
Application of dynamic priorities for controlling the
characteristics of a queuing system

S V Polyanskiy1, Yu Ya Katsman1

1 Tomsk Polytechnic University, 30, Lenina Ave., Tomsk, 634050, Russia

E-mail: Katsman@tpu.ru

Keywords: model, queuing system, priority-free discipline of expectation and service, relative
priority, absolute priority, queue, FIFO, dynamic priority.

Abstract. This paper considers the development and modification of an imitation model of a
queuing system. The initial model uses the laws of control (discipline of expectation and
service) with mixed priorities. The work investigates the model with three types of entities
(absolute priority, relative priority and priority-free ones) in the regime of overload, i.e. a
system with losses. Verification and validation of the created imitation model confirmed its
adequateness and accuracy of received results. The application of dynamic priorities for
changing the laws of model control substantially alters certain system characteristics. The
creation of the model in MatLab Simulink environment with the use of SimEvents and
Stateflow library modules allowed creating a fairly complex queuing system and obtain new
interesting results.

1. Introduction
The work presents the developed and partially modified imitation model of a queuing system (QS).
The model was developed in the MatLab Simulink environment [1] using the SimEvents library [2],
which allows modeling discrete states of a QS, control the advancing of entities in queues, etc. The
library has blocks (subroutines) intended for analyzing the model performance characteristics, which
allow specifying or changing the priorities of entities, collecting and analyzing statistics of input and
output flows for each type of entities. The model was modified [1] with the use of Stateflow library
[3], which helps the researcher to model combinatory and sequentional logic of decision-making. The
presented work used Stateflow blocks for dynamic change of the imitation model functioning laws
(logic).

The following parameter were set for the QS model:
− Three sources of entities: priority-free, priority (relative priority), high-priority (absolute

priority).
− Departure of non-served entities after queue filling.
− One server.
− Entity arrival time has a uniform distribution law.
− Entity service time has an exponential distribution law − the higher the entity priority, the

lower the serving time in the server:
• priority-free Taverage = 10;

1

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012119 doi:10.1088/1742-6596/803/1/012119

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

http://creativecommons.org/licenses/by/3.0

• medium-priority Taverage = 5;
• absolute priority Taverage = 3;

− Modeling time is 1000 units.

2. Results and discussion

A. QS Structure
The QS was studied under the overload regime; if the entity queue reached maximum, the entity is

rejected. The serving discipline, according to which priority-free entities get into the server only in the
absence of entities with high priorities in the queue, enables the situation when the fraction of served
low-priority entities becomes negligibly small. This questions the reasonability of their presence in the
system. If the exclusion of a flow of priority-free entities from the service is impermissible, this
problem can be solved using a dynamic increase of priority, if the flow (relative flow) of priority-free
entities is lower than the threshold value.

The developed QS consists of the following main blocks: a generator of entities and a parameter
setter, departure of entities in case of a full queue (rejection), a queue, a priority increase, a server,
return of partially served entities, departure of served entities. The structural scheme of the QS is
presented in Fig. 1.

Figure 1. The scheme of QS functioning
The generator of entities and a parameter setter provides the entry of an entity into the system at

the time corresponding to the entity type and its distribution density. In this block, the attributes are
also set.

Departure of entities in case of a full queue is the subsystem that calculates the number of entities
unserved due to a full queue.

The Queue block is for saving entities, if the server is busy; if the server is free, then the entity goes
into the service according to its priority. First, the entities with absolute priority are served, then − the
entities with relative priority, and lastly − priority-free entities.

Priority increase is a subsystem used when the percentage of served priority-free entities is low,
and demand in the increased quantity of served priority-free entities arises. Here, priority (relative one)
is assigned to a priority-free entity, but the time of its processing in the server remains the same.

Server is a block that has a system for interruption of the entity service with any priority in case an
entity with absolute priority enters the system. A partially served entity is pushed from the server to
the queue for afterservice, where all its attributes and time necessary for its final service are stored.

The subsystem for returning pushed out entities sends the entity from the queue for afterservice into
the server immediately after serving an entity with absolute priority.

Departure of served entities is the subsystem that terminates the entity passage in the model; it
calculates the number of served entities according to their priorities.

B. The subsystem of the queue and dynamic priority increase
A number of works study queues with dynamic priorities [4]. However, the practical use of

2

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012119 doi:10.1088/1742-6596/803/1/012119

analytical results received for primitive QS is problematic. Work [5] implemented the increase of the
priority of a priority-free entity, if its queuing time exceeded the allowed time. The estimation of this
time involved preliminary test calculations, which is not always practical. In this connection, the
subsystem of the queue and priority increase of this model was substantially reworked. The structural
scheme of the queue is depicted in Fig. 2.

FIFO queue for

priority-free

entities

FIFO queue for

entities with

medium-priority

FIFO queue for

entities with

absolute priority

Input switch

Priority

increase

Output switch
priority-free entity

entity with medium-priority

entity with absolute priority

Entity

Systems for

commutation

Figure 2. The structural scheme of the queue

The subsystem of the queue (Fig. 2) consists of the Input Switch block, the Output Switch block,

systems for the commutation and priority increase, and three FIFO queue blocks, one block for entities
of each type.

After the entity was generated, it gets into a corresponding queue. The Input Switch block in
conjunction with the commutation system provides the operation of the whole block as a priority
queue. The commutation system checks the presence of entities in queues starting from the highest
priority, and if this queue is not empty, it commutates it to the exit from the subsystem. Thus, the
system first checks the presence of entities in the FIFO queue for entities with absolute priority, and if
the queue is not empty, then the Input Switch block commutates this queue with the exit; if it is empty,
then the FIFO queue with relative priority is checked, and so on.

The priority increase system works in conjunction with the Output Switch block. When the
model is launched, a threshold value is specified, a minimum percentage of priority-free entities
should be maintained by the system. The system (Fig. 3) checks the percentage of served priority-free
entities; if it is lower than the threshold value, then this system commutates the queue of priority-free
entities with the queue of entities with relative priority by throwing two entities from the priority-free
queue into the queue with relative priority. After that, the system again checks the percentage of
served entities, and after 10 units of time accounts the inertia of the QS.

3

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012119 doi:10.1088/1742-6596/803/1/012119

Figure 3. The priority increase system

If the percentage of served priority-free entities is sufficiently high, and there is no necessity in

increasing the probability of serving a priority-free entity, then this block commutates with the Input
Switch block.

C. QS with dynamic priorities
After the modification, the QS model looks as follows.

Figure 4. The QS model with dynamic priorities

During the development of an imitation model, one of the most important stages is the testing of
the system [6, 7]. Taking into account these requirements, a number of tests were performed for the
QS (Fig. 4). The received results are given in Table 1.

4

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012119 doi:10.1088/1742-6596/803/1/012119

Table 1. QS characteristics with dynamic priorities

No.
Priority
increase
system

N1 N2 N3 N % 1 % 2 % 3 K Pserv

1
- 31 97 51 179 17.31 54.18 28.49 98.28 0.6884

+ 35 79 51 165 21.21 47.87 30.9 98.28 0.6346

2
- 22 126 36 184 11.95 68.47 19.56 99.14 0.6666

+ 35 103 36 174 20.11 59.19 20.68 99.14 0.6304

3
- 28 94 43 165 16.96 56.96 26.06 98.28 0.7674

+ 33 84 43 160 20.62 52.5 26.87 98.28 0.7441

4
- 63 50 27 140 45 35.71 19.28 97.74 0.7608

+ 63 50 27 140 45 35.71 19.28 97.74 0.7608

5
- 56 50 46 152 36.84 32.89 30.26 97.28 0.8539

+ 56 50 46 152 36.84 32.89 30.26 97.28 0.8539

Legends: +/- is on/off of the priority increase system;
N is the total number of served entities;
Ni is the number of served entities with priority i;
% i is the percentage of served entities with priority i;
K is a server load coefficient;
Pserv is probability of the entity service by the server.

3. Conclusions
The received results testify that there are no losses of high-priority entities, except of the cases, when a
high-priority entity is in the server at the moment of modeling end.

The use of dynamic priorities increases the priority of a priority-free entity only once; in this case,
the probability of serving a flow of such entities increases. At the same time, the number of served
entities with relative priority decreases. Moreover, such entity with priority preserves the average time
of the priority-free entity service. And since priority-free entities are served for a longer time, the
number of entities served by the system will decrease. This property is observed with dynamic
priorities turned on (Table 1, Pserv). In experiments 4 and 5, the initiation of the priority increase
system did not change the QS characteristics, since the flow of served priority-free entities exceeded
the threshold value and dynamic priorities did not turn on (Table 1).

References
[1] Katsman J.J., Apachidi X.N. 2014 Algorithm Simulation of Resource Allocation of the

Queueing Systems, Based on the Priorities. Proceeding of 2014 International Conference on
Mechanical Engineering, Automation and Control Systems. pp 1- 6.

[2] SimEvents. Model and simulate diskrete-event system.
http://www.mathworks.com/products/simevents/

[3] Stateflow. Model and simulate decision logic using state machines and flow.
http://www.mathworks.com/products/stateflow/

[4] Stephen S. Fratini. Analysis of a dynamic priority queue, Communications in Statistics.
Stochastic Models 6(3) 415-444

[5] Apachidi X. N., Katsman Yu. Ya. Development of a queuing system with dynamic priorities.
Key Engineering Materials 685 934-938

5

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012119 doi:10.1088/1742-6596/803/1/012119

[6] Law A. M. 2008 How to build valid and credible simulation models. Proc. of the Winter
Simulation Conf. Miami (USA) pp 39-47

[7] Sargent R. G. 2008 Verification and validation of simulation models. Proc. of the Winter
Simulation Conf. Miami (USA) pp 39-47

6

International Conference on Information Technologies in Business and Industry 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012119 doi:10.1088/1742-6596/803/1/012119

