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Abstract. One of the most noticeable features of sign-based statistical procedures is an 
opportunity to build an exact test for simple hypothesis testing of parameters in a regression 
model. In this article, we expanded a sing-based approach to the nonlinear case with dependent 
noise. The examined model is a multi-quantile regression, which makes it possible to test 
hypothesis not only of regression parameters, but of noise parameters as well. 

1.  Introduction 
Sign-based statistical procedures [1-4] are known to be more robust for outliers than the least squares 
and to have a possibility to control a precise significance level for finite samples when testing a simple 
hypothesis. In this paper, the sign-based approach is extended to the case of a non-linear model with 
dependent noise. Thus, the model of a multi-quantile regression is considered [5, 6], which allows one 
to test hypotheses both of the parameters of the regression function, and the parameters of stationary 
Markov noise εt. 

According to the sign-based approach, the residuals are substituted with indicators of their 
belonging to interquantile intervals ( )1, , ns s= …s , where ts  takes a finite number of values. The 

unknown parameters in this scheme are ',( ), ' ''= θ µθ µθ µθ µυυυυ Q , where vector Q contains linearly independent 

r-dimensional joint probabilities of the states of indicators { }ts  generated by the process. Since the 

problem is considered in a nonparametric setting, each fixed values of parameters µ and Q correspond 
to a class of finite-dimensional distributions of initial process εt. However, we can show that for any 
continuous parameterization of finite-dimensional distributions, all the derivatives of the likelihood of 
indicators P( | )υυυυs  are expressed in the same way. In the problem of testing simple hypothesis 

0 0:H =υ υυ υυ υυ υ , it gives the opportunity to build a test based on the principle of the maximal likelihood 
ratio. 

In this paper, we consider the problem of calculating the critical values to provide the desired 
significance level with any accuracy for finite samples, as well as the critical values based on the 
asymptotic distribution of the test statistic. 

The obtained tests can be used as a basis for estimating parameters υυυυ  by the principle of 
maximal p-values [7], as well as for the development of tests for the linear hypothesis. 

2.  Problem statement 
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Let us consider a non-linear regression model with dependent noise: 

 ( ) , 1 .,t t ty g t nε= + =θθθθ  (1) 

In this model, ( )tg θθθθ  is a continuously differentiable function of parameters '
1( ,..., ) RT

Tθ θ= ∈θθθθ . 

Noise tε  is an (r-1)-order stationary Markov process. One-dimensional distribution functions 

P{ }t xε <  are unknown and not necessarily equal for different t, but they have several coinciding 
quantiles with the same level. 

Let a finite set of intervals ( ) ( )1 , , KC C…µ µµ µµ µµ µ  be a partition of R1, ( ){ }P ,t k kC pε ∈ =µµµµ  1,k K= , 

probabilities pk are known. Parameters µ determine the width of the interquantile range and specify the 

scale of one-dimensional noise distribution. Boundaries of intervals ( ) ( ) ( )1 ,  k k kC c c−=µ µ µµ µ µµ µ µµ µ µ  (here, 

an angle bracket means either open or closed) depend linearly on unknown parameters µ and 

( ) '
k k kc a= +µ µµ µµ µµ µd , 1, 1k K= − , ( )0c ∞= −µµµµ , ( )Kc ∞= +µµµµ . Under these circumstances, ak and dk are 

fixed and valid parameters forming a set of ( ) ( ){ }'

1 1: 0,   2, 1k k k ka a k K− −− + − > = −µ µµ µµ µµ µd d . 

On this occasion, the most interesting cases are the simplest ones: a symmetric two-quantile and 
three-quantile regression, when there is only one parameter µ and it is equal to the half of the 
interquantile range. For two-quantile regression K=3, ( )1c µ= −µµµµ , ( )2  c µ=µµµµ , p1=p3=p, p2=1–2p. For 

three-quantile regression K=4, ( )1  c µ= −µµµµ , ( )2 0c =µµµµ , ( )3  c µ=µµµµ , p1=p4=p, p2=p3=(1–2p)/2. 

Moreover, the one-quantile regression also fits the same model. In this case, parameters µ are absent, 
K=2, and c1(µ)=0, p1=p, p2=1–p. In all these 3 models, probability p is given. 

Let us introduce the following notation for joint probabilities: 

 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }

11 1 1

1 1

P ,..., P ,..., , 1, ,..., 1,

P P

,

,..., : ,..., 1, , 1,

,

.

l

l
l t l k t k r

l l
l l

k k C C l r k k K

k k k k K l r

ε ε− += ∈ ∈ = =

= = =

µ µµ µµ µµ µ

ɶ
 (2) 

In particular, ɶ
(1) (1) (1)

1 (1),..P { ,..., } {P P., ( })  Kp Kp= = . Here parameters θ, µ and ( )P rɶ  are unknown, but 
( )P rɶ  has linearly dependent probabilities. Let Q be a vector, formed by some set of linear independent 

probabilities from ( )P rɶ . 

Let us consider structural transformation 1 1
,..., 1 )( ( 1)

l l j
l l jj
j i i i K −

=
= + −∑ , 1,l r= , which defines the 

correspondence between the set of r-dimensional probabilities ( )P lɶ  and one-dimensional vector ( )P l  
according to the following rule: 

1

( ) ( )
,..( )., 1[P ] P ,..( ).,

l l

l l
j i i li i= . Here and further, [A]j means the j-th row of 

a matrix or the j-th element of a vector. With structural matrix G and vector D, the transition from 

independent probabilities Q to ( )P r G= +D Q  can be made. This transition could take into 
consideration not only a normalization requirement, given one-dimensional probabilities, stationary 
condition, but also finite-dimensional distribution symmetry. In addition, further we will use structural 

matrices Fi, 1, 1i r= − , which provide the transitions to lower level probabilities through ( ) ( )1P Pi i
iF += . 

Within this framework, let us denote true parameters by ' ' ' '( , , )=υ θ µυ θ µυ θ µυ θ µ Q  and hypothetical 

parameters by ' ' ' '
0 0 0 0( , , )=υ θ µυ θ µυ θ µυ θ µ Q . Thereafter, we can formulate the problem of testing simple 

hypothesis H0 about the parameters of models (1) and (2) against composite alternative H1: 
 0 0 ,:H =υ υυ υυ υυ υ 1 0: υ υH ≠  (3) 

For the construction of statistical procedures, we will use indicators ( )1,..., ns s=s . These indicators 

correspond to the numbers of the intervals, in which residuals ( )0t ty g− θθθθ  fall, or 

( ) ( )( )0 0 0 0, ,t t t ts s s y g= = −θ µ θ µθ µ θ µθ µ θ µθ µ θ µ , where ( )0,s k=µµµµu  for ( )0kC∈u µ . 
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The statistics for hypothesis (3) testing will be built on the principle of the maximum likelihood 
ratio. It means that the critical region will contain only such parameters that provide the highest value 
of the gradient norm in the hypothetical point: 

 
( )

( )0

0

0

0

P
L( | , )

P
s

=

=

∇
∇ = υυυυ

υυυυ υ υυ υυ υυ υ
υ υυ υυ υυ υ

υυυυ
υ υυ υυ υυ υ

υυυυ
s

s
 (4) 

Here, ( ) ( ) ( )0 0| , P / PL =υ υ υ υυ υ υ υυ υ υ υυ υ υ υs s s  is the ratio function of indicator-based likelihood. 

3.  The gradient of indicators likelihood 
In searching for the right side of (4), we can use the following expression to get Taylor expansion

( ) ( )0 0 0 0P( | ) P( | ) P( | ) ο .= + ∇ − +′ −υυυυυ υ υ υ υ υ υυ υ υ υ υ υ υυ υ υ υ υ υ υυ υ υ υ υ υ υs s s : 

 ( ) ( ) ( )1 1 2 1 1 1 2 2 1 1P , , P P( , ) P( , , , , ) P ,..., ,
n

n r r t t r tt r
s s s s s s s s s s s s− − − + −=

… = … ∏υ υ υ υ υυ υ υ υ υυ υ υ υ υυ υ υ υ υ⋯ . (5) 

For this expansion, the continuously differentiable parametrization of finite-dimensional distributions by 
µ and Q is needed. For an arbitrary parameterization, we have: 

 .

'
1 1 1 0 00

'
2 1 2 1 0 2 1 0 0 0

'
1 1 1 1 0

0

1 1 0

0 0

P( ) P( ) P( )( ) ο(|| ||),

P( , ) P( , ) P( , )( ) ο(|| ||),

...

P( ,..., , ) P( ,..., , ) P( ,..., , )

( ) ο(|| ||), , .

t t r t t t r t t t r t

s s s

s s s s s s

s s s s s s s s s

t r n

− + − − + − − + −

= + ∇ − + −

= + ∇ − + −

= + ∇ ×

× − + − =

υυυυ

υυυυ

υυυυ

υ υ υ υ υ υ υυ υ υ υ υ υ υυ υ υ υ υ υ υυ υ υ υ υ υ υ

υ υ υ υ υ υ υυ υ υ υ υ υ υυ υ υ υ υ υ υυ υ υ υ υ υ υ

υ υ υυ υ υυ υ υυ υ υ

υ υ υ υυ υ υ υυ υ υ υυ υ υ υ

.  (6) 

Substituting (6) in (5) and after regrouping of terms, we have: 
'' '

2 11 0 1 1 2 00

0 1 0 2 1 1 1 2 00

'
1 1 0

0 0
1 1 0

P( , )P( ) P( ) P( ,..., , )
1 ...

P( ) P( ) P( , ) P( ,..., , )

P( ,..., , )
( ) ο(| ||).

P( ,..., , )

r r

r r

n t t r t

t r
t t r t

s ss s s s

s s s s s s

s s s

s s s

− −

− −

− + −
=

− + −

 ∇∇ ∇
= + + + +



∇
+ × − + −


∑

υυυυυ υυ υυ υυ υ

υυυυ

υυυυυ υ υυ υ υυ υ υυ υ υ
υ υ υ υυ υ υ υυ υ υ υυ υ υ υ

υυυυ
υ υ υ υυ υ υ υυ υ υ υυ υ υ υ

υυυυ

s

s
  

From this, we can obtain the following expression: 

0

2 11 0 1 2 1 0 1 1 00
0

1 0 2 1 1 2 1 0 1 1 00

P( , )P( ) P( ,..., , ) P( ,..., , )
L( ) ... .

P( ) P( , ) P( ,..., , ) P( ,..., , )
,

nr r t t

t r
r r t t

s ss s s s s s s

s s s s s s s s s
− − −

==
− − −

∇∇ ∇ ∇
∇ = + + + +∑υυυυυ υ υυ υ υυ υ υυ υ υ

υυυυ υ υυ υυ υυ υ

υυυυυ υ υυ υ υυ υ υυ υ υ
υ υυ υυ υυ υ

υ υ υ υυ υ υ υυ υ υ υυ υ υ υ
s

The last expression can be transformed in such a way that the gradient of the likelihood ratio will be 
expressed in terms of r and (r-1)-order joint probabilities: 

 
( )

( )
( )

( )0

1 0 1 1 0
0 1

1 0 1 1 0

P , , P , ,
L( | , ) .

P , , P , ,

n nt r t t r t

t r t r
t r t t r t

s s s s

s s s s
− + − + −

= = = +
− + − + −

∇ … ∇ …
∇ = −

… …∑ ∑
υ υυ υυ υυ υ

υυυυ υ υυ υυ υυ υ

υ υυ υυ υυ υ
υ υυ υυ υυ υ

υ υυ υυ υυ υ
s  (7) 

Now let us turn to the problem of determining gradients ( )
0

1P ,...,t r ts s− + =
∇υυυυ υ υυ υυ υυ υ

υυυυ  and

( )
0

1 1P ,...,t r ts s− + − =
∇υυυυ υ υυ υυ υυ υ

υυυυ . This task requires obtaining derivatives of each parameter in υυυυ . Despite the 

fact that given values υυυυ  correspond to a set of distributions on ( )P υυυυs , the following theorem shows 

that for an arbitrary continuous differentiable parametrization of distribution ( )P υυυυs  by parameters µ 

and Q, the gradients expression does not depend on the parametrization method. Therefore, they can be 
used for further assessments concerning local changes of the likelihood function. 
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Theorem 1. Let r-dimensional continuous distribution density ( )1,...,t rf x x  of random variables 

1,...,t r tε ε− +  exist, where ,t r n= . Then, for any continuous differentiable parameterization of distribution 

( )P υυυυs  by parameters µ and Q, the following types of expressions hold: 

 
10

1

1 , 1 1
1

, 0

P( ,..., ) P ( ,..., ) ( )

P ( ,..., ) ( ) ( ).

t r t t r i t r i

t r t t r i t r i

r

t r t r i s s s t r i s
i

r i s s s t r i s t r i

s s C C c f c

C C c f c g

− + − + − +

− + − + − +

− + − − + −=
=

− + − +

∇ = 

− ⋅∇

∑θθθθ

θθθθ

υ υυ υυ υυ υ

θθθθ

υυυυ
  (8) 

 
1 1

0

1 1

1

1 1 1, 1 1
1

1, 0

P( ,..., ) P ( ,..., ) ( )

P ( ,..., ) ( ) ( ).

t r t t r i t r i

t r t t r i t r i

r

t r t r i s s s t r i s
i

r i s s s t r i s t r i

s s C C c f c

C C c f c g

− + − − + − +

− + − − + − +

−

− + − − − − + −=
=

− − + − +

∇ = 

− ⋅∇

∑θθθθ

θθθθ

υ υυ υυ υυ υ

θθθθ

υυυυ
  (9) 

 
1 1

0

1 1

1 0 0 0 0 , 1 1 1
1

,

P( ( , ),..., ( , ) ) P ( ,..., ) ( )

P ( ,..., ) ( ) .

t r t t r t r i t r i

t r t t r t r i t r i

r

t r t r i s s s t r i s s
i

r i s s s t r i s s

s s C C c f c

C C c f c

− + − + − + − +

− + − + − + − +

− + − − + − −=
=

− +

∇ = 

− 

∑υυυυµµµµ υυυυ
θ µ θ µθ µ θ µθ µ θ µθ µ θ µ υυυυ d

d

  (10) 

 
1 1 1

0

1 1 1

1

1 0 0 υ υ1 0 0 1, 1 1 1
1

1,

P( ( , ),..., ( , ) ) P ( ,..., ) ( )

P ( ,..., ) ( ) .

t r t t r t r i t r i

t r t t r t r i t r i

r

t r t r i s s s t r i s s
i

r i s s s t r i s s

s s C C c f c d

C C c f c d

− + − − + − + − +

− + − − + − + − +

−

− + − − − − + − −=
=

− − +

∇ = 

− 

∑µµµµ θ µ θ µθ µ θ µθ µ θ µθ µ θ µ υυυυ
  (11) 

 ( ) ( )( ) ( )1
0

'
Q 1 0 0 0 0 , ,

υ υ
P θ ,µ ,..., θ ,µ υ [G] ,

r t r tt r t j s ss s
− +− + …=

∇ =  (12) 

 ( ) ( )( ) ( )1 1 1
0

'
1 0 0 1 0 0 1 ,...,P , ,..., , [ ] .

r t r tt r t r j s ss s F G
− − + −− + − −=

∇ =
υ υυ υυ υυ υ

θ µ θ µ υθ µ θ µ υθ µ θ µ υθ µ θ µ υQ  (13) 

Here, ( )tf ⋅  is a density function of εt, ( )1,P ,...,
t r tr i s s kC C c
− +

 is a transitional probability of vector’s fall 

: 1, ;s s t r t s t r iε = − + ≠ − +  into the parallelepiped, formed by intervals 

{ }: 1, ;
jsC j t r t j t r i= − + ≠ − +  under the following condition: t r i kcε − + = . 

4.  Sign-based tests 
Formally, the required test for hypothesis (3) has the following form: 

 
0

2

0( , ) const,L
=

∇ >υυυυ υ υυ υυ υυ υ
υ υυ υυ υυ υs   (14) 

where ⋅  is an appropriate vector norm and equations (7)-(13) define test statistics. It is obvious that, if 

we take 1 1 /Kp p K= … = =  and hypothetical parameters Q0 determine the r-dimensional uniform 

distribution (i.e. 0[ ] r
i K −=Q ), then test (17) will be locally the most powerful against any linear one-

dimensional onу-sided alternative, since likelihood ratio denominator ( )0P |υυυυs  turns into a constant. 

In other cases, we can be driven by logical relevance of the maximum likelihood ratio principle.  
As an alternative for (17), we can use the test in the following form: 

 
0 0

2 2

0 0P( | ) P( | ) L( | , ) const
= =

∇ = ⋅∇ >υ υυ υυ υυ υυ υ υ υυ υ υ υυ υ υ υυ υ υ υυ υ υ υυ υ υ υυ υ υ υυ υ υ υs s s ,  (15) 

which is locally the most powerful against any linear one-dimensional one-side alternative.  
Concerning tests (17) and (18), there are still some questions to be answered. First of all, in (8)-(11), 

there are several unknown variables, which require reasonable replacements. Secondly, it is necessary to 
show how critical values will be determined and which vector norms should be used. 
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Let us start from the first question. To replace unknown values in (17) by some observed values, we 
can use the same principle which was used in [8]. 

For instance, ignoring some depending effects, we can replace 
1,P ,...,( | )

t r tr i s s kC C c
− +

 by 

( ) ( )( , ) ( )
1 1 1 11

P ,..., P ,..., , , ,...,
Kr i r

r i i rs
k k k k s k k− +=

=∑ . Thereafter, ( ) ( )( )1 /t k t k kf c f c p− −  and 

( ) ( )( )1 1 /t k k t k k kf c f c p− − −d d  will still be unknown. Their replacement by special scores

{ }( ) : 1,j jB b k k K= = , 1,j r= , is discussed in detail in [8]. For example, for K=2 (quantile regression), 

B1={–1/p, 1/(1–p)}. For K=3 (symmetric two-quantile regression), B1={–1, 0, 1}, B2={1, –2p/(1–2p), 1}. 
For K=3 (symmetric three-quantile regression), B1={–A, –α, α, A}, B2={A, –1, –1, A}, where A=(1–2p)/2p 

and α is an a priori guess about value ( ) ( )( ) ( )/0t t tf f f− µ µµ µµ µµ µ . 

One of the most important features of the scores is their zero mean ( )11
0

K

kk
B k p

=
=∑ , 

( )21
0

K

kk
B k p

=
=∑  and zero covariation ( ) ( )1 21

0
K

kk
B k B k p

=
=∑ . 

Replacements in (17) and (18) lead to obtaining tests in the following form: 

 
2

0( | ) constn >ξ υξ υξ υξ υs , (16) 

 
2

0 0P( | ) ( | ) constn⋅ >υ ξ υυ ξ υυ ξ υυ ξ υs s . (17) 

Here, 0( | )nξ υξ υξ υξ υs  is a vector statistic, which is a modified and normalized likelihood ratio gradient. Also, 
this statistic can be written in the following form: 

 

( )

( )

1 1 1 1

,
,1

,
,2

,
' '

( ( ),..., ( )) 1 ( ( ),..., ( ))
,( ) ( 1)

1 1

1/2
,

1

1

( ) ( )

( )
( )

[ ] [ ]
(1 δ )

P ( ( ),..., ( )) P

( | ) ( | ),

( ( ),..., ( ))
r t r t r t r t

n r

n t it r

r i
t r i t

r i
t

t i

j s s r j s s

t rr r
t r t t r

i

t

g R

R

G F G

s s s

n

s

W

− + − − + −

− +

−
−

− + − + −

−
= =

 ∇

=

−


=

−

∑ ∑

υ υ υ υυ υ υ υυ υ υ υυ υ υ υ

θθθθ

ξ υ υξ υ υξ υ υξ υ υ

υυυυ

υυυυυυυυ

υ υυ υυ υυ υ

θθθθ

υ υυ υυ υυ υ

s s

W s

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

, , 1,
, , , 1

, 1
1,

1

1 δ 1 δ ,

P ,..., P
.

P ,

,

...,

r i r i r i
t l l t r i t t r i r t

r i
t r t t r ir i

t r
t r t

R B s L L

s s s
L

s s

−
− + −

− + − +

− +


 


= − − −

=


 
 
 



υ υ υυ υ υυ υ υυ υ υ

υ υ υυ υ υυ υ υυ υ υ
υυυυ

υ υυ υυ υυ υ

  (18) 

It is noticeable that if 0[ ] r
i K −=Q , test (20) will still be locally the most powerful against any linear 

one-dimensional one-sided alternative, even after replacement of the unknown variable by scores. 
However, it is possible only with an additional condition that these alternatives differ only by 
parameters θ, or µ, or Q. Plus, simulations show that the behavior of this test under alternatives is not 
always satisfactory. In addition, there are some difficulties in searching its asymptotic critical values. 
Therefore, we recommend to use test (19).  

Now we can turn to the second mentioned question concerning choosing critical values and 
methods of defining vector statistics norms. As in the case of independent errors in [1,8], for 
hypothesis (3), we can build test in forms (19) and (20) with the exact significance value. This is 

possible due to the fact that under hypothesis, the distributions of statistics 0

2
( | )nξ υξ υξ υξ υs  and 

0 0

2
P( | ) ( | )n⋅υ ξ υυ ξ υυ ξ υυ ξ υs s  coincide with the distribution of random variable 

2

0( | )nξ η υξ η υξ η υξ η υ  and
2

0 0P( | ) ( | )n⋅η υ ξ η υη υ ξ η υη υ ξ η υη υ ξ η υ , respectively, where random vector ( )1, , 'nη η= …ηηηη  is composed of the sequence 

of random values, which are (r-1)-order Markov chain ( { }1,2, ,t Kη ∈ … ) with given finite-dimensional 
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probabilities ( )1 0P ,..., rk k υυυυ . As a result, using the Monte-Carlo method, the percentage points of test 

statistics distributions (19) and (20) can be defined with any accuracy. It is noticeable that, in the 
determination of 0( | )nξ η υξ η υξ η υξ η υ  parameters, 0µµµµ  is not used, whereas 0θθθθ  is used only in the determination of 

gradients ( )0tg∇θθθθ θθθθ  in (21), whereas parameters 0Q  influence only the values of probabilities ( )P r , 
( )1P r − , ( ),P r i , ( )1,P r i− . 

In case of a large number of observations n, it is better to use the asymptotic critical values. For test 
(19), it is possible to determine them through asymptotic normality of statistics distribution 0( | )nξ υξ υξ υξ υs  
under hypothesis. For this purpose, we can use generalization of theorem 7.7.9 from [9] in case of the 
sequence of random vectors, which could be easily obtained by applying theorem 7.7.7 from [9].  

Lemma 1.  
Let numerical sequence { }: 1ta t ≥  and a sequence of random vectors { }: 1t t ≥z  satisfy the following 

conditions. 
1. There is integer number m>0 so that for any n and 1 1,..., (0 ... )n nt t t t< < < , the sets of random 

variables 
1

{ ,..., }
nt tz z  and 

11 1 1{ ,..., , ,...}
nt m t m− − + +z z z  are mutually independent. 

2. M 0tz = , 1,2,...t = . 

3. 
2 δ

M t M
+ <z  for some M and δ 0> , 1,2,...t = . 

4. tа L<  for each t and some L>0. 

5. There is limiting matrix 1 '

1 1
lim M

T T

t s t st sT
T a a−

= =→∞
Σ = ∑ ∑ z z . 

Then, random vector 1/2

1

T

t tt
T a−

=∑ z  converges distributionally to N(0, Σ ). 

Theorem 2. 
Let hypothesis (3) and the following conditions be fulfilled: 

1. ( )tg L∇ <θθθθ θθθθ  for each t and some L>0. 

2. Limiting matrix lim n
n

V V
→∞

= , where '( | ) ( | )=M nn nV ξ υ ξ υξ υ ξ υξ υ ξ υξ υ ξ υs s  exists. 

3. ( )

1P ( ,..., )>0r

rk k  for each 1,..., rk k . 

Then random vector ( | )nξ υξ υξ υξ υs  converges distributionally to N(0,V), whereas random value 
' 12 = ( | ) ( | )n n nnV −ζ ξ υ ξ υζ ξ υ ξ υζ ξ υ ξ υζ ξ υ ξ υs s  converges distributionally to 2χq , where dimq = υυυυ . 

5.  Conclusion 
In this article, we have obtained exact and asymptotic sign-based tests for simple hypothesis (3) 

0 0:H =υ υυ υυ υυ υ concerning the parameters of multi-quantile regression model (1) with stationary Markov 
noise εt, 

In theorem 1, we showed that despite the nonparametric problem statement, we can obtain 
expressions for the gradient of likelihood for signs P( )∇ υυυυs . In this case, these expressions for the 

gradient do not depend on the parametrization method of distribution P( )υυυυs . Thereafter, we used this 

fact to obtain tests (19) and (20) based on vector statistics 0( | )nξ υξ υξ υξ υs .  
In the article, we examined the question concerning obtainment of critical values, which achieve 

the necessary significance level with any accuracy on finite-samples. Further, we also examined such 
critical values which are based on asymptotic distribution of test statistics (theorem 2). 

As a result, we recommended the test based on the principle of the maximum likelihood ratio with 
the following critical area:  

2 '
0 0

1= ( | ) ( | ) constnn n nV − >ζ ξ υ ξ υζ ξ υ ξ υζ ξ υ ξ υζ ξ υ ξ υs s , 
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where '(= ( , ) ( | )) |M n nn nV V = ξ ξξ ξξ ξξ ξθθθθ υ υυ υυ υυ υsQ s . This test has chi square asymptotic distribution. 
The obtained test can be treated as a basis for the estimation procedure of parameters υυυυ  based on 

maximum asymptotic p-value principle [7], i.e., 

0

2
0arg min ( )n n= υυυυυ ζ υυ ζ υυ ζ υυ ζ υ . 

For practical purposes, hypothesis testing is interesting when the hypothesis has the form of 

0 0:[ [ ]] j jH =θ θθ θθ θθ θ  and the rest parameters are nuisance. It is true especially for linear models. For such 

hypothesis, which can be treated as linear, we can use a two-stage testing procedure. This approach is 
closely examined in [1, 8] in the context of sign procedures. 
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