication block. The loss 
of one unit of the multiplier due to a 2-bit mantissa for hardware implementation of neural networks is 
not equivalent. Therefore, for the hardware implementation, it has been decided to use a format of a 
14-bit floating point from half precision with two bits of the mantissa truncated. This allows using 
FPGA multipliers optimally, and is compatible with the format of 16 bits. 

This transformation affects the calculation accuracy in the neural network, but in the classification 
task, this problem does not affect the result [10]. 

3.  Multiplication 
According to the rules of the IEEE 754 standard operation with floating point numbers, multiplication 
takes place as follows. The sign of the resulting number occurs from an XOR operation on the signs 
operands of multiplication. Exponents of operands are added together and the resulting exponent is 
chosen from the recent multiplication mantissa (simple sum or increment sum). The mantissa is 
obtained by multiplying, and the result is written into the result number with the truncation up to 9 
bits. Representation of the circuit is shown in figure 1. 

This scheme does not describe the whole IEEE 754 standard, which may affect the operation of the 
scheme. Namely, processing of plus/minus infinity cases is lacking. But the neural network almost 
does not work with these values. 

Table 2 shows the value of occupied cells on the FPGA implementation multiplier for the full and 
non-full IEEE 754 standard.  
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Table 2. Dependence logic cells of the multiply unit with and without the case of infinity. 

 LUT 
Different 

LUT Multiplier 
Fp14 multiplier with infinity  35 

2 1 
(9x9) Fp14 multiplier without 

infinity 33 

 
Sign

XOR

Exponent Mantissa Sign Exponent Mantissa

Sign Exponent Mantissa

-

Shift of 
exponent

+ +

1
F (hex)

*

0 1 0 1

[16:9][17:10]

[17]

0 10 1 [6]

0 0

 
Figure 1. The scheme of the hardware floating point multiplier. 

4.  Addition and subtraction 
Hardware implementation of the addition for floating point numbers is more difficult than 
multiplication. According to the rules, the first action brings mantissa values to one order.  

This requires bringing of the two numbers to a fixed point format. The result of the conversion will 
be the 40-bits representation. After, addition occurs. The result will be represented in a 41-bit fixed 
point. Then it is necessary to perform the reverse conversion to the floating point format. The 
functional diagram is shown in figure 3. 

Sign Exponent Mantissa

Sign Exponent Mantissa

Fixed 
point 

40

Fixed 
point 

40

+

Circuit of
multiplexers 

Circuit of
multiplexers

Circuit of
multiplexers Sign Exponent Mantissa

Fixed 
point 

41

Figure 3. The scheme of the hardware floating point adder. 

At the stage of conversion to a fixed point, a sign of operands must be considered and a conversion 
into two's complement representation for negative numbers has to be made. To implement subtraction, 
simply change the sign of the second operand.  
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5.  Comparison 
Also, other operations are used in neural networks besides the addition and multiplication. For 
example, a selection of the maximum element is used in convolutional networks. To implement the 
search of the maximum number, it is necessary to use the adder performing the subtraction. If the 
result is negative, then the subtrahend is larger than the minuend. If the result is positive, the 
subtrahend is greater than or equal to the minuend. The scheme is shown in figure 4. 

Sign Exponent Mantissa

Sign Exponent Mantissa

-

Sign 0 1

Sign Exponent Mantissa

 
Figure 4. The scheme of the hardware floating point comparator. 

6.  Result & Conclusion 
Implementations of calculating blocks were created using hardware description languages. Altera has a 
free IP core performing the same functions. However, their modules cannot be configured for the 
desired parameters in a 14-bit floating point (16-bit representation minimum).  

The presented implementations have a form of combinational circuits; therefore, the sync impulse 
is not required. The delay speed depends on the logical cells. The comparative characteristics tables 
(tables 3-5) show the difference of the characteristics of the two implementations. 

 
Table 3. Comparison of the multiplier of Altera with logic elements, registers, and performance. 

 LUT REG Multiplier Fmax (MHz) Latency 
Fp16  75 27 1 (18x18) 58  2 

Fp14 
(Fp14 inf) 

35 
(33) 

0 1 (9x9) 123  
(137)  

1 

 
Table 4. Comparison of the adder of Altera with logic elements, registers, and performance. 

 
 

LUT REG Fmax (MHz) Latency 
Fp16   240 29 44 1 
Fp14  497 0 35 1 

 

Table 5. Comparison of the comparator of Altera with logic elements, registers, and performance. 

 LUT REG Fmax (MHz) Latency 
Fp16  44 35 225 1 
Fp14 279 0 60 1 
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Based on table 3, we can conclude that there are better results of performance and less occupied 
logic cells compared to the multiplier of Altera. However, Altera wins in the search of the maximum 
element and the adder by the numbers of occupied logic cells. But if the register is considered as a 
classical D flip-flop, which contains 6 logic cells, the difference between the modules of Altera 
becomes smaller.  

The optimization problem of these two calculators and the reduction of occupied LUT and/or the 
increase of the performance are still relevant and give grounds to continue the research of these 
functional units.  

Despite drawbacks, the presented implementation provides the basis for the creation of hardware 
development of neural networks with software learning. Classic, recurrent and convolution neural 
networks can be created with these implementations. And the implementation on FPGA provides 
parallel work of neurons [9]. 
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