Геофизика

УДК 550.831.01

ИНТЕРПРЕТАЦИЯ ДАННЫХ ВЫСОКОТОЧНОЙ ГРАВИРАЗВЕДКИ. ВЕРТИКАЛЬНЫЙ ГРАДИЕНТ ПЛОТНОСТИ

В.И. Исаев, В.Ю. Косыгин*, Г.А. Лобова, Ю.В. Пятаков**

Томский политехнический университет *Вычислительный центр ДВО РАН, г. Хабаровск **Воронежская государственная технологическая академия, г. Воронеж E-mail: isaev sah@mail.ru

Приведены примеры установленных нелинейных (экспоненциальных) закономерностей изменения плотности пород одновозрастных осадочных комплексов с глубиной. Выполнена серия решений прямых и обратных задач детальной и высокоточной гравиразведки, типичных для нефтегазовой геологии, с учетом и без учета вертикального градиента плотности. Полученные погрешности моделирования (интерпретации), при допущении постоянной плотности, приводят к выводу о нецелесообразности повышения точности гравиметрической съемки лучше ±0,20 мГл, если нет возможности создания и учета петроплотностных зависимостей.

Ключевые слова:

Высокоточная гравиразведка, плотность пород, одновозрастные осадочные комплексы, вертикальный градиент, ошибка интерпретации.

Key words:

High-precision gravimetria, density of rocks, same age sedimentary complexes, vertical gradient, an error of interpretation.

Введение

За последние 10-15 лет произошли принципиальные изменения как в аппаратурном оснащении гравиметрических исследований, так и в методиках обработки полевых данных. За счет применения высокоточных автоматизированных гравиметров, спутниковой навигации, электронной тахеометрии, пересмотра стандартов редуцирования, точность определения аномалий Буге возросла с ±(0,10...0,15) до ±(0,02...0,04) мГл [1]. В это же время, высокоточная гравиметрия находит все большее применение для прямой оценки нефтегазовой продуктивности объектов, вводимых в поисковое бурение, а также входит в комплекс методов краткосрочного прогноза сейсмических событий [2]. Для решения таких задач предполагается выявлять вариации гравитационного поля интенсивностью более 0,02 мГл как достоверные аномалии.

Вместе с тем, и при моделировании поля – решении прямой задачи, и при моделировании распределения плотности или положения плотностных границ – решении обратных линейных и нелинейных задач, не учитываются, за редким исключением [3], давно установленные универсальные свойства структур земной коры: вертикальный градиент плотности и трехмерность. А интерпретация данных гравиразведки и состоит в решении перечисленных задач.

Цель нашей работы – обратить внимание на возможные ошибки моделирования поля, распределения плотности, положения плотностных контактов, если не учитывать градиент плотности и трехмерность объектов при решении задач высокоточной гравиразведки. В настоящей статье приведены оценки величин ошибок моделирования, если не учитывать градиент плотности. Оценки получены в результате вычислительных экспериментов на квазиреальных или реальных объектах нефтепоисковых работ, т. е. для осадочных разрезов. Как известно, объекты нефтегазовой геологии наиболее сложные, а задачи здесь имеют наиболее общий вид.

Вертикальный градиент плотности пород

Изучение фактического материала (керна) по 40 глубоким скважинам Колпаковской впадины Западной Камчатки (рис. 1) показало, что главной

Рис. 1. Фрагмент обзорной схемы размещения осадочных бассейнов Дальневосточного региона [4]: контуром показана площадь осадочного бассейна и его номер. 27 – Колпаковская впадина; 11 – Нышско-Тымский прогиб

закономерностью плотностного разреза является постепенное нарастание плотности с глубиной [5].

Кайнозойский осадочный чехол впадины залегает на складчатом основании мелового возраста. Чехол несогласиями разделяется на тигильскую (\mathbf{P}_{1-2} tg), воямпольскую (\mathbf{P}_3 -N₁vm) и кавранскую (N₁kv) серии. Верхнюю часть разреза слагают отложения плиоцен-антропогенового возраста. На антиклинальных локальных поднятиях впадины открыты газовое и газоконденсатные месторождения.

Изменения плотности каждого стратиграфического комплекса эффективно описываются зависимостями вида

$$\sigma(Z) = B_0 - B_1 \exp(-B_2 Z) \pm \varepsilon \sigma.$$
(1)

Коэффициент B_0 — минеральная (максимальная) плотность отложений. Коэффициенты B_1 и B_2 определяются в результате корреляционно-регрессионного анализа плотности σ (с учетом водонасыщенных пор) и глубины залегания Z образцов керна. Коэффициент B_1 интерпретируется как величина, пропорциональная пористости неуплотненных осадков, а B_2 – как интенсивность воздействия фактора геологического времени [4].

- Получены следующие закономерности:
- для тигильской серии (ошибка приближения $\varepsilon_{\sigma} = \pm 0.06 \text{ г/см}^3$)

$$\sigma(Z) = 2,67 - 0,36 \exp(-0,61Z); \quad (2)$$

для воямпольской серии (
$$\varepsilon_{\sigma} = \pm 0.08 \text{ г/см}^3$$
)

C

$$\sigma(Z) = 2,67 - 0,67 \exp(-0,47 Z);$$
(3)

• для кавранской серии (
$$\varepsilon_{\sigma} = \pm 0,15$$
 г/см³)
 $\sigma(Z) = 2,67 - 1.18 \exp(-0,49Z).$ (4)

$$(-)$$
 $(-)$ $(-)$ $(-)$ $(-)$ $(-)$

Из (2)–(4) и анализа ε_{σ} следует, что на формирование плотности одновозрастных отложений определяющее влияние оказывает геостатическая нагрузка. Дисперсию плотности определяют *вариации литологического состава*, которые уменьшаются с возрастом отложений. С увеличением возраста плотность становится все менее подвержена изменению с глубиной. На рис. 2, *а*, изображены в виде полос $\{\sigma(Z)\pm\varepsilon_{\sigma}\}$ изменения плотности стратиграфических комплексов Колпаковской впадины.

Рис. 2. Сводные плотностные колонки Колпаковской впадины Западной Камчатки (а) и Нышско-Тымского прогиба Сахалина (б): индексы стратиграфических комплексов соответствуют тексту

Аналогичные по типу зависимости получены [6] при изучении кернового материала 21 нефтепоисковой скважины *Нышско-Тымского прогиба Сахалина* (рис. 1):

 для уйнинских отложений (un), нижний миоценолигоцен (ошибка приближения ε_σ=±0,01 г/см³)

$$\sigma(Z) = 2,70 - 0,21 \exp(-0,44 Z);$$
 (5)

 для дагинских отложений (dg), средний-нижний миоцен (ε_σ=±0,06 г/см³)

$$\sigma(Z) = 2,69 - 0,28 \exp(-0,24 Z); \tag{6}$$

 для окобыкайских отложений (ok), средний миоцен (ε_σ=±0,04 г/см³)

$$\sigma(Z) = 2,70 - 0,38 \exp(-0,28 Z); \tag{7}$$

 для нутовских отложений (nt), плиоцен-верхний миоцен (ε_σ=±0,06 г/см³)

$$\sigma(Z) = 2,70 - 0,49 \exp(-0,26Z). \tag{8}$$

На рис. 2, δ , изображены в виде полос { $\sigma(Z) \pm \varepsilon_{\sigma}$ } изменения плотности стратиграфических комплексов Нышско-Тымского прогиба.

Оценки ошибок моделирования поля

Алгоритм моделирования. Принимаем, что блоково-слоистая структура осадочного разреза аппроксимируется набором горизонтальных призм с сечением в виде трапеции с вертикальными боковыми сторонами и произвольными верхними и нижними основаниями (рис. 3). Плотности в пределах трапеций известны и меняются по экспоненциальному закону (1).

Рис. 3. Аппроксимирующий элемент плотностного разреза

Гравитационный эффект горизонтальной призмы с сечением в виде трапеции с плотностью, меняющейся согласно (1), определяется выражением

$$V_{Z}(x,z) = V_{Z}(x,z) - V_{Z}(x,z),$$
(9)

где $V_Z'(x,z)$ — гравитационный эффект призмы с постоянной плотностью $\sigma = B_0$, выражающийся через элементарные функции [7]; $V_Z''(x,z)$ — эффект призмы с плотностью $\sigma = B_1 \exp(-B_2 Z)$, аналитическое выражение для которого получено и алгоритмизировано в работе [8].

Вычислительный эксперимент. На рис. 4 приведено сопоставление гравитационных эффектов одинаковых по форме и положению в разрезе геоблоков воямпольских (рис. 4, *a*) и кавранских (рис. 4, *б*) отложений, но имеющих плотности, ап-

Рис. 4. Сопоставление гравитационных эффектов геоблоков воямпольских vm (a) и ковранских kv (б) отложений Колпаковской впадины: 1) геоблок; 2) гравитационные эффекты при постоянной плотности геоблоков; 3) гравитационные эффекты геоблоков, когда плотности заданы линейной функцией, аппроксимирующей экспоненту; 4) искажение модели поля (ΔV_z)

проксимирующих истинную (экспоненциально меняющуюся) с разной степенью адекватности. Для расчетов гравитационных эффектов геоблоков с постоянной плотностью плотность бралась согласно экспоненте в центре масс геоблока ($Z=Z_{u}$). Линейные функции, описывающие изменения плотности с глубиной $\sigma(Z)=2,22+0,09Z$ для воямпольских отложений, $\sigma(Z)=1,53+0,37Z$ для кавранских отложений, получены среднеквадратической аппроксимацией экспонент (3), (4) по трем точкам (Z_{κ} – отметка кровли блока, Z_{u} , Z_{n} – отметка подошвы блока). Точность аппроксимации $\pm(0,01...0,02)$ г/см³.

Выводы. 1) Если при моделировании поля учитывается вся среда ниже расчетного профиля, что является правилом при решении задач в нефтегазовой геологии, то из-за неучета градиентности среды искажение модели поля может достигать 1...3%; 2) в абсолютных величинах искажение модели поля из-за неадекватности модели среды может составить, по меньшей мере, 0,20 мГл (рис. 4, *a*). Эта величина того же порядка, что и точность детальных гравиметрических работ, и существенно больше точности высокоточной гравиразведки; 3) уже на этом этапе исследований можно априорно оценить, что при решении обратной линейной задачи ошибка из-за неучета градиентности среды может составить 0,07 г/см³.

Оценки ошибок моделирования положения плотностных границ

Алгоритм моделирования. Задача заключается в том, чтобы по наблюденному гравитационному полю $V_{z}(x,z)$ определить положение вершин трапе-

ций — вертикальные координаты $h_i^{(B)}$ и $h_i^{(B)}$ (рис. 3). Горизонтальные координаты вершин трапеций ξ_i закреплены. Задача сводится к решению системы нелинейных уравнений относительно вертикальных координат вершин трапеций и коэффициентов полинома, аппроксимирующего региональный фон

$$f_{i} = \sum_{\nu=1,N} \sum_{j=1,N_{\nu}} V_{Zij\nu} + P_{iC} = V_{Zi,i} = \overline{1,M},$$
(10)

при условии

$$h_{j_{\nu}}^{({}_{\mathrm{H}})} \le h_{j_{\nu}} \le h_{j_{\nu}}^{({}_{\mathrm{H}})}, \ B_{\tau}^{({}_{\mathrm{H}})} \le B_{\tau} \le B_{\tau}^{({}_{\mathrm{H}})},$$
 (11)

где V_{Zijv} – влияние на *i*-ю расчетную точку *j*-го аппроксимирующего тела из *v*-го слоя (определяется выражением (9)); V_{Zi} – наблюденные значения поля в *i*-х точках профиля с координатами (x_i, z_i) ; *N* и N_v – количество слоев и трапеций в слое; $h_{jv}^{(m)}$, $h_{jv}^{(m)}$ – нижние и верхние ограничения решений, характеризующие априорные сведения о положении контакта; $P_{iC} = \sum_{\tau=0,C} B_{\tau} x_i^{\tau}$ – полином степени *C*; B_{τ} – коэффициенты полинома. Общее количество неизвестных n=n'+n'', где $n'=(1+N_v)N$ и n''=1+C. Принимается, что M > n.

Система нелинейных уравнений (10) представляется в виде операторного уравнения

$$F(x) = b, \ b \in H_2, \ x \in H_1,$$
 (12)

где H_1 и H_2 – гильбертовы пространства; F(x) – нелинейный оператор (F(x): $H_1 \rightarrow H_2$); x – искомые неизвестные; b – наблюденное поле.

В качестве решения уравнения (12) принимается элемент *х*^{*α*}, обеспечивающий минимизацию параметрического функционала

Рис. 5. К моделированию положения плотностных границ. Модель 1: 1) аппроксимирующие трапеции; 2) положение плотностного контакта, 3) начальное приближение контакта

$$f(x) = \left| \left| F(x) - b \right| \right|_{H_2}^2 + a \left| \left| x - x_0 \right| \right|_{H_1}^2, \quad (13)$$

$$x^{(\mathrm{H})} \le x \le x^{(\mathrm{B})},\tag{14}$$

где $x^{(\text{H})}$ и $x^{(\text{B})}$ – нижние и верхние ограничения в соответствии с (11). Минимизация функционала (13) при условиях (14), как задача нелинейного программирования [7], осуществляется методом сопряженных градиентов [9].

Вычислительный эксперимент. Плотностной разрез модели 1 представлен одним контактом (рис. 5), который аппроксимируется 17 точками (вершинами 16-ти трапеций). Его положение нужно определить. Начальное приближение представляет собой горизонтальную линию на глубине 2500 м. Закон изменения плотности аппроксимирующих блоков экспоненциальный (3).

Задача решалась по точному полю, по полю с помехой $\pm 0,05$, $\pm 0,20$ и $\pm 1,00$ мГл. Для оценки ошибки решения, возникающей в случае неучета изменения плотности с глубиной, задача также решалась с постоянными плотностями в пределах аппроксимирующих элементов (плотность полагалась равной значению плотности в центре элемента, определенной по формуле (3)). Результаты решений приведены в табл. 1. В табл. 1 и 2 ошибка решения есть точное значение положения контакта минус значение решения.

Выводы. 1) С уменьшением помехи в поле решение стремится к точному, т. е. выполняется основной принцип регуляризации; 2) решение, при учете градиента плотности, вполне удовлетворительное — ошибка $\pm(30...40)$ м; 3) плотностная неадекватность модели (неучет градиента плотности) приводит к большой погрешности решения, ±120 м – даже при отсутствии помехи в поле. Важно отметить, что наличие помехи ±0,20 мГл практически не ухудшает решение - ошибка остается прежней, ±120 м. Это объясняется одинаковым порядком ошибок, вызванных неадекватностью модели и помехой в поле ±0,20 мГл. Следовательно, если не учитывать градиентность среды (1), то и не имеет смысла увеличивать точность съемки лучше ±0,20 мГл.

Модель 2 основывается полностью на реальных данных. Информация о положении контактов стратиграфических горизонтов – надежные сейсмические материалы вдоль профиля ОГТ 871431 в пределах Колпаковской впадины Западной Камчатки. Профиль гравиметрических наблюдений – детальная гравиметрическая съемка, точность определения аномалий Буге ±0,25 мГл. Разрез представлен палеоген-неогеновыми отложениями и верхнемеловым основанием до глубины 3400 м (рис. 6). Первый слой – кавранские отложения с плотностью (4), второй – воямпольские отложения ния с плотностью (3). Плотность основания принята постоянной и равной 2,67 г/см³.

Таблица 1. К моделированию положения плотностного контакта. Модель 1

Координата по профилю, км	Точное положение по глубине, м	Ошибка начального приближения, м	Ошибка решения с учетом градиента плотности, м				Ошибка ре- шения с по- стоянными плотностя- ми, м	
			По точному полю	С помехой ±0,05 мГл	С помехой ±0,20 мГл	С помехой ±1,00 мГл	По точному полю	С помехой ±0,20 мГл
5	500	-2000	0	-10	0	0	-250	-230
6	750	-1750	0	+10	0	-10	-20	-40
7	1000	-1500	0	-20	-20	-60	-190	-180
8	1250	-1250	0	+30	+30	+120	-10	-30
9	1500	-1000	0	-30	-30	-10	-140	-120
10	1750	-750	-10	+30	+20	-50	-30	-40
11	2000	-500	+20	0	-10	-60	-30	-40
12	2250	-250	-50	-50	-40	0	-80	-70
13	2500	0	+50	+80	+80	+120	+30	+40
14	2250	-250	-50	-50	-50	-20	-80	-90
15	2000	-500	+20	0	0	-40	-30	-30
16	1750	-750	-10	+30	+30	-40	-30	-30
17	1500	-1000	0	-40	-40	-10	-140	-130
18	1250	-1250	0	+30	+50	+130	-10	0
19	1000	-1500	0	-20	-40	-120	-190	-210
20	750	-1750	0	+10	+30	+60	-30	-20
21	500	-2000	0	-10	-20	-40	-250	-250
Ошибка в положении контакта, м	-	1220	20	30	40	150	120	120
«Невязка» по полю, мГл	-	60,96	0,00	0,06	0,20	1,00	0,46	0,49

Рис. 6. К моделированию положения плотностных границ. Модель 2 (профиль ОГТ 871431. Колпаковская впадина): 1) положение контакта по данным сейсморазведки; 2) начальное приближение для решения обратной задачи гравиразведки; 3) решение для экспоненциальной модели плотности среды; 4) решение с постоянными плотностями; 5) наблюденное поле; 6) расчетное поле решения

Каждая контактная поверхность аппроксимируется 15 точками, представляющими собой вершины 14-ти трапеций. Интерес представляет восстановление второй контактной поверхности. Задача решалась с закреплением первой контактной поверхности. Положение второй контактной поверхности на периферии тоже закреплялось. Определению, таким образом, подлежат 13 неизвестных.

В табл. 2 приведены три решения: *первое решение* – с учетом изменения плотности с глубиной по (3, 4); *второе решение* – с постоянными плотностями, определенными в соответствии с (3, 4) в центрах аппроксимирующих элементов начального приближения; *третье решение* – с одинаковыми плотностями в слоях, равными, соответственно, средним значениям плотностей в первом и во втором слоях.

Первое решение соответствует максимальной адекватности модели. Полученные решения сопоставляются с данными сейсморазведки.

Выводы: 1) Отклонение положения контакта, полученного сейсморазведкой, от положения, полученного в первом решении обратной задачи гравиметрии, составило 160, во втором решении – 350 и в третьем – 470 м; 2) первое решение, наиболее полно учитывающее изменение плотности с глубиной, согласуется как с данными гравиразведки (в пределах ошибки съемки), так и вполне удовлетворительно с данными сейсморазведки; 3) из таблицы 2 и рисунка 6 видно, что плотностная неадекватность модели приводит к очень большим разногласиям с информацией, полученной сейсморазведкой.

	Ошибка	Ошибка решения, м								
Положение по дан-	началь-	Первое								
ным сейсморазведки,	ного	решение	Второе	Третье						
М	прибли-	(условия в	решение	решение						
	жения, м	тексте)								
1000	0	0	0	0						
1150	0	-5	-80	-420						
1180	0	+6	+30	+90						
1320	0	+120	0	+50						
1210	0	-310	-270	-530						
2060	880	+30	-270	+320						
2900	1580	+330	+690	+1200						
2900	1580	+60	+480	+550						
2700	1480	+20	+470	+420						
2600	1400	-110	+360	+380						
2280	1180	-10	+340	+60						
2060	980	+220	+450	+220						
1600	240	-270	-230	+230						
1480	120	-40	-190	-320						
1280	0	0	0	0						
Ошибка в положении контакта, м	970	160	350	470						
«Невязка» по полю, мГл	6,60	0,28	0,33	0,34						

Таблица 2. К моделированию положения плотностного контакта. Модель 2 (Колпаковский прогиб Западной Камчатки, профиль ОГТ 871431)

Оценки ошибок моделирования распределения плотностей

Алгоритм моделирования. При решении обратной линейной задачи, когда интервалы изменения глубин залегания стратиграфических комплексов известны (координаты вершин трапеций (рис. 3) закреплены), а интервалы изменения глубин отдельных геоблоков невелики, рационально вместо экспоненциального закона (1) использовать его линейную аппроксимацию:

$$\sigma(Z) = \sigma_0 + kZ, \tag{14}$$

где σ_0 — значение плотности на уровне Z=0; k — вертикальный линейный градиент плотности.

С помощью линейной аппроксимации (14) можно судить о приуроченности аномалий плотности – литологических неоднородностей (если таковые выделяются по отношению к (1) в процессе моделирования) к кровле или подошве стратиграфического комплекса.

Таким образом, слоистая структура аппроксимируется набором горизонтальных призм. Плотность в призмах изменяется по линейным законам (14). Необходимо по известному гравитационному полю определить параметры σ_0 и k.

Задача сводится к решению системы линейных уравнений

$$\sum_{\nu=1,N} \sum_{j=1,N_{\nu}} A_{0j\nu} \sigma_{0j\nu} + \sum_{\nu=1,N} \sum_{j=1,N_{\nu}} A_{ij\nu} k_{j\nu} + P_{iC} =$$

= $V_{Zi}, i = \overline{1, M}.$ (15)

 A_{0jv} , A_{1jv} — гравитационное влияние на *i*-ю расчетную точку *j*-го аппроксимирующего блока из *v*-го слоя при плотности и градиенте плотности, равных 1; σ_{0jv} , k_{jv} – постоянные составляющие плотности и линейные вертикальные градиенты плотности аппроксимирующих блоков, подлежащие определению.

Модель (15) при практической реализации [10] заменяется на эквивалентную, удобную в применении, с дополнением ее системой ограничений на определяемые параметры

$$\sum_{\nu=1,N} \sum_{j=1,N_{\nu}} A'_{0j\nu} \sigma_{ZBJ\nu} + \sum_{\nu=1,N_{\nu}} \sum_{j=1,N_{\nu}} A'_{1j\nu} \sigma_{ZBJ\nu} + P_{iC} = V_{Zi}, \ i = \overline{1,M},$$
(16)

при

$$\sigma_{Z \not g \not v}^{(\mathfrak{H})} \leq \sigma_{Z \not g \not v} \leq \sigma_{Z \not g \not v}^{(\mathfrak{B})}, \ \sigma_{Z \not g \not v}^{(\mathfrak{H})} \leq \sigma_{Z \not g \not v} \leq \sigma_{Z \not g \not v}^{(\mathfrak{B})},$$

$$B_{\mathfrak{r}}^{(\mathfrak{H})} \leq B_{\mathfrak{r}} \leq B_{\mathfrak{r}}^{(\mathfrak{B})}, \qquad (17)$$

где σ_{Zujv} , σ_{Zujv} – плотности на кровле и подошве аппроксимирующих блоков; $\sigma_{Zujv}^{(n)}$, $\sigma_{Zujv}^{(n)}$, $\sigma_{Zujv}^{(n)}$, $\sigma_{Zujv}^{(n)}$, $\sigma_{Zujv}^{(n)}$, $\sigma_{Zujv}^{(n)}$, $B_r^{(n)}$, $B_r^{(n)}$, $B_r^{(n)}$ – предельные ограничения на неизвестные.

Решение системы (16, 17) сводится к минимизации параметрического функционала А.Н. Тихонова:

$$f(x) = \left| \left| A(x) - b \right| \right|^{2} + a \left| \left| x - x_{0} \right| \right|^{2};$$
(18)

$$x^{(\mathrm{H})} \le x \le x^{(\mathrm{B})},\tag{19}$$

где *α* – параметр регуляризации, определяющийся из условия

$$\left|\left| Ax^{\alpha \text{ orr}} - b \right|\right| \le \varepsilon_b.$$
(20)

где A – линейный оператор; b – поле, наблюденное с ошибкой ε_b в точках профиля; x, x_0 – искомые и априорные (начальные) приближения неизвестных; $x^{(H)}$, $x^{(B)}$ – ограничения на неизвестные; $x^{\alpha \circ n \tau}$ – оптимальное решение задачи (18)–(20).

Минимизация функционала (18) осуществляется методом сопряженных градиентов [10], обобщенным на случай ограничений на неизвестные, как задача квадратичного программирования [7].

Вычислительный эксперимент. Выполняется построение плотностного разреза вдоль сейсмо-профиля ОГТ 186, пересекающего Верхнее-Нышскую продуктивную структуру в пределах Нышско-Тымского прогиба Сахалина.

Плотностной разрез представлен шестью слоями (рис. 7). Первый, второй и третий слои – нутовские отложения с законом изменения плотности (8); четвертый – окобыкайские (7), пятый – дагинские (6), шестой – уйнинские (5). Плотность пород основания полагается постоянной и равной 2,70 г/см³. Точность наблюденного гравитационного поля вдоль профиля – ±(0,10...0,15) мГл.

В результате моделирования достигнуто удовлетворительное согласование наблюденного и расчетного полей — ±0,12 мГл.

Рис. 7. К моделированию распределения плотности. Профиль ОГТ 186, Нышско-Тымский прогиб. Индексы стратиграфических комплексов соответствуют тексту: 1) геоплотностные границы; 2) границы аномальных разуплотнений по результатам моделирования с учетом градиента плотности; 3) то же с постоянными плотностями; 4) наблюденное поле; 5) расчетное поле априорной модели; 6) расчетное поле решения

На рис. 7 приведены результаты моделирования распределения плотности. Сплошной линией выделены зоны аномальных разуплотнений в продуктивных окобыкайских отложениях и возможно нефтегазоносных дагинских отложениях, полученные в результате моделирования с учетом градиента плотности. Здесь же показана (пунктиром) зона разуплотнения, полученная в результате моделирования, когда плотности аппроксимирующих блоков полагались постоянными.

Выводы: 1) Учет вертикального градиента плотности при моделировании позволяет локализовать аномалии плотности, в том числе к кровле или подошве моделируемого слоя; 2) неучет градиента плотности приводит к существенно менее детальному распределению плотности моделируемого осадочного разреза.

Заключение

Серия вычислительных экспериментов, выполненных без учета вертикального градиента плотности пород, привела к следующим результатам. Погрешность моделирования поля достигает 1...3 %, ошибка восстановления положения контактных поверхностей составляют 350...470 м, существенно загрубляется восстановление распределения плотности даже и при высокоточных наблюдениях.

СПИСОК ЛИТЕРАТУРЫ

- Бычков С.Г. Методы обработки и интерпретации гравиметрических наблюдений при решении задач нефтегазовой геологии. – Екатеринбург: УрО РАН, 2010. – 188 с.
- Паровышный В.А., Веселов О.В., Сеначин В.Н., Кириенко В.С. Временные изменения геофизических полей над газовой залежью (о. Сахалин) // Тихоокеанская геология. – 2008. – Т. 27. – № 4. – С. 3–15.
- Вопросы теории и практики геологической интерпретации геофизических полей: Матер. 38-й сессии Междунар. научного семинара им. Д.Г. Успенского, Пермь, 24–28 января 2011 г. – Пермь: ГИ УрО РАН, 2011. – 319 с.
- Исаев В.И., Старостенко В.И. Оценка нефтегазоматеринского потенциала осадочных бассейнов Дальневосточного региона по данным гравиметрии и геотермии // Геофизический журнал. – 2004. – Т. 26. – № 2. – С.46–61.
- Мишин В.В., Иванов С.Л., Исаев В.И. Плотностная характеристика осадочного чехла Ичинского прогиба Западной Камчатки // Тихоокеанская геология. – 1989. – Т. 8. – № 4. – С. 89–93.

Все вычислительные эксперименты проведены с использованием апробированных решений [7–10] и алгоритмов математического программирования [7].

Полученные погрешности моделирования (интерпретации), при допущении постоянной плотности, ставят под сомнение целесообразность повышения точности гравиметрической съемки лучше ±0,20 мГл.

Для успешного решения задач высокоточной гравиразведки исходные данные, позволяющие учесть вертикальный градиент плотности, можно получить только на участках, достаточно хорошо изученных сейсморазведкой и бурением, т. е. там, где возможно получение и использование петроплотностных зависимостей экспоненциального вида.

Логичным представляется постановка высокоточных гравиметрических работ только на перспективных, уже опоискованных участках. В остальных случаях достаточно ограничиться работами с проектной точностью порядка ±0,20 мГл.

Оценки характера и величин ошибок моделирования, если не учитывать трехмерность объектов при решении задач высокоточной гравиразведки, будут приведены в следующей статье.

- Исаев В.И., Косыгин В.Ю., Соколова В.В. Прогноз нефтегазоносности Нышско-Тымского прогиба Сахалина по результатам геоплотностного и палеотемпературного моделирования // Тихоокеанская геология. – 2001. – Т. 20. – № 5. – С. 12–24.
- Старостенко В.И. Устойчивые численные методы в задачах гравиметрии. – Киев: Наукова думка, 1978. – 228 с.
- Пятаков Ю.А. Решение прямой задачи гравиметрии для неоднородных сред // Геофизический журнал. – 1991. – Т. 13. – № 5. – С. 79–85.
- Старостенко В.И., Исаев В.И., Пятаков Ю.В. Решение обратной задачи гравиметрии для контактов осадочных пород // Геофизический журнал. – 1993. – Т. 15. – № 1. – С. 62–71.
- Исаев В.И., Пятаков Ю.В. Решение обратной линейной двумерной задачи гравиметрии для осадочных разрезов // Геофизический журнал. – 1996. – Т. 18. – № 3. – С. 57–63.

Поступила 11.02.2011 г.