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Abstract. A transition from the fixed basis in Bezier's method to some class of base functions 
is proposed. A parameter vector of a basis function is introduced as additional information. 
This achieves a more universal form of presentation and analytical description of geometric 
objects as compared to the non-uniform rational B-splines (NURBS). This enables control of 
basis function parameters including control points, their weights and node vectors. This 
approach can be useful at the final stage of constructing and especially local modification of 
compound curves and surfaces with required differential and shape properties; it also simplifies 
solution of geometric problems. In particular, a simple elimination of discontinuities along 
local spline curves due to automatic tuning of basis functions is demonstrated. 

1.  Formulation of the problem 
Let us have segment C of some curve. We represent this segment in Bezier form [1–6] by radius-
vectors ir  and weights ( )0iiw w >  of the four vertices of characteristic polyline L. This segment has 

the following analytical description: 
3 3

0 0

( ) ( ) ( ),  ) ( ),i i i i i
i i

t t w r f t t w f t
= =

= =∑ ∑w r w(                         (1) 

where t  is a parameter ranging from 1t  to 2t  ( )2 1t t> ; 

( )tr  and ( )tw  – the radius-vector and the weight of a current point on segment C; 

( )if t  – basis functions. 

We will consider curves in a 3-dimensional Euclidean space; we will also consider the so called 
"curves on the surface", presented at the plane of parameters ,  ,u v  which define this surface by 

equation ( )P P ,  u v=  [1, 3, 4, 6]. Then we have ( ) ( ) ( ) ( )( ) ( ),  ,  ,  ,  ,  i i i it x t y t z t x y z= =r r  in the first 

case and ( ) ( ) ( )( ) ( ), ,  ,i i it u t v t u v= =r r  in the second case. Radius vectors ir  are called control points 

[6]. The two equations above (1) can be replaced with one by introducing homogeneous coordinates 
[1–6]. 

We will consider the case with the minimum number of vertices of the polyline. Then for any two 
non-planar segments 1C  and 2C , there exists an affine or projective transformation from 1C  to 2C .  
These transformations are reduced to the transformation of vertices and their characteristic polyline 
[3, 6]. Such transformations simplify the solution of geometric problems. We can extend the class of 
transformations [3, 6] including the birational transformations, a special case of which is the inversion 
that has a property to transform a circle into a straight and vice versa. 
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Birational transformations can be used [7] to develop effective algorithms for such difficult tasks as 
construction of the line of intersection of two surfaces in solid modeling of geometric objects. The 
limitation to the number of vertices on polyline L may be compensated in part by extending function 
class fi. Let us consider the following basis functions: 

( )
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where ia  are constants, and ,  λ µ  – linear functions of parameter t : 
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Comment 1. Any basis that belongs to the class considered in this paper can be transformed into the 
Bernstein basis by changing the characteristic polyline L in the following manner: 
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Thus, the extension of the two-parameter class of basis functions considered in [2, 3] is proposed. 
Let us introduce vector ( )1 2 1 2 0 1 2 3,  ,  ,  ,  ,  ,  ,  t t b b a a a a=S  for parameters of functions .if  Here 1t  and 

2t  are nodes, 1 2 and b b  are their weights on the parametric line. In special cases, we have the 

Bernstein basis at ( )1 2,  ,  1,  1,  0,  3,  3,  0t t=S  and the Ball basis at ( )1 2,  ,  1,  1,  1,  2,  2,  1t t=S  [1–6]. 

So, let characteristic polyline L (with vertexes 0 1 2 3,  ,  ,  r r r r ) and vector S  are defined with regard 
to the specified limitations. Then rational cubic segment C that tangent the control polyline in its end 
points 0 3,  r r  and belongs to its convex hull is uniquely determined [1, 3]. A rational quadratic 

segment (segment of a conic section) is a special case here and has a canonical definition [3] under the 
following conditions: 

( )1 2 0 3 1 2,  1,  ,  0,  1,  1, . 1,  1,  2,  2,  1w w w w= = = = =r r S                   (4) 

The conic segment can always be converted into a canonical form by an appropriate 
parametrization of the curve [3]. 

The change of 1 2 1 2,  ,  ,  t t b b  means a transfer to a new parametrization of the curve that preserves its 

shape [1, 3]. At this, the length of tangent vectors 1T  and 2T  changes in the end points of segment C. 
The law of point distribution along the curve also changes. Here, we have a risk [3, 6] of significantly 
non-uniform distribution of points along the segment of the curve, e.g. on the interval of the straight or 
on the arc of the circle at equidistant values of parameter t . When values of 0 1 2 3,  ,  ,  a a a a  are 

changed, the shape of the curve is usually modified; in particular curvatures 1K  and 1K  are changed 
in the end points of the curve segment. 

By controlling the parameters of the basis functions (vector S ), it is possible to refine the 
originally built segment of the curve, to obtain the segments of different properties, which are useful in 
the construction of the local spline [5] close to the physical [8] one on the accuracy of the 
approximation, the differential properties (smoothness, curvature continuity) and property forms (with 
the exception of the oscillations, the monotonous change of the curvature between a spline nodes).  

This approach is useful for  
• the local approximation, interpolation and smoothing of the curve given by discrete points [5, 6, 
9–11]; 
• the construction and local modification of a generalized cylinder [3] or a generalized cone [12] 
with required differential properties and properties of the shape its side surface; 
• in the construction line of intersection of two surfaces [4, 7]; 
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• solving the problem complex conjugate surfaces and bodies [6, 13]. 
Let us consider two problems that are important from this perspective. 
 
Problem 1. Given: characteristic polyline L and vector S  defining the conical segment in the 

canonical form (4), which is not a line segment; some curvatures *
1K  and *

2K .  

Required: to modify segment C by tuning vector S , so that resulting segment *C  has curvatures 
*
1K  and *

2K  at its end points, and the tangent vectors (at these points) have kept their length 

( )* *
1 1 2 2,  .= =T T T T  

Comment 2. Conservation of the length of tangent vectors 1T  and 2T  in transformation of a curve 
segment is important in solving such problems as local modification of a compound surface when its 
smoothness should remain [6] and in construction of the line of intersection of two surfaces with a 
posteriori estimated accuracy, when isoparametric [4, 14] or birational [7] correspondence between 
points on the intersection line is represented in a 3-dimensional Euclidean space and in the parameters 
space of such surfaces. 

 
Problem 2. This task is to evaluate the deviation of modified segment *C  obtained by solving 

problem 1, from initial segment C. 
It is known [1] that an attempt to secure some preset curvature values in the end points of a cubic 

Bézier segment (at 1iw = ) by modifying its control poliline should result in a fourth-degree equation 
that may have no real roots. 

An algorithmic solution of this problem for a rational cubic segment in the Ball basis is proposed in 
[3] by means of a simultaneous change of location of control points 1 2,  r r  and weights 1 2,  w w  when 

* *
1 2K 0 and K 0≠ ≠ . Ensuring continuity of curvature of local spline obtained in [10] at the cost of 

using two cubic segments between each pair of spline nodes (similar to biarcs composed of two 
circular arcs and used for splines piecewise constant curvature [5, 11, 15], and in case of paired bodies 
[13]). Curvature persistence of a local spline was obtained in [10] by using two cubic segments 
between each pair of spline nodes (similar to biarcs composed of two circular arcs and used in splines 
of piecewise constant curvature [5, 11, 15] and in conjunction of bodies [13]). 

In this paper, we demonstrate the possibility of a simpler and more efficient solution of the same 
problem by means of an automatic tuning of basis functions for each segment of a local spline. 

2.  Local modification of curves 
Let rational cubic segment C be represented by characteristic polyline L and vector S . Let rational 
cubic segment C be represented by characteristic polyline L and vector S . From the analytical 
description of this spline (1–3), it follows that: 

( ) ( ) ( ) ( )3 3
1 0 1 2 0 2 3 2 1 3,  ,  ,  . t w t b w t w t b w= = = =r r r r                    (5) 

Differentiating equation (1) with respect to t and then substituting expression d / dw w t′ =  from the 
second equation into the first, we obtain an equation for tangent vector T at arbitrary point C: 

3

0

( ) / .i i i
i

w f w
=

′ ′= = −∑T r r r  

From this and on the basis of (2), (3) and (5) we have: 

1 1 1 1 0 2 2 2 3 2
1 1 2 2

2 0 2 1 1 3 2 1

( ) ( )
( ) ,  ( ) .

( ) ( )

a b w a b w
t t

b w t t b w t t

− −′ ′= = = =
− −

r r r r
T r T r                   (6) 

Differentiating twice equation (1) and eliminating w′′ , we obtain the following equation: 
3

0

( ) 2 .i i i
i

w w f w
=

′′ ′′ ′ ′= − −∑r r r r  
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At the next step, we obtain the equation that defines curvature K )K(t=  and unit binormal vector 
( )t=B B  at arbitrary point on segment C by using the well-known equation from differential 

geometry: 
3

0
3 3

( )
.

i i i
i

w f
K

w
=

′′× −′ ′′×⋅ = =
′

∑T r r
r r

B
r T

 

Thus, we obtain the following equation for the end points of segment C, taking into account (2), 
(3), (5) and (6): 

1 0 2 2 2 1 3 3 3 0)0
1 1 32 2

1 1 1 0

( ) [ ( ) ( ]2
,

a w a ww
K

a w

− × − + −
⋅ = ⋅

−

r r r r r r
B

r r
 

(7) 
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a w a ww
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−

r r r r r r
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When 0 3 1 20,  3a a a a= = = = , equations (7) coincide with equations [1] of the Bernstein basis and 

when 0 3 1 21,  2a a a a= = = =  – with the equations [2, 3] of the Ball basis. 

It follows from equations (6) that tangent vectors 1T  and 2T  do not depend on parameters 0a  and 

3a  of basis functions 0f  and 3f . It should be additionally noted that parameter 0a  is linearly included 

only in the second equation and parameter 3a  – only in the first equation in (7). 
Let us now consider Problem 1. Since we will need to save polyline L and fulfil 

conditions * *
1 1 2 2,  = =T T T T , it is reasonable to modify segment C by means of tuning parameters 0a  

and 3a . Thus, simple formulas are derived from equations (7) and conditions (4): 
* * * *
0 2 2 3 1 1K / K ,  K / K .a a= =                             (8) 

Here, a solution always exists because conic segment C is not an interval of line ( )21 0,  K K 0> >  

as defined in Problem 1. If * *
1 2K K 0= = , then the modification will produce rational cubic segment 

C*of zero curvature values in its end points. 
Therefore, a simple solution can be obtained for the problem of conjunction of segments in a 

compound curve when curvature persistence should be provided (including the cases when some 
segments are line intervals). It is clear that eliminating the curvature discontinuities of a smooth 
composite curve in this manner, we can always ensure the following conditions: 

( )* * * *
1 2 0 3 1 1 2 2 0 1,  0 1  0 K K ,  0 K K .w w a a≠ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤                (9) 

Notice, that formulas (8) are fair for a wider class of source segments C compared to conic 
segments because we only use condition 1 2=r r  of conditions (4). In particular, segment C may be a 

rational cubic segment at 1 2w w≠ . Arbitrary parameterization of the curve is also possible when 

1 2b b≠ . 

Example. Some segment C is represented by its control points ( ) ( )0 1 20,  1,  0 ,  0,  0,  0= = =r r r  

and ( )3 1,  0,  0=r , weights 0 3 1 21,  2 / 2w w w w= = = =  and vector ( )0,  1,  1,  1,  1,  2, . 2,  1=S  This is 

an arc of unit circle ( )1 2K K 1= =  [3]. Let segment *C  should have curvature values *
1K 0=  and 

*
2K 1=  in end points 0r  and 3r . Then *

0 1а =  and *
3 0а =  according to formulas (8).  

Resulting segment *C  together with the initial segment of C is shown in figure 1, which also shows 
the isoparametric correspondence between the points of segments, calculated at a constant step of 
parameter t , equal to 0.1. Let us note that in this case, we could establish an isoparametric 

4

International Conference on Information Technologies in Business and Industry 2016                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012126         doi:10.1088/1742-6596/803/1/012126



correspondence close to a birational one ("almost on a normal" to segment C) by tuning parameters 1b  

and 2b , i.e. changing parametrization of segments C and *C . 

3.  A posteriori estimation of accuracy  
Let us turn to problem 2 and consider only the case when conditions (4) and (9) are fulfilled 
simultaneously. Let us introduce vector *

1 1–=h r r , where *
1r  is a projection of control point 1r  on the 

line that passes through points 0r and 3r . Its length h = h  is the height of the control triangle with 

vertexes 0r , 1 2=r r  and 3r  (see figure 1) and single vector / h=e h  is perpendicular to vector 3 0−r r . 
 

  
Figure 1. Isoparametric correspondence 
between points of the segments. 

 
Let ( )t∆r  be the vector defining isoparametrical deviation of current point *r  on segment *C  from 

corresponding point r on conic segment C, i.e. *( ) ( ) ( )t t t∆ = −r r r . Let us introduce function 
h∆ = ⋅ ∆e r , which is a scalar projection of vector ∆r  on the direction of vector h .  

Let us call a deviation of segment *C  from segment C a maximum of function h∆  on interval 

[0, 1], where ( )h h t∆ = ∆ . It follows from equation (1) that: 
*3

*
0 *

i 1

( ) .i i
i i

f f
w

w w=

 
− = − − 

 
∑r r r r   

Having multiplied this equation scalarly by vector e  and taking into account equations (2) and (3), 
conditions (4) and conditions * *

1 1 2 2 3 0,   ,  0( )–f f f f= = ⋅ =e r r , we will obtain the following equation: 

( ) ( )1

1 1
2 1 0

*
h hw t t h

w w
 ∆ = − − ∆ ≥ 
 

,                        (10) 

where weight functions ( )w w t=  and ( )* *w w t=  are transformed to the form: 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )* * *
1 0 31 2 1– –1 ,  – 1 – 1– 1 – 1 –  w t t t w w t w t t t a t a t= + = + 

  .       (11) 

Let us use inequality 

( )* *
1

0 3

/22 2( )( ) ( ) 11– 1 – 1 –a t t t ta α  ≤ −
 

+ + ,                    (12) 

where ( ) ( )
1/22 2

0 31 1* *a aα  = − + −  
.  
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Then from (10–12), we will obtain inequality 12h w hgα∆ ≤ , where function ( )g g t=  takes the 

following form: 
( )

1/22 2 2 2

1/22 2

(1 ) (1 )
( )

( ) ( ) (1 ) (1 )

t t t t
g t

w t w t t t t tα

 − − + =
 − − − +  

  

Research for the extremum of function ( )g t  on interval [0, 1] shows that if 1 3  14w ≤ +  the 

function reaches its largest value when 1/ 2t =  at any values of *
0a  and *

3a  that satisfy conditions (9). 
In this case, the following inequality is obtained: 

1

1 1

∆
(1 )(1 )

w h
h

w w

β
β

≤
+ − +

,                              (13) 

where parameter β  is defined as 2 / 4β α= . Note that the above limitation on weight 1w  is not 

essential, because of large values of weight 1w , segment C asymptotically approaches to the control 
polyline and this case is of no practical interest.  

A more precise evaluation formula can be obtained when the following statement is used instead of 
inequality (12): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2* * * * * 2 *
0 3 0 3 0 3

* 4* /

3

1 2

0
4

1 – 1– 1 – 1 – 2 – – 1– 1– 1–

1 – 2 – –( ) ( ) (1 ) .

a t a t t t a a t a t a

t tt a ta α

+ = ⋅ +⋅ ⋅ ⋅

 ⋅ − + 

+ ≤

⋅ +
 

Then inequality (13) remains and parameter β  takes the following form: 

( )* *
0 32 – – 2 / 8,  0 2( ) 1/ .a aβ α β= + ≤ ≤  

In this case, evaluation is of sufficient precision. Numerical experiments show that its error is less 
than 20%. In the given example (figure 1), 0.063h∆ < . The true deviation of segment *L  from 
segment L in the direction of vector h  accurate to three decimal places is 0.060 (0.057 is 
perpendicular to segment L). 

Comment 3. Let the deviation of some modified segment *C  from its source segment C exceed the 
acceptable deviation. Then segment C may be divided into two segments 1C  and 2C  [1] for the 
purpose of modification and so on. This algorithm is highly efficient for such problems as elimination 
of curvature discontinuities along a smooth compound curve, e.g. a curve that consists of circular arcs 
or biarcs. The algorithm should produce control polyline 0L  as an initial approximation, smooth curve 

1L  as a first approximation and curve 2L  with continuous curvature that deviates from 1L  within the 
preset deviation. 

4.  Conclusion 
The main objective of the paper was to demonstrate the potential [3] of automatic tuning of basis 
functions in combination with a posterior estimation of accuracy by the example of two problems. 
Formulation of the problems and their solutions can be generalized for the situation when the original 
curve is the non-planar generalized cone segment [1, 3, 16], presented in Boll basis. This allows a 
considerable improvement of the algorithms used for the problems of construction of cross section 
geometric objects. This is important, for example, in a CAD hot forging technology, where it is 
necessary to build several dozen cross sections for the calculation of the workpiece.  

Nowadays, non-uniform rational B-splines (NURBS) [6] are widely used as a standard means to 
represent and design geometric objects, because they often lead to a more universal, simple and 
accurate decisions compared to traditional splines for modeling of complex curved surfaces. A crucial 
step forward here is to define node vectors (in addition to control points and their weights) as 
additional information. 
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Authors believe that still a more universal form of presentation and analytical description of 
geometric objects can be obtained if vectors parameters of basis functions are introduced. 

This allows for transformation from Bernstein basis to other bases and back when solving several 
problems mentioned in [6], in particular, the problem of complicated conjugate surfaces. 
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