
Implementation of 14 bits floating point numbers of
calculating units for neural network hardware development

I V Zoev, A P Beresnev, E A Mytsko and A N Malchukov

Tomsk Polytechnic University, 30, Lenina Ave., Tomsk, 634050, Russia

E-mail: zoev.ivan@yandex.ru

Abstract An important aspect of modern automation is machine learning. Specifically, neural
networks are used for environment analysis and decision making based on available data. This
article covers the most frequently performed operations on floating-point numbers in artificial
neural networks. Also, a selection of the optimum value of the bit to 14-bit floating-point
numbers for implementation on FPGAs was submitted based on the modern architecture of
integrated circuits. The description of the floating-point multiplication (multiplier) algorithm
was presented. In addition, features of the addition (adder) and subtraction (subtractor)
operations were described in the article. Furthermore, operations for such variety of neural
networks as a convolution network - mathematical comparison of a floating point (‘less than’
and ‘greater than or equal’) were presented. In conclusion, the comparison with calculating
units of Atlera was made.

1. Introduction
Neural networks are of great importance in the modern world. They are used in problems of
prediction, control and classification and in process automation. The scope may be vast, industrial,
agricultural equipment, and automatic control of various air and ground equipment. For example,
automation of warehouse loaders, agricultural harvester, autopilot in cars.

Current researches are carried out in the direction of increasing the size of neural networks in order
to improve accuracy of their work [1]. However increasing the size of network leads to an increase of
the perform time. One of the ways to reduce the operating time of the neural network is the use of
optimization algorithms. The other way is to experiment with computing architecture of NN. Today,
most of the studies are primarily focused at the software level [2-5].

However, if the optimization of calculations is made at the hardware level, it will be possible to
achieve better performance in a system of small size. Also, hardware systems require less power than
others do. But this task is not as simple as building a network in hardware as this is only one part of
the work. For normal operation, the network must be trained. But hardware implementation of
learning is not trivial. Since there are many program implementation of learning algorithms, it is
simpler to train the network at the program level than to transfer the parameters trained network to
hardware.

2. Numbers representation
To transfer the parameters (weights) of the network, firstly, it is necessary to determine in which form
they should be stored. Most of the neural networks are working with single precision floating point

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012044 doi:10.1088/1757-899X/177/1/012044

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

mailto:zoev.ivan@yandex.ru
http://creativecommons.org/licenses/by/3.0

numbers, rarely with double-precision ones. However, in a hardware implementation, there is a
problem the number of logical cells required to implement. And the smaller the bitness of the number,
the less logic cells are required for the operation with it. Table 1 shows the number of cells required,
depending on the bitness of a number of different accuracies.

Table 1. Dependence of logic cells’ numbers on representation of floating point bitness.

Bitness of
floating point

Multiplication Addition Comparison
LUT REG Multiplier LUT REG LUT REG

Fp16 75 27 1
(18x18)

240 29 44 35

Fp32 127 32 1
(27x27)

524 45 82 67

Fp64 307 38 4
(27x27)

1121 107 167 133

The smallest bitness, according to the IEEE 754 standard, is represented with a half floating point

[6], which is also supported by Nvidia graphic cards manufacturers, and it can accelerate the process
of training neural networks [7].

If we consider the multiplication operation of floating point numbers and compare them with the
field-programmable gate array (FPGA) architecture, in which hardware implementation is made, then
we can note an interesting feature. For example, Cyclone V has special units for multiplying (DSP – a
digital signal processor), which contain the hard multipliers size and number: 3 - 9x9, 2 - 18x18, 1-
27x27[8]. In order to save DSP data blocks, it is logical to use variation with the largest number of
multipliers. For example, there is only one configuration in Spartan 6 by Xilinx ― 18x18, but it can
operate at a higher clock frequency [9].

If we go back to the representation of numbers and look at the part of the number that is multiplied
(10-bit mantissa + 1 implicit bit), we will find that it is necessary to use an 11x11 multiplier.
Therefore, DSP multipliers of 18x18 size will be used to implement this multiplication block. The loss
of one unit of the multiplier due to a 2-bit mantissa for hardware implementation of neural networks is
not equivalent. Therefore, for the hardware implementation, it has been decided to use a format of a
14-bit floating point from half precision with two bits of the mantissa truncated. This allows using
FPGA multipliers optimally, and is compatible with the format of 16 bits.

This transformation affects the calculation accuracy in the neural network, but in the classification
task, this problem does not affect the result [10].

3. Multiplication
According to the rules of the IEEE 754 standard operation with floating point numbers, multiplication
takes place as follows. The sign of the resulting number occurs from an XOR operation on the signs
operands of multiplication. Exponents of operands are added together and the resulting exponent is
chosen from the recent multiplication mantissa (simple sum or increment sum). The mantissa is
obtained by multiplying, and the result is written into the result number with the truncation up to 9
bits. Representation of the circuit is shown in figure 1.

This scheme does not describe the whole IEEE 754 standard, which may affect the operation of the
scheme. Namely, processing of plus/minus infinity cases is lacking. But the neural network almost
does not work with these values.

Table 2 shows the value of occupied cells on the FPGA implementation multiplier for the full and
non-full IEEE 754 standard.

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012044 doi:10.1088/1757-899X/177/1/012044

2

Table 2. Dependence logic cells of the multiply unit with and without the case of infinity.

 LUT
Different

LUT Multiplier
Fp14 multiplier with infinity 35

2 1
(9x9) Fp14 multiplier without

infinity 33

Sign

XOR

Exponent Mantissa Sign Exponent Mantissa

Sign Exponent Mantissa

-

Shift of
exponent

+ +

1
F (hex)

*

0 1 0 1

[16:9][17:10]

[17]

0 10 1 [6]

0 0

Figure 1. The scheme of the hardware floating point multiplier.

4. Addition and subtraction
Hardware implementation of the addition for floating point numbers is more difficult than
multiplication. According to the rules, the first action brings mantissa values to one order.

This requires bringing of the two numbers to a fixed point format. The result of the conversion will
be the 40-bits representation. After, addition occurs. The result will be represented in a 41-bit fixed
point. Then it is necessary to perform the reverse conversion to the floating point format. The
functional diagram is shown in figure 3.

Sign Exponent Mantissa

Sign Exponent Mantissa

Fixed
point

40

Fixed
point

40

+

Circuit of
multiplexers

Circuit of
multiplexers

Circuit of
multiplexers Sign Exponent Mantissa

Fixed
point

41

Figure 3. The scheme of the hardware floating point adder.

At the stage of conversion to a fixed point, a sign of operands must be considered and a conversion
into two's complement representation for negative numbers has to be made. To implement subtraction,
simply change the sign of the second operand.

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012044 doi:10.1088/1757-899X/177/1/012044

3

5. Comparison
Also, other operations are used in neural networks besides the addition and multiplication. For
example, a selection of the maximum element is used in convolutional networks. To implement the
search of the maximum number, it is necessary to use the adder performing the subtraction. If the
result is negative, then the subtrahend is larger than the minuend. If the result is positive, the
subtrahend is greater than or equal to the minuend. The scheme is shown in figure 4.

Sign Exponent Mantissa

Sign Exponent Mantissa

-

Sign 0 1

Sign Exponent Mantissa

Figure 4. The scheme of the hardware floating point comparator.

6. Result & Conclusion
Implementations of calculating blocks were created using hardware description languages. Altera has a
free IP core performing the same functions. However, their modules cannot be configured for the
desired parameters in a 14-bit floating point (16-bit representation minimum).

The presented implementations have a form of combinational circuits; therefore, the sync impulse
is not required. The delay speed depends on the logical cells. The comparative characteristics tables
(tables 3-5) show the difference of the characteristics of the two implementations.

Table 3. Comparison of the multiplier of Altera with logic elements, registers, and performance.

 LUT REG Multiplier Fmax (MHz) Latency
Fp16 75 27 1 (18x18) 58 2

Fp14
(Fp14 inf)

35
(33)

0 1 (9x9) 123
(137)

1

Table 4. Comparison of the adder of Altera with logic elements, registers, and performance.

LUT REG Fmax (MHz) Latency
Fp16 240 29 44 1
Fp14 497 0 35 1

Table 5. Comparison of the comparator of Altera with logic elements, registers, and performance.

 LUT REG Fmax (MHz) Latency
Fp16 44 35 225 1
Fp14 279 0 60 1

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012044 doi:10.1088/1757-899X/177/1/012044

4

Based on table 3, we can conclude that there are better results of performance and less occupied
logic cells compared to the multiplier of Altera. However, Altera wins in the search of the maximum
element and the adder by the numbers of occupied logic cells. But if the register is considered as a
classical D flip-flop, which contains 6 logic cells, the difference between the modules of Altera
becomes smaller.

The optimization problem of these two calculators and the reduction of occupied LUT and/or the
increase of the performance are still relevant and give grounds to continue the research of these
functional units.

Despite drawbacks, the presented implementation provides the basis for the creation of hardware
development of neural networks with software learning. Classic, recurrent and convolution neural
networks can be created with these implementations. And the implementation on FPGA provides
parallel work of neurons [9].

References
[1] Simonyan K , Zisserman A 2015 Int. Conf. on Learning Representations (San Diego: Corenell

University Library) p 1
[2] Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T 2014

 ACM Conf. on Multimedia (Orlando: Association for Computing Machiner) p 675
[3] Cireşan D, Meier U, Masci J, Schmidhuber J 2012 J. Neural Networks 32 333-338
[4] Dong Y, Eversole A, Seltzer M L, Kaisheng Y 2015 An Introduction to Computational

 Networks and the Computational Network Toolkit Tech. Rep. MSR-TR-2014-112
[5] Gu J, Liu Y, Gao Y, Zhu M 2016 4th Int. Workshop on OpenCL (Vienna: Association for

Computing Machinery) pp 1-12
[6] IEEE Computer Society 2008 IEEE Standard for Floating-Point Arithmetic (New York: IEEE)
[7] Dixon P R, Oonishi T, Furui S 2009 IEEE Int. Conf. on Acoustics, Speech and Signal Proc.

(Taipei: IEEE) p 4321
[8] Pozniak K T, Czarski T, Romaniuk R S 2004 The Int. Society for Optical Eng. (Warsaw) p 1
[9] Omondi A R, Rajapakse J C 2006 FPGA Implementations of Neural Networks (Netherlands:

 Springer)
[10] Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P 2015 32nd Int. Conf. on Machine

Learning (Lille: International Machine Learning Society) p 1

MEACS2016 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 177 (2017) 012044 doi:10.1088/1757-899X/177/1/012044

5

