
Implementation of the Algorithm for Congestion control in
the Dynamic Circuit Network (DCN)

H S Nalamwar1, M A Ivanov1 and G U Buddhawar 2

1 Tomsk Polytechnic University, 30, Lenina Avenue, Tomsk, 634050, Russia
2 NCET, Mouza Bodli, Dhanora Road, Gadchiroli, MS, 442605, India

E-mail: hitesh@tpu.ru

Abstract. Transport Control Protocol (TCP) incast congestion happens when a number of
senders work in parallel with the same server where the high bandwidth and low latency
network problem occurs. For many data center network applications such as a search engine,
heavy traffic is present on such a server. Incast congestion degrades the entire performance as
packets are lost at a server side due to buffer overflow, and as a result, the response time
becomes longer. In this work, we focus on TCP throughput, round-trip time (RTT), receive
window and retransmission. Our method is based on the proactive adjust of the TCP receive
window before the packet loss occurs. We aim to avoid the wastage of the bandwidth by
adjusting its size as per the number of packets. To avoid the packet loss, the ICTCP algorithm
has been implemented in the data center network (ToR).

1. Introduction
In this work, our discussion is mainly focused on the congestion problem that usually occurs in incast,
a condition which is the opposite of broadcast. In broadcast, one node sends messages to multiple
nodes; in incast - on the contrary - multiple nodes send messages to one and the same node. The TCP
(Transport Control Protocol) is a reliable protocol and has been widely used in the Internet. The
congestion happens when many synchronized servers work under the same switch and TCP is not very
reliable for high-bandwidth and low latency networks. Previous solutions focused on either reducing
the wait time for packet loss recovery with faster retransmissions [1, 2, 3], or controlling switch buffer
occupation to avoid overflow by using ECN and modified TCP on both the sender and receiver sides
[4, 5]. This report focuses on avoiding the packet loss before incast congestion, which seems more
appealing. Our idea is to perform the incast congestion avoidance at the receiver side by preventing
incast congestion. The receiver side is a natural choice since it knows the throughput of all TCP
connections and the available bandwidth. The receiver side can adjust the receive window size of each
TCP connection so that the aggregate bursts of all the synchronized senders are kept under control. We
suggest calling this design Incast congestion Control for TCP (ICCTCP). However, adequately
controlling the receiver window is challenging. The receiver window should be small enough to avoid
incast congestion, but also large enough for good performance and other non-incast cases. The
technical novelties of this work are as follows:

1) To perform congestion control on the receiver side, we use the available bandwidth on the
network interface as a quota to coordinate the receiver window increases of all incoming connections.

2) Our per flow congestion control is performed independently of the slotted time of RTT of each

1

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012106 doi:10.1088/1742-6596/803/1/012106

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

http://creativecommons.org/licenses/by/3.0

connection, which is also the control latency in its feedback loop.
3) Our receiver window adjustment is based on the ratio of the difference between the measured

and expected throughput over the expected.
The live RTT is necessary for throughput estimation as we have observed that TCP RTT in a high

bandwidth of low latency network increases with throughput, even if the link capacity is not reached.
TCP incast has been identified and described in a distributed storage cluster [5]. In distributed file
systems, the files are deliberately stored in multiple servers. However, TCP incast congestion occurs
when multiple blocks of a file are fetched from multiple servers at the same time. Several applications
of specific solutions have been proposed in the context of parallel file systems.

2. TCP Incast Congestion
Fig. 1 shows a typical data-center network structure. There are three layers of switches/routers, in
particular the ToR switch, the Aggregate switch, and the Aggregate router. The figure also illustrates a
detailed case for a ToR switch connected to dozens of servers.

Figure 1. Data-center networks and a detailed illustration of a ToR switch connected to multiple rack-
mounted servers.

Incast congestion happens when multiple sending servers under the same ToR switch send data to
one receiver server simultaneously. This process is demonstrated in Fig. 2.

Figure 2. The scenario of incast congestion in data-center networks, where multiple TCP senders
transmit data to the same receiver under the same ToR switch.

The amount of data transmitted by each connection is relatively small, e.g. 64kb. The term goodput
is effective throughput obtained and observed at the application layer. The multiple TCP connections
are barrier-synchronized. First, these connections are established between all senders and the receiver,
respectively. Then, the receiver sends out a (very small) request packet to ask each sender to transmit
data, that is, multiple requests packets are sent using multiple threads. The TCP connections are issued

2

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012106 doi:10.1088/1742-6596/803/1/012106

round by round, and one round ends when all connections on that round have finished their data
transfer to the receiver. Here, we can observe similar goodput trends for three different traffic amounts
per server, but with slightly different transition points.

3. Motivation
As we have mentioned, in broadcast, one node sends messages to multiple nodes, while in incast the
process is quite opposite, that is multiple nodes send messages to one and the same node. When a
number of servers work in parallel with a single server, network congestion occurs. Network
congestion is the situation in which an increase in data transmission results in proportionately smaller
increase, or even a reduction, in throughput. Congestion degrades the performance of the network.
Packet loss is the major reason for the congestion.

Packets are having two numbers that are associated with each packet.
1. A sequence number indicates the ID of a packet.
2. An acknowledgement number (ACK) indicates the expected acknowledge (ACK) number of the

packet that is associated with it.

4. TCP Timeout
Timeout happens when the sender does not receive an ACK for a long period (retransmission or
RTO). There are several reasons for the timeout due to congestion given below:

a) In distributed file systems, as the files are deliberately stored in multiple servers at the time of
fetching, congestion occurs.

b) With the recent progress in data center networking, TCP incast problems in the data center
network have become a practical issue.

c) TCP throughput is severely degraded by incast congestion since one or more TCP connections
can experience timeout caused by packet drops.

d) TCP variants sometimes improve performance, but fail to prevent incast congestion collapse
since most of the timeouts are caused by buffer overflow.

Based on the analysis of the characteristics of the data center network, the common pattern and the
TCP congestion control algorithm, the results of TCP incast are as follows:

1. Since the top of rack switches is shallow buffered, highly bursty, fast and simultaneous, data
transmissions overfill the switch buffer to make packet losses.

2. Mass Packet losses will lead to TCP congestion control, reducing the sending window by half
and decreasing the sending rate.

3. The intense packet loss results in TCP timeouts. The TCP timeout lasts for 100 milliseconds, but
the round trip time of the data center network is around 100 microseconds. Coarse grained RTO
reduces the application throughput by 90%.

5. Problem Analysis
The root cause of TCP incast collapse is that the highly bursty traffic of multiple TCP connections
overflows the Ethernet switch buffer in a short period of time, causing the intense packet loss resulting
in the TCP retransmission and timeouts. In distributed file systems, TCP incast congestion occurs
when multiple blocks of a file are fetched from multiple servers, as files are stored at multiple servers.
To resolve issue, several application specific solutions have been proposed in the context of the
parallel file system. Due to recent progresses on DCN, the TCP incast problem is a common problem.
Since there are various applications running in DCN, the best solution is to keep the application free
and keep responsibility at a transport layer for building effective solutions. It is a preferred way to
avoid congestion and timeout for TCP incast. Our idea is to perform incast congestion avoidance at the
receiver side by preventing incast congestion. The receiver side is a natural choice since it knows the
throughput of all TCP connections and the available bandwidth. The receiver side can adjust the
receiver window size of each TCP connection.

3

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012106 doi:10.1088/1742-6596/803/1/012106

6. Working Modules
Here, we have the TOR switch which is a datacenter network.

a. The ToR switch is acting as a data center network.
b. All traffic is managed at the ToR Switch.
c. All the data/Packets from a number of servers are collected at ToR and then transferred to a

client.
d. ToR manages all the traffic from different servers and transfers it to a client to avoid the packet

loss.

7. Experimental Results and Discussions
Figures 3 and 4 show the results obtained after the implementation of the ICTCP algorithm in the
platform.

Figure 3. Simulation duration of the packet on the server, which is uniform in the system.

4

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012106 doi:10.1088/1742-6596/803/1/012106

Figure 4. The inter-arrival time representing time between each arrival of the packet on the receiver
side

8. Advantages
Table 1 compares the efficiency of the retransmission algorithm to the efficiency of the ICTCP
algorithm, with the latter demonstrating obvious advantages

No Retransmission algorithm ICTCP algorithm
1 Buffer Overflow Problem Buffer overflow is impossible
2 Timeout problem Time out problem is less possible
3 Load increase on the receiver side Load does not increase on the receiver side
4 Both windows need to be adjusted Only receiver windows need to be adjusted
5 Wait time reduced by retransmission Not in the ICTCP algorithm
6 Bandwidth is not preserved Bandwidth is preserved to a large extent as a means of

retransmission avoidance
Table 1. Efficiency of the ICTCP algorithm over the retransmission algorithm

9. Conclusion
The paper describes the design and implementation of the ICTCP algorithm to improve TCP
performance for TCP incast. The previous approaches based on a fine tuned timer for faster
retransmission or controlling of a switch buffer are different from ICTCP. The paper focuses on the
receiver based congestion control algorithm where ICTCP proactively adjusts the TCP receiver
window based on the ratio of difference of achieved and expected throughputs per connection over
expected throughputs, as well as the available bandwidth at the receiver end. Our experimental results
demonstrate that ICTCP is effective to avoid congestion by achieving almost zero timeout for TCP
incast, and packet losses are reduced to a large extent, and thus the bandwidth is considerably
preserved. The ICTCP method is also used for the preservation of congestion in the network.

References
[1] Vasudevan V, Phanishayee A, Shah H, Krevat E, Andersen D, Ganger G, Gibson G, and

Mueller B 2009 Safe and effective fine-grained TCP retransmissions for datacenter
communication Proc. ACM SIGCOMM 303–314

[2] Kandula S, Sengupta S, Greenberg A, Patel P, and Chaiken R 2009 The nature of data center
traffic: Measurements & analysis Proc. IMC 202–208

[3] Alizadeh M, Greenberg A, Maltz D, Padhye J, Patel P, Prabhakar B,Sengupta S and Sridharan
M 2010 Data center TCP (DCTCP) Proc. SIGCOMM 63–74

[4] Krevat E, Vasudevan V, Phanishayee A, Andersen D, Ganger G, Gibson G and Seshan S 2007
On application-level approaches to avoiding TCP throughput collapse in cluster-based storage
systems Proc. Supercomput. 1–4

[5] Al-Fares M, Loukissas A and Vahdat A 2008 A scalable, commodity data center network
architecture Proc. ACMSIGCOMM 63–74

[6] Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y and Lu S 2009 BCube: A high
performance, server-centric network architecture for modular data centers Proc. ACM
SIGCOMM 63–74

[7] Brakmo B and Peterson L 1995 TCP Vegas: End to end congestion avoidance on a global
internet IEEE J. Sel. Areas Commun. 13 1465–1480

5

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012106 doi:10.1088/1742-6596/803/1/012106

