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INTRODUCTION 

General characteristics of the work 

The problems of thermal elastic diffusion study the interrelation between stress, strain, 

temperature and concentration fields. This theory is interesting for the situation where material 

behaviour under intensive thermal and mechanical action is studied. In this case, the processes in 

solid are irreversible and can be accompanied by chemical reactions. For example, at the 

condition of surface material treatment by intensive particle beams, the chemical conversion 

happen which change the materials composition and properties. As a result, stresses and strains 

appear during composition change. The generalized thermal elastic theory doesn’t take into 

account the chemical conversions. It is necessary to include the chemical reactions in thermal 

elastic diffusion and investigate as an example the problems for typical experimental situation.  

One of the traditional areas of mechanics of deformable solids is to investigate the 

influence of thermal elastic diffusion in the solid phase. This is due to the theoretical study of the 

problem of interaction field various physical nature, with the construction of models of multi-

component and multiphase media and the challenge of managing physical and chemical 

processes in modern technology. Mechanical stress can be either static (tensile, shear, torsion, 

rotation) or dynamic (shock waves, blast vibration, pressing, ultra-sound). In any case, the 

influence of the external load is associated with the change of transformation modes (speed, 

direction). This fully applies to the processes of self-propagating high-temperature synthesis and 

sintering. There are a number of scientists, working on the construction of models of 

multicomponent media associated with the names A.K.Öhringen, R.M.Bowen and W. Nowacki 

etc. 

Study of mutual influence of stress and diffusion (both theoretical and experimental 

methods) has a rich history, the first works connected with the name S.A Gorsky devoted to the 

phenomenon of ascending diffusion. At the moment, there is another surge of interest in both 

domestic and foreign researchers Lei this matter. This is due to the fact that diffusion processes 

appearing, on the one hand, defining, and often limiting in large an amount of observable 

phenomena, and, on the other hand, the mass transfer subject to influence of various physical 

fields, including temperature, electric electromagnetic field, or the field of mechanical stresses. 

The impact of recent actively studied in connection with the development and research of 

various technological processes. 

The ion implantation of metal surfaces by particles (ions) of other metal can accompany 

by intermetallic compounds formation [1, 2]. It promotes the surface properties modification. 

The model construction for this technology process will assist to physical phenomena study and 

treatment conditions optimization. 

The work is devoted to the models construction for ion implantation with intermetallides, 

analytical and numerical methods development to realize the models of new phases formation in 

surface layer under the action of a particle beam. The models are based on the generalization of 

thermal elastic diffusion theory started from the simple and known problem in classical 

approximation. Particular problems are solved analytically and numerically with the 
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demonstration of the stresses and strains evolution in treated surface layer with constant and 

changing properties. 

The aim of this work:  

Numerical and theoretical study of new models of generalized thermal elastic diffusion 

with chemical reactions, accompanied by various cross physical effects in the surface layer of 

material under particle beam action. In accordance with the intended purpose is required: 

1. To build the related models of thermal elastic diffusion with chemical reactions under 

different conditions. 

2. To formulate mathematical models taking into account the various cross effects between 

concentration, stresses and strains. 

3. To develop the algorithm for the numerical investigation of formulated models, taking 

into account the specific condition of diffusion and thermoelasticity. 

4. To implement the detailed parametric study of particular problems with the purpose of 

parameters defining and modes of processing.  

5. To analyze the influence of various cross effects and thermal effects on the processes of 

redistribution of concentrations. 

Corresponding to this, we formulate the tasks: 

1. To develop mathematical model of generalized thermal elastic diffusion with chemical 

reaction with and without time relaxation.  

2. Find analytical and numerical solution with wide range values of parameters.  

3. For solving the problem using the double sweep method and Laplace transformation 

method and coding in FORTRAN. 

Novelty of a scientific work 

The thesis for the first time: 

1. Formulated and investigated related models on thermal elastic diffusion with chemical 

reactions. 

2. The algorithms were developed excluding the possibility of inconsistency appearance in 

terms of physical solutions.  

3. Based on the results of numerical modeling the new effects were revealed. 

Theoretical and practical significance of the work: 

The work presents a new knowledge in the thermal elastic diffusion theory with chemical 

reactions. Results of the study can be used to develop models and methods of composition 

modification with acceptable stress-strain state of processed samples. Models admit their further 

development by taking into account the different parameter and conditions of ions deposition. It 

is the practical and applied value of the work.  

The validity of the scientific results is confirmed by thorough testing program, comparing 

numerical results with exact analytical solutions in various limiting cases. Correct formulation is 
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solved in dissertation work tasks using modern physical understanding of the processes, 

analytical and computational methods; consistency of the results and their compliance in extreme 

cases the theoretical results known from literature and available experimental facts. 

Personal contribution of the author was to analysis of data in the literature, writing and 

debugging programs, a numerical study set out particular tasks, judgment of the results, the 

formulation of basic scientific positions and conclusions. All works published in collaboration, 

met with the personal participation of the author. 

Testing of work: 

The main results of the thesis were reported and discussed at the following international 

conferences: 

1. International Conference of young scientist “High Technology Research and Application 

2014” (HTRA 2014) held at Tomsk Polytechnic University Tomsk, Russia: March 26th -

28th, 2014. 

2. Russian-German School of young scientists Conference “Biotechnology, Energy and 

nanotechnology” Tomsk Polytechnic University Tomsk, Russia: May 20th -23rd, 2014. 

3. International Conference on Physical Mesomechanics of Multilevel Systems 2014. 

Tomsk, Russia: 3 -5 September, 2014. 

4. International Congress on Energy Fluxes and Radiation Effects 2014. (EFRE-2014) 

Tomsk, Russia: September 21 -26, 2014. 

5. International Conference of young scientist “High Technology Research  and Application 

2015” (HTRA 2015) held at Tomsk Polytechnic University Tomsk, Russia: April 21 -24, 

2015. 

The structure and scope of the thesis: The thesis is composed of introduction and three 

chapters, conclusion, appendix and bibliography. The work is described on page 114, including 

37 figures and 01 table. 
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Chapter 1 

Theory of thermal elastic diffusion 

1.1. Definitions 

In the mechanics we speak about behavior of bodies at the loading. To describe the 

behavior of real bodies it is necessary to introduce some conditional concepts and definitions.  

The linear theory of elasticity deals with problems in which deformations, displacements, 

and rotations are small. In this case we determine the relations between stresses and strains. 

Thermal elastic diffusion theory deals with the elastic body behavior when not 

homogeneous fields of temperature and species concentrations exist. 

Firstly it is necessary to introduce some definitions and postulate governing equations. 

1.2. Elasticity theory 

Elasticity theory is based on two experimental laws: Hook and Poisson [3, 4] First law 

speaks that strain linearly connects with stress when external load is applied to rod  
 E ,     (1.1) 

where 

0

0

l

ll 


-  

is relative elongation of the rood; 0l -is its initial length E; is proportional coefficient called as 

elasticity modulus or Young modulus. 

 Besides the strain in the tension direction, the lateral strain    exists, where  

0

0

b

bb 


 - 

where 0b
 and b  - are lateral size of the rod before and after deformation.  

Second law ascertains the relation between lateral    and longitudinal   strains. For 

isotropic material the value    is the same for all directions in the cross-section. If strain is 

elastic and satisfies to Hook’s law (1.1), so the value   is constant: 

E


 

.     (1.2) 

This is Poison relation and the coefficient   is called as Poisson’s coefficient. 

For three-dimensional case in arbitrarily coordinate system Hook’s law has the form  
kkijijij   2

.    (1.3) 

where   and   are Lame coefficients; ij
 is Kronecker delta, 











,  ,0

;  ,1

ji

ji
ij

 

ij
 are stress tensor components; ij  are small strain tensor components satisfying to Cauchy 
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relations 




















i

k

k

i
ik

x

u

x

u

2

1


,     (1.4) 

iu
 are components of displacement vector, ix

 are components of radius-vector. 

 The equations (1.3) and (1.4) are constitutive equations of thermal elasticity theory. 

 In Cartesian coordinate system, 
zxyxxx  321 ,,

; zyx uuuuuu  321 ,,
 etc. 

and, instead (1.4), we have 

x

ux
xx






, y

uy
yy






, z

uz
zz






, 

xy
yx

yxxy
x

u

y

u
 









 22

, 
yz

yz
zyyz

z

u

y

u
 









 22

,  (1.5) 

zx
zx

xzzx
x

u

z

u
 









 22

, 

where zyx uuu ,,
 are the components of displacement vector in Cartesian coordinate system. 

The Hook’s law takes the form 

kkxxxx   2
, kkyyyy   2

, 

kkzzzz   2
,                    (1.6) 

xyxy  2
, yzyz  2

, zxzx  2
 

 The value 332211  kk  is first invariant of strain tensor and describes the small 

change of the volume of elastic body.  

The Lame elastic constants   and   are connects with technical characteristics E  and 

 as  

    
G

EE
















12
;

211 , 

where G  is shear module. 

Note that the following relation hold [5, 6]:  
   

















2
,

23
,323 EK

. 

To describe the mechanical behavior of the elastic body we must add the above equations the 

equilibrium equations for quasistatic problems  
0














X

zyx
xzxyxx 

; 

0













Y

zyx

yzyyxy 

;                (1.7) 

0













Z

zyx
zzyzxz 

, 
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where ZYX ,,  are the components of the volume forces in the zyx ,,  directions respectively. 

 For the dynamical problems the inertia forces are taken into account. In the general form 

the motion equations have the form 

2

2

t




u
F 

, 

where t  is the time, F  is vector of volume forces with components ZYX ,, . 

 For Cartesian coordinate system we have 

2

2

t

u
X

zyx
xxzxyxx























; 

2

2

t

u
Y

zyx

yyzyyxy























;             (1.8) 

2

2

t

u
Z

zyx
zzzyzxz























. 

In elasticity theory, it is assumed that temperature and body composition do not change.  

1.3. Thermal conductivity theory 

 Thermal conductivity theory studies the temperature field change in the bodies under 

different thermal actions. In this case, it is assumed that the body is none deformed, and their 

composition does not change.  

 Corresponding to Fourier law, heat flux is proportional to temperature gradient 
TT q ,     (1.10) 

where T  is thermal conductivity coefficient. In Cartesian coordinate system and for isotropic 

body, we can write 

x

T
q Tx




 

; y

T
q Ty




 

; z

T
q Tz




 

. 

 Using balance equation 
q





t

T
c

, 

we come to thermal conductivity equation 
  
























































z

T

zy

T

yx

T

xt

T
c TTTT  q

, 

where c  is heat capacity. It is parabolic differential equation. Here 
...... div ; ...... grad  

 If we take into consideration the generalized thermal conductivity law [7] 

t
tT RT






q
q 

,     (1.11) 

we come to hyperbolic equation with finite relaxation time Rt  of heat flux 
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  








































































z

T

zy

T

yx

T

xt

T

t

T
tc TTTTR  q

2

2

. 

This equation is suitable for description of thermal problems for irreversible conditions. 

1.4. Thermal elasticity theory 

 The development of the theory of thermal stresses connects with the names of Duhamel 

J.M.S [8], Neumann F.E. [9], Gatewood B.E. [10] of 1941  and Boley B. [11] of 1956. The first 

papers of importance seem to be those of Duhamel J. M.S, published in Paris in 1.837, 1838, and 

1856, and a paper by Neumann F. E, published in Berlin in 1841. With the passage of time, more 

and more researchers became interested in thermal stresses. We should also need to mention the 

work that appeared after the Second World War by J. Lighthill and J. Bradshaw [12] of 1949 on 

thermal stresses in turbine blades, by S.S. Manson [13] of 1947 on gas turbine disks, and by J. 

Aleck [14] of 1949 on thermal stresses in rectangular plates.  

The phenomenon of thermal expansion is taken into account here. Compared to the 

history of the theory of elasticity, which is traced to Robert Hooke and Edm´e Mariotte in the 

seventeenth century or, even earlier, to Galileo Galilei in the 16th century, the history of 

thermoelasticity and thermal stresses is much younger [8]. Thermal elasticity theory appearing is 

connected in 19 Century with Duhamel (1837) and Neumann (1885). Thermal action on the body 

leads to thermal strains appearing. In this case the additional term appears in the constitutive 

equations (1.3). We have  
  032 TTK Tkkijijij  

   (1.12) 

where T  is linear thermal expansion coefficient, K  is the bulk modulus 


3

2
K

. 

New form of constitutive equations is accompanied by new form balance equation 

t
TK

t

T
c kk

T







 
 3q

,   (1.13) 

where c  is the heat capacity at the constant strains. 

 Classical quasistatic thermo elasticity theory includes equilibrium equations (1.7), 

balance equation (1.13), and constitutive equations (1.5), (1.10) and (1.12). Thermal conductivity 

equation takes the form 
 

t
TK

t

T
c kk

TT







 
 3q

. 

 Generalized quasistatic thermo elasticity theory uses the generalized equation (1.11) 

instead of (1.10) and comes to the thermal conductivity equation 
 q





























 T

kk
TR

t
TK

t

T
c

t
t 


 31

. 

or 
 T

t
T

t
t

t
TK

t

T
t

t

T
с T

kk
R

kk
TR 






















































  3

2

2

. 
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Most of early works of thermal elasticity theory were devoted to static problems [15]. 

Integration of thermoelasticity equations was reduced to problems of action of body forces with 

the potential of which density is the temperature of the body. Besides the development of the 

theory, a number of specific problems were solved. We should mention the work of C.W. 

Borchardt of 1873 on a solution in integral representation for a sphere acted upon by an 

arbitrarily distributed temperature, by J. Hopkinson on thermal stresses in a sphere in 1874, by 

A. Leon on a hollow cylinder in 1905, and by S. Timoshenko on bi-metallic strips in 1925. 

 Dynamical theories using motion equations (1.8) instead (1.7) study the wave phenomena 

[16]. The theory of thermal elasticity is usually studying in two approaches: Coupled and 

uncoupled thermal elasticity [17]. Although J.M.C. Duhamel presented equations of thermo 

elasticity with coupling of field of deformation with field of temperature already in 1837, only 

papers published 120 years later by M.A. Biot and M. Lessen in 1956 [18] and 1957 [19] 

respectively, gave a new impulse to do research in this area. In classic thermo elasticity, a 

problem of temperature was solved first, and then stresses were received from Duhamel-

Neumann equations. 

Generalized theory appears when H. Lord and Y. Shulman [20] postulates new thermal 

conductivity law in mechanics (1.11) instead of classical Fourier Law. Numerous problems of 

generalized thermal elasticity theory with finite time of heat flux relaxation were described in 

[21-23].  

1.5. Thermodynamical basis for thermal elasticity theory 

 Based on thermodynamical theory of potentials, we can give thermodynamical definitions 

for elastic and thermal physical properties and ascertain thermodynamical constitutive equations 

[5-7]. 

 Internal energy U  is basic thermodynamical potential. It depends on entropy and volume, 
 VSUU , . The first and second laws of thermodynamics together lead to Gibbs equation 

pdVTdSdU  ,     (1.14) 

where 
T

S

U

V














; 
p

V

U

S














. 

Using other thermodynamical potentials 

TSUF   -   free energy (Helmholtz energy); 

PVTSUG    Gibbs energy; 

pVUH   - enthalpy (heat content), 

we can write Gibbs equation in different forms. 
pdVSdTdF  , VdpSdTdG  , VdpTdSdH  ,    (1.15) 

where p  is the pressure. 

The laws of classical thermodynamic cannot establish why irreversible processes occur 

and why all real processes are irreversible.  
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To describe irreversible processes (deformation and diffusion etc.) there are different 

ways in thermodynamics and in continua mechanics. The choice of the description way depends 

on the phenomena under study.  

If we know one of thermodynamical potentials, we can use the properties of potential 

functions and can find all thermodynamical properties of the system. 

For deformable medium instead of (1.14) and (1.15) we have 

ijijdTdSdU  1
, ijijdSdTdF  1

,   (1.16) 

ijijdSdTdG  1
, ijijdTdSdH  1

. 

In this case, all thermodynamical variables are the functions of the spatial coordinates and the 

time. 

 According to thermodynamical definition, the heat capacity at the constant pressure is  
 

p
pp

T

S
TdTQC 












 

, 

where Q
 is the heat supplied to the thermodynamical system. By analogy, for deformable 

media, we can write 


 














T

S
TC

. 

 Because we have from Gibbs equations 

















T

G
S

, 

we obtain  





















2

2

T

G
TCp

. 

It is the heat capacity at the constant stresses. 

 Similarly to previous we shall find the heat capacity for constant strains 



 


















2

2

T

F
TC

. 

 Thermodynamical state equations in differential forms also follow from theory of 

thermodynamical potentials. 

 Really, from Gibbs equation for Helmholtz energy, we have 
 ijTFF ,

. Hence 

 ijTSS ,
 and 

 klijij T  ,
. Then we can write 

ij

Tij

d
S

dT
T

S
dS 


































;    (1.17) 

kl

Tkl

ijij
ij ddT

T
d 


































.    (1.18) 

 Some derivatives in these equalities are known for us.  

First equation contains the heat capacity 
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
 














T

S
С

. 

 Second equations give the generalized Hook’s law, if constT   
  klijklkl

Tkl

ij

Tij dCdd 



 














,    (1.19) 

where ijklC
 is tensor of elastic modulus. Fir isotropic medium and small strain, the equation (1.3) 

is obtained from (1.19). 

 Other derivatives describe the known cross effect connecting with interrelation between 

temperature and strain fields.  

,111
klijkl

T
ij

ij

TijTijTij

C
T

T

F

T

FS












 






























































































 

where kl
 is tensor of thermal expansion coefficients. 

For isotropic medium and small strains we shall obtain from (1.18) the Dugamel relations (1.12).  

 In general case, we have in differential form 
dTdCd T

ijklijklij  
;     (1.20) 

dT
T

C
dds ij

T
ij

  1

.     (1.21) 

These are thermodynamical irreversible state equations in differential form.  

In first equality, the summation goes with indexes k and l. In second one, summation goes with 

indexes i and j.  

1.6. Theory of multi component diffusion 

 As a rule, multi component diffusion in solid bodied has been studied for isothermal 

conditions and without stresses and strains. And strain – stressed state has been analyzed without 

taking into account the composition change. 

 When we have simple body which contains the admixture of one kind, or this admixture 

enters in the body from environment, only one diffusion equation for one species is necessary to 

describe this process. 

 According to Fick law, the diffusion flux of species is proportional to concentration 

gradient 
CDJ ,     (1.22) 

where C  is species concentration, D  is diffusion coefficient. 

 Balance equation  
J





t

С


 

together with (1.22) gives the diffusion equation 
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 CD
dt

dС
 

. 

 For const  and immobile medium, we obtain 

 CD
t

С






. 

 In Cartesian coordinate system and for isotropic medium, we have 
























































z

C
D

zy

C
D

yx

C
D

xt

C

. 

This is similar to usual thermal conductivity equation 

 For multi component body, the generalized Fick law takes a place 








1

1

n

k

kjkj CDj

, 

where jkD
 are partial diffusion coefficients, 

1

1




n

k

kC

,      (1.23) 

because the definitions are assumed: 

nMMMM  ...21  - 

is the mass of the system (body), 









n

k

kn
n

V

MMM

V

M

1

21
21 ...

...


 -  

is density of the system (body), 

V

M k
k 

 -        (1.24) 

are partial densities of species (components), 



k
kC 

 -       (1.25) 

are the mass concentrations of species. 

 For particular problems in the chemistry and diffusion theory, molar concentrations are 

used: 



n

i

ii

kk
k

m

m
y

1





,     (1.27) 

where km
 are molar masses of species.  

 Nowadays, theory of multi component diffusion has thermodynamical basis and used for 

numerous applications [24-27].  

However, these laws are simplified laws that does not take into consideration the mutual 

interaction between the introduced substance and the medium into which it is introduced or the 
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effect of the temperature on this interaction. Thermal diffusion utilizes the transfer of heat across 

a thin liquid or gas to accomplish isotope separation. There is a certain degree of coupling with 

temperature and temperature gradients as temperature speeds up the diffusion process. The 

thermo diffusion in elastic solids is due to coupling of fields of temperature, mass diffusion and 

that of strain in addition to heat and mass exchange with the environment. Due to these cross 

effects the thermal excitation results in an additional mass concentration, this generates the 

additional temperature field. The diffusion kinetics is described by a parabolic equations under 

corresponding initial and boundary conditions. The thermal stress field is caused by non-uniform 

distribution of temperature. 

1.7. Thermal elastic diffusion 

Thermoelastic diffusion involves the coupling of the fields of temperature, mass diffusion 

and strain. It has a wide range of applications in geophysics and industries. In particular, 

diffusion is used to form the base and emitter in bipolar transistors, form integrated resistors, 

form the source regions in Metal oxide semiconductors transistors and dope poly silicon gates in 

Metal oxide semiconductors transistors. Using the coupled thermoelastic model, Nowacki [28-

30] developed the theory of thermoelastic diffusion. In this theory the relations  
 Kwkkijijij   2

,     (1.28) 

where 
    003 CCTTw CT  

    (1.29) 

are used. New coefficient C  is called concentration expansion coefficient. The fluxes of the 

heat and mass satisfy to Fourier and Fick laws. 

 If we use (1.28), (1.29) and (1.5), we come from (1.8) to equations 

    Fuu
u

 



CTK

t
CT3

2

2

   (1.30) 

These are the motion equation or Lame equation in thermal elastic diffusion. 

 Classical theory deals with equation (1.30) and parabolic equations thermal conductivity 

and diffusion. The theories based on thermodynamics use the equation  
gD J  

instead (1.22). The species flux is proportional to gradient of chemical potential corresponding to 

this component. The relation 










T

g
LJ

 

is more correct.  

 When the composition change and temperature gradient presents, we should speak about 

the thermodynamical system, state of which and internal energy depends not only entropy, but 

on concentration. Hence, in this case (in the literalized theory) we have three types of thermal 

state equations [31, 32]. 
aCTTcST kkT 000    , 

  CCTkkijijij   2
,    (1.31) 
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CaP kkC  
, 

where P  is difference between chemical potentials of admixture and basic material for unit of 

mass (  12 ggP   , 21sa   is difference between their partial entropies;  

TT K 3 ; CC K 3
 ; 0TT 

. 

 Different theories (coupling and no coupling) admit the infinite propagation velocity for 

thermal and concentration waves [33].  

Sherief end etc. [34] develops the theory of generalized thermal elastic diffusion with 

finite velocity of thermal and diffusion waves. However there are numerous inaccuracies in this 

and other papers. Furthermore, the linearization for the equations is not justifying.  

 Based on irreversible thermodynamics [35] we can derive the constitutive equation 

containing known theories [5,6] necessary for the following investigations. 

 Really [36], for two-component body, internal energy depends on entropy, strains and 

concentrations 1C  and 2C , and free energy F  depends on temperature, , strains and 

concentrations: 
 21,,, CCTFF ij

, 

2211
1 dCgdCgdSdTdF ijij   

. 

Hence, entropy S , stresses ij
 and chemical potentials 1g  and 2g  (they are partial Gibbs 

energies, 2211 CggCG  ) depend on the same thermodynamical variables. Therefore, we can 

write  

2211 dCsdCsddT
T

C
dS ij

T
ij

 





, 

2
2

1
1

dCdCdCdTd ijijkl
T
ijkl

T
ijij  

,   (1.32) 

2
1
21

1
1

11
11 dCdCddTsdg ijij   

, 

2
2
21

2
1

12
22 dCdCddTsdg ijij   

. 

We have 

2,,1
1

CT
C

F
g
















; 1,,2
2

CT
C

F
g
















; 

2
1

,21

2

,12

2

,,2

11
2

1

























































TTCT
CC

g

CC

g

C

g

. 

Because 121 CC , we obtain 

  212 dCssddT
T

C
dS ij

T
ij

 





, 

  2
12

dCdCdTd ijijkl
T
ijkl

T
ijij  

, 

        2
2

1
2
2

112
1212 dCddTssggd ijijij   

. 

Now it is convenient to use the above designations (1.31) for isotropic body 
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adCddT
T

C
dS kkT  


 

, 

  dCdTddd CTkkijijij   2
,   (1.33) 

dCdadTdP kkC  
. 

Generalized Fourier and Fick laws in extended thermodynamics [37] for multi component 

system can be presented in the form 






n

k

q
RkqkTqqq

dt

d
tLL

1

J
XXJ

, 






n

j

k
kjkjqkqk

dt

d
tLL

1

J
XXJ

, 

where 
,

2T

T
q


X

 
  

T
g

Tkkk

1
 FX

 -  

are the generalized thermodynamical forces, kF
 - are the part of external mass force acting to the 

component with number k; jkkjkqqkqq LLLLL  ,,
 - are the phenomenological coefficients; 






n

k

kkq H

1

JqJ

, 

q  - is heat flux for simple body. 

 Using (1.32) we can present the fluxes formulae in the form suitable for the following 

investigation [38, 39].  

 Based on [39], we shall obtain now the equations for the fluxes containing cross-effects 

known in literature. Note that the description of cross effects (Sore and Dufour effects, for 

example, and diffusion under pressure gradient action) should be made step-by step, because the 

simple summation of the phenomena known from experiment leads sometimes to the appearing 

of superfluous independent coefficients or to loss of important terms.  

Let we have two species. In two-component system [39] 
121 СС ; 021 JJ . 

Then we have only two formulae  
 

dt

d
tLL Mqq

1
121111

J
XXXJ 

, 

 
dt

d
tLL

q
Rqqqqq

J
XXXJ  211

. 

where  
,

2T

T
q


X

 
  

T
g T

1
111  FX

; 
  

T
g T

1
222  FX

. 

Hence 
    

dt

d
t

T

T
Lgg

T

L
MqTT

1
211221

11
1

J
FFJ 




, 
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    
dt

d
t

T

T
Lgg

T

L q
RqqTT

q
q

J
FFJ 




21221
1

.  (1.34) 

Gibbs energies are the functions of temperature, concentration and stress tensor components, 

because 
 ijCCTGG ,,, 21

 and 21,gg  are partial Gibbs energies. Then we can write [39]  

  2
1

21
1

1
11

1 CCg e
ijijT   

, 

  2
2

21
2

1
21

2 CCg e
ijijT   

, 

where 

kk

kj

Tj

kk
j

Cm

RTg

C

g

il

























,   and 
j

k
k
j  

.   (1.35) 

kjg
 -are thermodynamical factors, depending on the composition and structure,  

k

j

k

j
jkjk

CC

C
g

ln

ln









,     (1.36) 

j  are activity coefficients, km
 are molar masses of species. 

 Taking into account the relation 21 CC  ,we shall find the thermodynamical 

diffusion force: 
 

T
Ce

ij
ijij

D

1
1

2
2

2
1

1
2

1
1

21

21
















 




FFX

.  (1.37) 

Thermodynamical force conjugate to the heat flux does not change.  

 For isotropic medium, tensor of concentration expansion coefficients 
k
ij

 has a simple 

form  

ijk
k
ij  

. 

Because the coefficients 
k
j

 are symmetrical, we shall find  


11

12

Cm

g

22

21

Cm

g

  

or 

1

2

1

2

2

1

2

1

ln

ln

ln

ln

CC

C

CC

C








 

. 

Hence,  

T
Cg

Cm

Cm
gg

Cm

RTe
ijD

1
2 122

22

11
1211

11

21
21 




















 




FFX

. (1.38) 

In the particular case of ideal solution (this approximation works well for small concentrations of 

admixtures), we can assume 
0   ;1 21122211  gggg . 

 Corresponding to diffusion theory [40, 41], phenomenological coefficient 11L  is 

determined through self-diffusion coefficient: 
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R

CmD
L 11

0
11

11




     (1.39) 

Comparing the formulae for the heat flux with experimental Fourier law, we obtain  

T
qq

T

L


2
. 

Then, in the approximation of ideal solution we shall find  
,1 1

211
22

11

11

21
21

11
0
11

1
dt

d
t

T

T
LC

Cm

Cm

Cm

RT

RT

CmD
Mq

e
kk

J
FFJ 




























 





dt

d
tTC

Cm

Cm

Cm

RT

T

L q
RT

e
kk

q
q

J
FFJ 

























 




1

22

11

11

21
21

1
1

. 

We introduce the designation for transfer coefficient under stress action  

 21
1

0
11

1  
RT

mD
B

.       (1.40) 

This coefficient is derivative from other parameters. 

 Diffusion coefficient in the approximation of ideal solution is: 
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 Coefficient qL1  is assumed usually as [42] 
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where TD  is thermal diffusion coefficient. Sometimes, the Sore coefficient is a more suitable for 

applications (it is measured in К-1) 
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As a result, we obtain the formulae  
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is the transfer heat (J/kg).  

If we have non ideal solutions, the form of the equations does not change. However, some 

concentration function appears in the coefficients [43]:  
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We see that, only three from six transfer coefficients are independent.  

No all physical effects are taken into account in modern theories of thermal elastic diffusion.  

We mark, that non classical theories known as generalized thermo elasticity were 

introduced into the literature in an attempt to eliminate the shortcomings of the classical 

dynamical thermo elasticity [44, 18]. The problem of half space subjected of thermal shock, 

known as the theory of uncoupled thermo elasticity. In this theory, the temperature is governed 

by a parabolic partial differential equation that does not contain any elastic terms, unlike the 

conventional thermo elasticity theory [18], based on a parabolic heat equation, which predicts an 

infinite speed for the propagation of heat, generalized and modified into various thermo elastic 

models based on hyperbolic thermo elasticity [45]. These theories, referred to as generalized 

thermo elasticity, were introduced in the literature in an attempt to eliminate the shortcomings of 

the classical dynamical thermo elasticity. For example, Lord and Shulman [20], incorporated a 

flux rate term into Fourier’s law of heat conduction and formulated a generalized theory 

involving a hyperbolic heat transport equation, admitting finite speed for thermal signals. 

Lately, Sherief and Saleh [32] investigated the problem of a thermo elastic half space in 

the context of the theory of generalized thermo elastic diffusion with one relaxation time. Singh 

discussed the reflection phenomena of waves from free surface of a thermo elastic diffusion 

elastic solid with one relaxation time in [46] and with two relaxation times in [47]. It does not 

violate Fourier's law of heat conduction when the body under consideration has a centre of 

symmetry, and it is valid for both isotropic and anisotropic bodies. Aouadi studied in [48] the 

generalized thermo elastic diffusion problem with variable electrical and thermal conductivity. 

Aouadi [49] also studied the interaction between the processes of elasticity, heat and diffusion in 

an infinitely long solid cylinder [50] and in an infinite elastic body with spherical cavity. 

Uniqueness and reciprocity theorems for the equations of generalized thermo elastic diffusion 

problem, in isotropic media, was proved by Sherief et al. [44] on the basis of the variation 

principle equations, under restrictive assumptions on the elastic coefficients. Due to the inherit 

complexity of the derivation of the variational principle equations, and by Aouadi [51] proved 

this theorem in the Laplace transform domain, under the assumption that the functions of the 

problem are continuous and the inverse Laplace transform of each is also unique. Aouadi [52] 

derived the uniqueness and reciprocity theorems for the generalized problem in anisotropic 

media, under the restriction that the elastic, thermal conductivity and diffusion tensors are 

positive definite. For the coupled problem, the existence of a generalized, regular and unique 

solution has been proved by Aouadi [53] by means of some results of semigroup of linear 

operator’s theory. Recently, Aouadi derived the general equations of motion and constitutive 

equations of the linear micro polar thermo elastic diffusion theory in both classic [54] and 

generalized [55] context, with uniqueness and existence theorems. Iesan [56, 57] has developed a 

linear theory of thermoelastic materials with voids. Aouadi [53, 55] has extended the 

thermoelastic theory with voids to include diffusion effects. 



20 

 

Elhagary [58] has discussed the one dimensional problem of generalized thermo elastic 

diffusion for a long hollow cylinder. Aouadi [50] studied the one dimensional problem of 

generalized thermo elastic diffusion for an infinitely long solid cylinder. Recently, Tripathi et al 

[59] discussed a two dimensional dynamic problem of generalized thermo elasticity in Lord-

Shulman theory for a thick circular cylinder with hear sources. The work of Aouadi [50] is 

extended by [60] considering a two-dimensional generalized thermo elastic diffusion problem in 

a thick circular plate of infinite extent and finite length subjected to an axisymmetric heat supply 

with one relaxation parameter and discussed the effects of thermo elastic diffusion. The classical 

couple thermo elasticity is recovered as a special case. This is a new and novel contribution to 

the field. 

Serious attention has been paid to the generalized thermo elasticity theories in solving 

thermo elastic problems in place of the classical uncoupled/coupled theory of thermo elasticity. 

At present mainly two different models of generalized thermo elasticity are being 

extensively used one proposed by Lord and Shulman [20] and the other proposed by Green and 

Lindsay [61]. Lord and Shulman theory suggests one relaxation time and according to this 

theory, only Fourier’s heat conduction equation is modified; while Green and Lindsay theory 

suggests two relaxation times and both the energy equation and the equation of motion are 

modified. 

In this work we generalize the thermal elastic diffusion for constant temperature to the 

body with chemical reactions. 

1.8. Body with chemical reactions 

 In multi component body, the chemical reactions happen. It could be taken into account 

in the equations used for the description of applied problems. 

 Theory of kinetics of chemical reactions for homogeneous media is very well developed. 

For moving gas and liquid phases we can use the known theories without special restrictions. 

Above we introduce two types of concentrations: mass concentration kС
 (1.25) and 

relative molar concentrations ky
 (1.27). The values kk m

 determine the number of mole of k-

components in the unite volume: 

k
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is the number of moles in the volume V. 

Then additionally to (1.27) we can write 



n

k

kk

ii
n

k

kk

iii
i

mC

mC

mM

mM

N

N
y

11  

where  



21 

 






n

i

iNN

1  and 

1

1




n

i

iy

. 

 The change of the i-particles number in the reaction j follows from the equality [62] 
,dtnd jijij 
 

where j
 - is the j-reaction rate, mol/(m3sec), ij

 are stoichiometric coefficients for i –

component in j- reaction. We can find the reaction rate through the concentration change of any 

component and introduce the new values:  
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where j  is the reaction coordinate, 
 j mol/m3. It can be called as conversion degree for the 

reaction. So, for any ji, , we have  
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These values are state variables together with the temperature, pressure or together with 

temperature and volume, and etc. If r  is number of the reactions, so change of the i-component 

in all reactions is (in the unit volume) 
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Gibbs equation for internal energy: 
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Hence, for closed thermodynamical system, we have  
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is chemical affinity for j-reaction. 

Hence, entropy production due to chemical reactions is  
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Corresponding to irreversible thermodynamics, the rate of chemical reaction is generalized flux, 

and chemical affinity is generalized force conjugate to reaction rate. Then Onsager theory gives 
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1 . 

Chemical affinity is the function of composition and thermodynamical parameters determining 

the state of the system.  

At the practical description of concentration change in chemical reactions various authors 

use experimental laws, however thermodynamics give some restrictions for the reactions [42, 

43].  

If only one reaction goes in the system, we can write its equation in the form  
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Mass concentrations of species change due to the kinetical equations or balance equations:  
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For example for closed system, we have  
,2ZYX   

then 
d

dndndn ZYX 



 211  

and 
  ZZZYYYXXX gmgmgmA  ZZYYXX gmgmgm 2 . 

Entropy production in the reaction is: 
  02

1
  dgmgmgm

T
dtdS ZZYYXXSi

. 

Gibbs energy in the reaction  

ZZYYXXXYZ gmgmgmG 2  –  

is the function of the composition and conditions.  

If ,0XYZG  so   grows, and the reaction goes in the forward direction. 

If ,0XYZG  so   diminishes. 
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 If concentrations, temperature or stresses field are not uniform, the reaction rate depend 

on transfer processes.  

 It is necessary to refine this theory for solid substances and for irreversible conditions. 

Conclusion 

Elasticity is an elegant and fascinating subject that deals with determination of the stress, 

strain, and displacement distribution in an elastic solid under the influence of external forces. 

Hooks and Poisson laws play a significant role in the theory of elasticity, based on these two 

experimental laws, which speak about the stresses, strain and the relation between them. In 

general the hooks law and the Cauchy relation are the theory of thermal elasticity.  

The theory of thermal elasticity is usually studying in two approaches: Coupled and 

uncoupled thermal elasticity. Coupled problem of thermal elasticity take into account the time 

rate of change of the first invariant of the strain tensor in the first law of thermodynamics causing 

the dependence between the temperature and strain fields, and thus creating the coupling 

between elastic and thermal fields. The uncoupled thermal elasticity approach is characterized by 

absence of the coupling term in the equation of heat conductivity. Using the coupled thermal 

elastic model, Nowacki developed the theory of thermal elastic diffusion. Sherief et al. 

introduced the theory of thermoelastic diffusion in the framework of Lord-Shulman theory by 

introducing thermal relaxation time parameter and diffusion relaxation parameters governing the 

field equations. Many researchers studied various types of problems in thermoelastic diffusion. 

Serious attention has been paid to the generalized thermo elasticity theories in solving 

thermo elastic problems in place of the classical uncoupled/coupled theory of thermo elasticity. 

In our work we generalize the thermal elastic diffusion for constant temperature to the 

body with chemical reactions. Theory of kinetics of chemical reactions for homogeneous media 

is very well developed. We have introduced two types of concentrations: mass concentration and 

relative molar concentrations. 
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Chapter 2 

Thermal elastic diffusion theory for the multicomponent body  

with chemical reactions 

2.1. Physical phenomena 

Ion implantation technique initially developed for microelectronic applications. This is a 

process in which ions are accelerated in the material and the electric field effect in the rigid 

body. The technique dates back to the 1940’s when it was developed at Oak Ridge National 

Laboratory as part of the Manhattan Project.2 Since then the technique has found a variety of 

applications in materials processing. In the 1970’s the use of ion implantation to modify the 

electrical properties of semiconductors, metals, insulators and ceramics became extremely 

popular. Usually, the Monte Carlo and molecular dynamics methods are used for particle 

redistribution during plasma treatment or ion implantation. This process is used to alter the 

physical, chemical or electrical properties of the solid. Ion implantation is used in the 

manufacture of semiconductor devices and iron finishes and even for different applications in 

materials science studies. The method allows to obtain a very large range of concentrations 

ranging from less than 
1410 to some amount of time 

32210 mс  . The process can be carried out at 

any temperature. Different regions of semiconductor devices conduct via electrons or positive 

holes, with the dominant conducting species being termed the majority carrier and the lesser the 

minority carrier. In order to make a region of a semiconductor electron or hole rich, impurity 

atoms have to be introduced into the semiconductor lattice. These impurities can either donate 

electrons (e.g., arsenic (As), phosphorous (P), or antimony (Sb) in silicon (Si)) or accept 

electrons and thereby create positive holes (e.g., boron (B) in silicon (Si)). These impurity atoms 

are called dopants. 

Ion implantation is a low-temperature technique for the introduction of impurities 

(dopants) into semiconductors and offers more flexibility than diffusion. For example, in MOS 

transistors, ion implantation can be used to accurately adjust the threshold voltage. In ion 

implantation, dopant atoms are volatilized, ionized, accelerated, separated by the mass-to-charge 

ratios, and directed at a target that is typically a silicon substrate. The atoms enter the crystal 

lattice, collide with the host atoms, lose energy, and finally come to rest at some depth within the 

solid. The average penetration depth is determined by the dopant, substrate materials, and 

acceleration energy. Ion implantation energies range from several hundred to several million 

electron volts, resulting in ion distributions with average depths from 10  nm to 10  Doses 

range from 
21110 cmatoms  for threshold adjustment to 

21810 cmatoms  for buried dielectric 

formation. Ion implantation represents a particularly useful means by which to modify the 

surface properties of a variety of materials. This prosaic statement, however, does not convey the 

depth of basic understanding which has been developed to fully utilize the advantages of ion 

implantation. The interaction of a host lattice with the energetic beams produces metastable 

states and structures which cannot be achieved by other means. However, ion implantation also 

requires an understanding of the fundamental physics and chemistry that dictate the interaction 

of the ion beam and the target. In addition to the fundamental nature of the process, ion 
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implantation is important to a wide variety of technologies. While ion implantation has indeed 

become a technologically important processing component of the semiconductor fabrication and 

other industries, new developments demonstrate that ion implantation is an important tool for 

basic research and for future applications, with nanoclustered materials as an intriguing example. 

Ion implantation allows low temperature forming of any thermodynamically stable or 

metastable Matrix-impurity combination that can be annealed in a wide range of temperatures in 

the movement afterward implantation thermal treatments. As a consequence, this method offers 

the perfect tool to study phase transformations and atomic transport in solids. Incoming ion 

piercing into a solid goal, losing their own energy with the support of two independent 

processes: inelastic collisions with the target electrons and elastic collisions with nuclei of the 

target [62-65]. First leads to ionized states, which in alloys rapidly target electrons recombine. In 

most cases, when the target material alloy (withdrawal compose only irradiation spectrum GeV 

energy) inelastic collisions lead only to the target heating .Elastic collisions between ions and 

target nuclei may lead to the highest accomplishment hundred keV energy is transmitted, that is, 

the main exceeding the binding energy of atoms in rigid bodies. These actions lead to collision 

cascades. Thorough description of the evolution of collision cascades allowed collision may be 

finding in numerous review articles [63-66].  

Ion implantation also allows the reaction between two different atomic species implanted 

in the inert matrix. Pattern such experiment is described in [67]. The Previous research works for 

application of ion implantation in the transformation of the surface [65, 66] and were divided 

into two groups. Most studies of heavy ion implantation are focused on studying the effects of 

radiation damage or intense ion beams solid interactions. On the other hand, the light element of 

the ion implantation may well be advantageous to modify the physical structure of the materials 

near the surface. Being from excessive damage solids free, easy element of physical modification 

is effective in curing and strengthening solid through ion implantation.  

Using implantation to advance processing for a variety of device structures is also 

becoming more important. Ion beams are used to modify optical properties of dielectric materials 

to fabricate optical waveguides, other related photonic devices, and novel crystal hosts. Focused 

ion beams represent another means to produce three-dimensional structures, including those for 

piezoelectric nanostructures. Likewise the formation of plasmonic nanocomposites using 

metallic species to form core-shell geometries can be controlled through implantation. In 

particular, the ion implantation can be used as a simulator to investigate the role of alloying 

elements or species in the design of coatings, various studies have been reported in the surface 

modification of the films of metal and clay coatings.  

One of the major advantage of ion implantation is the fact that almost all of the process 

parameters (concentration of contaminants, the temperature, the types of atoms, the defect 

concentration, etc.) can be controlled independently. Thus, it is possible to study in detail the role 

of a particular parameter, keeping all other factors constant. This, along with the ability to 

modify the characteristics of the process in an extremely wide spectrum, makes ion implantation 

powerful machine in the formation phase and nuclear studies of movement [68]. Nitrogen 

implanted iron is one of the most well-studied systems in ion implantation metallurgy [69–72]. 

Detailed phase diagram of nitrogen implanted iron was published in [73]. 
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The remixing of the particles in molecular level, we could use for chemical conversion 

description the traditional laws of chemical kinetics and diffusion kinetic models. Examples of 

enough complex similar models one can find in [68].  

It is a powerful technique to introduce desired impurities irrespective of chemical and 

other limitations in and near the surface region of any substrate. It has both accelerator and 

plasma versions. The latter is cheaper and thus friendly for industry. Ion implantation service is 

available for partners from industry and can be used for basic and applied research to modify 

surface-sensitive properties like adhesion, wear, roughness, hardness, corrosion of metal or other 

materials. 

Ion implantation is used in a number of applications, namely, 

• Semiconductor doping,  

• Synthesis of compound layers, 

• Materials modification, 

• Understanding the effects of radiation on living tissue. 

• Low-temp. Process (can use photoresist as mask)  

• Wide selection of masking materials e.g. photoresist, oxide, poly-Si, metal  

• Less sensitive to surface cleaning procedures  

Ion-implantation represents one method to modify materials, the range of implant 

conditions provides for some very creative approaches. The ability to optimize the properties of 

silicon nanoclusters in SiO2 through implantation using a combination of properly chosen 

annealing and irradiation conditions shows promise. Modification of phase change materials, 

crystallization rates and phase stability, for example with readily and controllably achieved 

through implantation of nitrogen or oxygen. Implantation of low energy nitrogen in GaAs also 

modifies the surface to produce quantum dot structures, alloyed semiconductors or GaN 

structures, depending on the conditions. Implantation into III-nitrides and ZnO to modify 

electrical properties has important technological applications as well as the study of interesting 

physical interactions in these systems. 

Alumina, one of the most widely used wear, heat and electrical resistant materials, has a 

high hardness and excellent chemical stability even at high temperatures. At high contact stresses 

significant amounts of cracking can occur around scratches in brittle materials. Surface 

modification by energetic particles leads to surface damage, even though a new functional layer 

is generated on the materials with improved physical and chemical properties, such as adhesion, 

surface hardness, corrosion resistance and wear resistance. Implantation-induced changes in the 

surface charge state may also affect the adhesion of lubricant molecules. An increase of 

mechanical strength by high energy ion implantation has been attributed to compressive surface 

residual stress upon volume expansion in the implanted region by introduction of defects. For 

example the ion implantation of an Al2O3 surface leads to significant modifications of 

mechanical properties such as hardness, fracture toughness and friction. The properties are very 

sensitive to the presence of ion species induced by implantation and to modification of the 

surface composition. The implantation reaction produces Al, AlN or AlON with nitrogen 

whereas carbon film, Al, Al4C3 or Al4O4C are obtained with carbon, which lead to different 

physical properties of the resulting samples. The possibility of forming solid-lubricant films, new 
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self-lubricating ceramic-matrix composites, or other reaction layers using ion implantation at low 

temperatures. 

The field of ion implantation is not static. Improvements in equipment, understanding of 

beam-solid interactions, applications to new materials, and the recent developments to use 

implantation for nanostructure formation point to new directions for ion implantation. 

2.2. General equations 

To describe the new phase formation during ion implantation we use isothermal theory of 

thermal elastic diffusion. It includes the following equations: 

Balance equation: 
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Where 
sec)/( 3mmolJi is the i  substance flux, it  is the relaxation time, 
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is the diffusion coefficients. 
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i  - ith chemical reaction rate ki
 - stochiometric coefficient of  k -component in t-th reaction; 

r – number of reactions. 

Diffusion fluxes: 
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where it  are the relaxation times, iD
 are diffusion coefficients of elements in the mixture, 

 sec/2m  . 
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2.3. General Problem formulation 

When particle beam acts on the material surface, and the particle rate is uniform along it, 

we can restrict the particles redistribution by one-dimensional problem (Fig.1). The form of 

impulse can be various (Fig.2). When the chemical reaction is possible in the surface layer, the 

particles (atoms, ions) are consume for new phase formation. 

 
Fig.2.1.Illustration to problem formulation 

 
Fig.2.2.Various form of impulses 

2.4 Qualitative results 

2.4.1. Simple problem without chemical reaction  

We can come to irreversible process description step by step starting from simple 

problems. When particle beam acts on the material surface, chemical reactions are absent, and 

the particle rate is uniform along it. The simple and known problem without chemical reaction is 

stated as  

The diffusion equation has the form  
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where Ay  is molar concentration of the particles, t  is the time, x  is the space coordinate in the 

direction of particle beam action, AD  - is diffusion coefficient, mq
 - is particle beam density. 

The analytical solution of the known problem can be found by using any integral 

transform methods and has the form (it is contained in many reference books): 











































tD

x
erfc

D

x

tD

xt

D

q
y

AAAA

m
A

24
exp2

2


  (2.2) 



29 

 

That is the particle concentration distribution along the coordinate perpendicular to 

treated surface is monotonic singularity-free function. It is shown on the Fig.3. 

Concentration Ay  changes in the point 0x  as t . 
5.1mq

 
 smmol 2/ ; 

710AD  

cm2/sec 

 

 

 

 

   

  

      Fig 2.3 

2.4.2. Simple problem with chemical reaction  

When the chemical reaction is possible in surface layer [74], the particles are consume for 

new phase formation. Assume the chemical reaction occurs by the simplest scheme 
CBA  , 

where the letter B correspond to the substance contained in initial specimen, C – to the reaction 

product.  

The additional term appears in this case in diffusion equation, and we come to the second 

simple problem. 
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     (2.3) 
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,0:  Ax J  

,0:0  Ayt  

The exact solution of (2.3) can be calculated by Laplace transformation method and has 

the form:  
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The formula (2.2) is limit of this solution for 0Ak . 

Because the entered particles are consumed for new phase formation, the diffusion concentration 

decreases in the volume. The product concentration changes by equation 

C
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y
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     (2.5) 

For simple reaction of first order we can evaluate the product concentration. Using 

Laplace integral transform method, we shall find 
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   (2.6) 

The reagent and product concentrations behavior with time is shown on the Fig.(2.4, a, b) 

in the point .0x  Since the substance A is consumed for new phase formation, the reagent 

concentration grows slowly.  
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Fig.2.4. The dynamics of concentration change. 
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For the analytical solution of the known problem we assume that  
)(tfq

x

y
D m

A
AA 



J

 

We have (2.3) 
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Taking Laplace transformation  

That is  
   sYtYst AA  ,  

And using the Initial condition, we get 
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Put these values and simplifying (2.3), we get 
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So the solution is of the form 
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Again using Laplace transformation  
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Therefore, the solution gets the form 
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In this case the concentration distribution depends essential on relations between different 

physical scales: diffusion rate, reaction rate, and reactant intake. Because the mass flux 

diminishes quickly with time, it is necessary to large reaction rate constant to product appearance 

would appreciably.  

The form of ions source could be different in time. For example, we can write 
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D m
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1
J

 

 For these cases, analytical solutions are not possible or are obtained very cumbersome 

and do not handy for using. Hence, we will use numerical methods. 

Conclusions 

We have tried to construct some models of thermal elastic diffusion with chemical 

reaction, for which we need some basic concept that is, ion implantation which is a technique for 

introducing foreign atoms into materials by bombarding it with energetic ions of the desired 

species. The process can be carried out at any temperature. One of the major advantage of ion 

implantation is the fact that almost all of the process parameters (concentration of contaminants, 

the temperature, the types of atoms, the defect concentration, etc.) can be controlled 

independently. For mathematical purpose we have designate in detail the equation of motion, the 

relation between strain and displacement and the compatibility equation which has a key role in 

the theory of thermal elastic diffusion. The governing equations of generalized thermal elastic 

diffusion are also demarcated. Regarding to the problem formulation, we have started from the 

basic and known problem. The solution of the known problem is present in many books in detail. 

But when the chemical reaction is possible in surface layer, the particles are consume for new 

phase formation and, the additional term appears in this case in diffusion equation, and hence we 

come to the second simple problem, where the chemical reaction occurs corresponding to 

reaction scheme having unit stoichiometric coefficients. In the next problem we take into 

account three chemical reaction with the molar concentration distribution of NiAlAlNi ,, , 
AlNi3 . The same problem will correct for other systems, for example TiNiAlTi  , .  

Finally, we analytically solve the problems by Laplace transformation method, but sometime it is 

complicated to solve analytically in that case we are trying to approach numerically with 

different methods, and that’s what we are doing in the next chapter. 
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Chapter 3 

The nonlinear models with chemical reactions 

3.1. Description of physical situation 

 When we have the body, the surface of which is treated uniformly by particle beam with 

given intensity and given time structure.The isothermal problem describes the composition of 

surface layer change during particle beam action [75]. The finiteness of relaxation time for mass 

flux is taken into account. While the concentration distributions for reactants and reaction 

product depend on relation between various physical scales. We have carried out the analytical 

solutions and Numerical solution of total problem.  

3.2. The problem with summary reaction 

Let the chemical reaction occurs correspondingly to reaction scheme 
CBA CBA  

 

where CBA  ,,
 are stoichiometric coefficients. For example, for the systems Ti + Ni, Ti + 

Al, Ni + Al we can suggest the simplified reaction schemes: TiNiNiTi  , TiAlAlTi  , 
NiAlAlNi  , respectively. In this case, the absolute values of stoichiometric coefficients 

equal to unity 
1 CBA 

. 

In this case, the reaction rate is 
  BAyyTk . 

When BA yy  , one can assume 

  AyTk , 

where 
  BkyTk 

. 

In general case, correspondingly to mass action law, the chemical reaction rate could be written 

as 
BA

BA yky


  , 

where By  - is concentration of basic substance. But, in many situations we can assume then the 

substance is in excess supply, and its concentration does not change practically. Then 

Ayk . 

This linearization was allowed above using analytical methods. 

3.2.1. Mathematical problem formulation 

The implanted particles concentration in surface layer can change due to the diffusion and 

due to the reaction (the particles are consumed in reaction), that the balance equation reproduces 
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y
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     (3.1) 

The implantation process is irreversible, the specific time is very small, and hence we could use 

for diffusion flux the generalized equation 
;
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The boundary and initial conditions take the form 
 tfqx mA  J:0

; 

0:  Ayx or 0AJ  

,0:0  Ayt  
0





t
AJ

 

Here: Ay  - concentration of A-substance (implanted particles, 
3mmol ), AJ  is the A-substance 

flux  sec3mmol  ); AAAA yk    )sec1( ; kk AA   - rate constant for chemical reaction, At  

is the relaxation time , AD  is the diffusion coefficient  sec2m . 

3.2.2. Simplification and analytical estimations. 

 In order to solve the problem analytically we will use the Laplace transformation method.  

Therefore from equation (3.2) we have 
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Using the flux derivative from (3.1), we shall find 



































tt

y
t

x

y
D

t

y AA
A

A
A

A
A




2

2

2

2

    (3.3) 

Where At  is the relaxation time, for which we are discussing two cases.  

Case-I. When relaxation time is not equal to zero, 0At , we have  
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Taking Laplace transformation  

That is  
)()(, sYtYst AA   

And using the Initial condition, we get 

A
A

A
A Ys

t

Y
Ys

t

Y










,2

2

2

 

Put these values and simplifying (3.4), we get 
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So the solution is of the form 
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Using Lorient series and taking At small, we have  2
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The exact analytical solution can be obtained for some other functions )(tf  . 
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Case-II. When the relaxation time is equal to zero  

When, 0At  the analytical solutions can be found without any complexity using Laplace 

integral transform method, for f (t ) = 1, we shall obtain (2.4). 

3.2.3. Numerical algorithm 
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and from (3.1) 
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We have several specific physical scales. For example time scales are 
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In this case we obtain the linear equations system which could be solved by double-sweep 

method. In computation area we introduce the difference mesh. Let h  - mesh step. Then instead 

of continuous space coordinate we come to discrete space points 
hjxi 

 , nj ,...,2,1,0  
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where n  is point number in integration interval. 

In cases of implicit difference schemes and in some stationary problems, we have obtain 

the algebraic equation system of the form 
jjjjjjj fubucua   11     (3.8) 

1,...,2,1;0,0  Njba jj  

Let us Assume that the equality  
111   jjjj uu 
 

takes a place. Here 1j
, 1j

 are double-sweep coefficients which are undefined now. Hence 

jjjj uu  1      (3.9) 

Substituting (3.9) in the equation (3.8), we obtain 
  jjjjjjjjj fubucua  1

 

Or 
   jjjjjjjjj afubcau   1 . 

Hence, we come to correlations 
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We use the condition in zero-point and equation (3.9) for 
1j

. 
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Because 1 , 1  are known, we can determine sequentially all coefficients j
, j

 to point N . 

Now we use the condition in point N  and equation (3.9) for 1j . 
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Implies that 
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     (3.10) 

Here straight marching stops.  

Backward marching uses the equation (3.9) for points 0,1,....2,1  NNj . 

For our differential equation (3.7) we can suggest the family of difference schemes 

corresponding in general case to nine - point template  
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Comparing coefficients of (3.8) and (3.11) we can get 
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 (3.12) 

where 321 ,, 
 are the weights of difference schemes, 11  ; 

132 
. 

To complete the problem formulation, we add to the equation (3.3) and with the boundary and 

initial condition, the kinetic equation for reaction product: 

C
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y






      (3.13) 

where 
 CC k

, and equation for basic material (because the moles are not conserved during 

the reaction). When the species B  is mobile and could diffuse also in the mixture from three 

component CBA  , we could assume that relaxation time for this element Bt  is not equal to 

At . Hence, we obtain the equations  
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For example, for reactions 
TiNiNiTi  , TiAlAlTi  , NiAlAlNi   

absolute values of stoichiometric coefficients equal to unity: 
1 CBA 

, 

and we have 

BAyky . 

Then the diffusion equations take the form 
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Kinetic equation does not change. 



47 

 

Assuming    Attf  exp , from (3.1) and from boundary and initial conditions we shall find 

   
x

y
DAtAtq A

AAm



 exp1

 , 0x     (3.16) 

In this point 0BJ . 

The last boundary and initial conditions: 

0:  Ayx  or 0;0  BA JJ     (3.17) 

0;0;;0;0:0 0 

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
 C

B
BB

A
A y

t
yy

t
yt

JJ

  (3.18) 

The problem (3.13), (3.14)- (3.18) was solved numerically. The implicit difference scheme for 

diffusion equations was used. 

3.2.4. Results and analysis 

 Parameters evaluation  

According to periodic table, for the NiTi   -system we have 
48Am ; 59Bm ; 

107 BAC mmm
 g/mol. 

We can determine partial densities of species 

iii my
 , CBAi ,,  

and calculate the density change  
CBA  

 

during implantation accompanied by chemical reaction. 

Assuming 9.8B  g/cm3, we shall find 
151.00 By

 mol/cm3. Impulse source could be 

characterized by impulse duration 
410)42( it sec; 

  81021.0 mq
 mol/(cm2sec). 

Relaxation time depends on material structure, but for majority of substances it is 

unknown. It is interested for investigation the parameters region, when various physical 

processes could effect on each other. In this model there are several specific times. Relaxation 

times At , Bt  impulse duration it , chemical reaction time cht
, specific diffusion time. The 

correlations between these times will determine the concentration distributions.  

Analysis of dimensionality allows writing 
kyt Bch /0

. 

Taking 










RT

E
kk Rexp0

; 
16

00 102 Byk
 1/sec; 

510181.1 RE  J/mol [76], we find 

74 107.9  ;101.1  ;135.0  cht
sec for temperature 600 ,500 ,400T  K. Really, the reaction 

constant could differ from pure thermo dynamical evaluation due to activation phenomena [77], 

but it changes in wide limits when the temperature varies. 
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Diffusion coefficients depend on temperature in accordance with Arrhenius’s law also 










RT

E
DD Dk

kk exp0

, BAk , . 

It is not difficult to find in the literature the data concerning self-diffusion. The diffusion 

coefficients in complex media are proportional to self-diffusion coefficients. Diffusion data 

depend essential on structure material, impurity presence, and conditions of measurement. 

Since [78] for nickel and titanium we have 











RT
DNi

279700
exp9.1

 and 








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






 

RTRT
DTi

130600
exp1058.3

251200
exp09.1 4

 cm2/sec, 

so for temperature 600 ,500T  K we obtain 
1516 1051.1 ;1039.1  AD  and 

2527 102.8 ;1003.5  BD  cm2/sec respectively. Hence it is impossible to expect diffusion zone 

formation during times At , Bt  and it  without additional acceleration of diffusion. 

Experimental data indicate that the materials activation happens under irreversible 

conditions of particle beam action. It leads to diffusion acceleration and changes many physical 

properties [77]. Diffusion acceleration could be connected with activation energy reduction. 

Kinetics of this physical process would be investigated especially. Here we assume that the 

activation energies reduction in four times. That gives for 600 ,500T K the diffusion 

coefficients respectively are 
66 1021.4 ;1046.1  AD  and 

67 1054.1 ;1031.4  BD  cm2/sec. 

The concentration distributions for 0 BA tt  is presented in the Fig. (3.1-3.3) for 

sec/105.2 24 cmmolqm


; KT 550  , KT 600  , KT 650  and 0A . In this case we 

have 
,sec1056.1,sec1067.9,sec1036.8 776  cht
 respectively. While, when we increase 

the temperature the reaction time decreases as showed in the table and the concentration change 

for B-substance is more visible Fig. (3.1-3.3). The temperature leads to diffusion acceleration 

and diffusion zone increase gradually. 

Table 1 

S# Temperature  cht
  sec AD

 cm2/sec BD
 cm2/sec Reaction rate 

mol/m3sec  

1 450 31059.2   
91035.3   

111082.2   06.58  

1 500 4101.1   
810201.1   

101041.3   
31036.1   

2 550 61036.8 
 

81081.3 
 

91062.2 
 

41080.1   

3 600 71067.9   
71013.1   

81043.1   
51055.1   

4 650 
71056.1   

71015.3   
81006.6   

51064.9   

5 700 
81028.3   

71012.8   
71007.2   

61059.4   

6 750 
91048.8   

61092.1   
71005.6   

71077.1   

7 800 
91059.2   

61020.4   
61054.1   

71081.5   

8 850 101012.9   
61050.8   

61051.3   
81065.1   

9 900 
101060.3   

51060.1   
61032.7   

81018.4   
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10 950 101057.1   
51084.2   

51041.1   
81060.9   

11 1000 111043.7 
 

51077.4   
51054.2   

91003.2   

In the absence of relaxation time the concentration distributions are presented in Fig. 

(3.1-3.3) for 
4105.2 mq  sec)/( 2cmmol ; 0A   and KTKT 500,450   and KT 550  

respectivelly. We can actually neglect the initial substance concentration change for small times, 

less than specific reaction time. In this case we have the reaction time 
31059.2   sec for 

KT 450 , while, when we increase the temperature the reaction time decreases  see Table 1 and 

hence the concentration changes for B-substance is more visible showed in Fig. (3.1-3.3, c). The 

temperature leads to diffusion acceleration and diffusion zone increase gradually. 
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Fig.3.1. (a): The concentration distribution in specimen for implanted element, (b): Reaction 

product (c): Initial substance for different time moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec with 0 BA tt ; KT 450  and 0A . 
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Fig.3.2. (a): The concentration distribution in specimen for implanted element, (b): Reaction 

product (c): Initial substance for different time moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec with 0 BA tt ; KT 500  and 0A . 
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Fig.3.3. (a): The concentration distribution in specimen for implanted element, (b): Reaction 

product  (c): Initial substance for different time moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec with 0 BA tt ; KT 550  and 0A . 

When we take into account the finiteness of relaxation time we shall obtain some 

interested result for T=600K and T=650 respectively. In this case we can discuss two main cases.  

Case-I: When the releaxiation times are less than the time impulse that is for 
310At  sec and 

3105.1 At  sec along with 
3102  itt
, the implanted particles are distributed 

monotonically and almost linearly Fig.(3.4-3.7, a). The concentration curves for reaction product 

do not change Fig. (3.4-3.7, b). Redistribution of initial substance is observed in diffusion zone 

Fig. (3.4-3.7, c), that leads to density evaluation.  

0.0 3.0x10
-6

6.0x10
-6

0.00

0.02

0.04

0.06

Y
A
 , mol/m

3

T=500 K
5

4
3

2
1

X cm  
(a) 

0.0 3.0x10
-6

6.0x10
-6

0.000

0.004

0.008

0.012

T=500 K
5

4

32

1

Y
C
 , mol/m

3

X cm
 

(b) 

0.0 3.0x10
-6

6.0x10
-6

0.141

0.144

0.147

0.150

T=500 K

Y
B
 , mol/m

3

5

4

3

2
1

X cm
 

(c) 

Fig.3.4. (a): The concentration distribution in specimen for implanted element, (b): Reaction 

product (c): Initial substance for different time moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec with 

310At ;
3105.1 At ; KT 500  and 

0A .  
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Fig.3.5. (a): The concentration distribution in specimen for implanted element, (b): Reaction 

product (c): Initial substance for different time moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec with 

310At ;
3105.1 At ; KT 550  and 

0A . 
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Fig.3.6. (a): The concentration distribution in specimen for implanted element, (b): Reaction 

product (c): Initial substance for different time moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec with 

310At ;
3105.1 At ; KT 600  and 

0A . 
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Fig.3.7. (a): The concentration distribution in specimen for implanted element, (b): Reaction 

product (c): Initial substance for different time moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec with 

310At ;
3105.1 At ; KT 650  and 

0A . 
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Case-II: While in opposite case, when the releaxiation times are greater than that the time 

impulse that is for, for sec10 3At  and 
3105.1 Bt  along with 

sec105 4it , that is when 

mass source acts, no monotonic concentration curves appear for implanted particles after it  

(Fig.3.8-3.11.a) that propagates into the depth and leads to new phase formation acceleration 

(Fig. 3.8-3.11,b). In this case, the extreme is observed in initial substance concentration (Fig. 

3.8-3.11, c). The evaluation of mass flux density allows seeing the stepped concentration curves 

for small times and thus After it  step-by-step concentration of implanted material is visible (Fig. 

3.8-3.11.a). 
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Fig.3.8. (a): The concentration distribution in specimen for implanted element, (b): Reaction 

product (c): Initial substance for different time moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec with 

310At ;
3105.1 Bt ; KT 500  and 

0A . 
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Fig.3.9. (a): The concentration distribution in specimen for implanted element, (b): Reaction 

product (c): Initial substance for different time moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec with 

310At ;
3105.1 Bt ; KT 550  and 

0A . 
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(c) 

Fig.3.10. (a): The concentration distribution in specimen for implanted element, (b): Reaction 

product (c): Initial substance for different time moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec with 

310At ;
3105.1 Bt ; KT 600  and 

0A . 
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Fig.3.11. (a): The concentration distribution in specimen for implanted element, (b): Reaction 

product (c): Initial substance for different time moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec with 

310At ;
3105.1 Bt ; KT 650  and 

0A . 

3.3. The problem with detailed reaction scheme 

This problem is actually the continuation of the above model by adding new chemical 

reactions. We consider a model for non-equilibrium conditions of three stage reactions for the 

formation of intermetallic compounds. Consider the plane layer of nickel. The flow of aluminum 

particles distributed uniformly along the surface to be treated. Assume the implantation of 

aluminum ions in the surface layer of nickel may occurs the chemical reactions. In general, the 

problem is conjugate (there is the interface), coupling (there are the interrelation between various 

physical phenomena) and demands the large calculating resources. That connects with the 

difference between scales of various physical and chemical phenomena. 

3.3.1. Mathematical problem formulation 

 We use the model [75] and add it by new chemical reactions. We assume that three 

reactions are possible in the surface layer. 
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(a) NiAlAlNi   

(b) 
AlNiAlNi 33 

 

(c) 
NiAlAlAlNi 323 

 

The molar concentration distribution of NiAlAlNi ,,  and 
AlNi3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

follows from equations  
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, 

i  - are the reaction rates   sec3mmol , ki
 are stoichiometric coefficients. For our reaction 

scheme, we have 
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The reaction rates depend on concentrations and temperature: 
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where 321 ,, EEE
 are the activation energies, R  is universal gas constant, 302010 ,, kkk

 - pre-

exponential factors. 

The diffusion fluxes    sec2mmol  follows from relations 
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where NiAl tt ,
 are the relaxation times, NiAl DD ,

 are diffusion coefficients of elements in the 

mixture, 
 sec/2m  . 

The Initial conditions, 0t  , are  

].[][,0][][][ 03 iNNiAlNiNiAlAl 
 

The boundary conditions are  

0:0  NiAL JJx
 

0:  NiAL JJx
 

Note, that the same problem will correct for other systems, for example TiNiAlTi  , . The 

problem is solved numerically. 

In the simplest case, we can restrict the chemical reaction by one stage and take 0F  in 

diffusion equation. That corresponds to the condition 
)(:0 tfqJx mAl 
 when ions enter from 

the surface. 

For simplicity we assume that 
       ALNiYNiALYNiYALY 34321 ,,, 

 so that the above 

problem statement can be respectively written as 
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    (3.19) 

i  - ith chemical reaction rate ki
 - stochiometric coefficient of  k -component in t-th reaction; 

r – number of reactions. 

3.3.2. Numerical algorithm 

The system (3.19) can be written as  
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The boundary conditions are  
0:0 21  JJx  
0: 21  JJLx  

The initial conditions, 0t  , are  
,0431  YYY .202 YY 

 

To solve this problem we must write down the sources k  explicitly. 

For system AlNi   we have reactions (a)-(c) 

The reaction rates are  
2

1433
3

21222111 ,, YYkYYkYYk  
 

Hence, for sources in the diffusion and kinetic equations we shall find 



57 

 

  2
143

3
2122113211 22 YYkYYkYYk  

; Al 

  3
212211212 33 YYkYYk  

; Ni 
2

143211313 33 YYkYYk  
; NiAl 

2
143

3
212324 YYkYYk  

. Ni3Al 

Determining the derivative 










)2(

2
143

3
212211

1 YYkYYkYYk
tt



 
)(2)()(

2
143

3
212211 YY

t
kYY

t
kYY

t
k
















 
)2(2)3()( 1414

2
131

3
22

2
21212211 Y

t
YYY

t
YkY

t
YY

t
YYkY

t
YY

t
Yk































 
and substituting it in equation (3.20) we obtain 













































1

3
22

2
212122112

1
2

1 3 Y
t

YY
t

YYkY
t

YY
t

Yk
t

Y
t

 
),(

,
22 12

1
2

1
1

11414
2

13 txFq
x

Y
D

t

Y

t

txF
tqY

t
YYY

t
Yk mm 




































 

 

or 

    













2

2
211211114113

3
2122112

1
2

1 314 Y
t

YYtkYtkY
t

YYtkYtkYtk
t

Y
t

 

 
),(

,
2 12

1
2

114
2

113 txFq
x

Y
D

t

txF
qtY

t
Ytk mm 














 

 

or 

   





















t

txF
qtYYkYYkYtkY

t
HY

t
G

t

Y
t m

,
2 1

2
143

3
212

2
11321112

1
2

1

  ),(2
2

143
3

2122112
1

2

1 txFqYYkYYkYYk
x

Y
D m






 

or  

























2
1

2

1121112
1

2

1

,

x

Y
D

t

txF
qtY

t
HY

t
G

t

Y
t m

 

),(2 4
4

11
2

311 txFqYYtkSY m
    (3.24) 

Here 
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Differentiating the source for second component (Ni), we come to the equation 
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where 

  4,3,2,119,
2

212212112  kYYtkYtktYH k ; 

  3
22222112 3, YtkYtktYG k 

; 

  2
2121112 3, YYkYktYS k 

; 

 Other equations do not change. 

To solve this problem (3.24), (3.25), (3.22) and (3.23) with initial and boundary 

conditions we can use various methods [79]. 

First Concentration:  

Fist concentration (3.24) 






























































t

YY
H

t

YY
G

t

YYY
t

ii
i

ii
i

iii 22
1

11
12

111
1

~~~
2

 
 

  4
14

2
3112

11111
11 2

2
,

,
iii

iii
mm YYkSY

x

YYY
DtxFq

t

txF
qt


 


















 

or 
;2 112

1
112

1
1

1
112

1






























iiiii Y

x

tD
YtS

x

tD
G

t

t
Y

x

tD

 

















iiiiiii YYHYGYYttk 22111
4

141
2

3
~~

2

 

 


































iim YY
t

t
txF

t

txF
ttq 11

1
1

~
2),(

,

 

 

By comparison with 
011,11,111,11   iiiiiii FYBYCYA

, 



59 

 

We can get the Double sweep coefficients 
;   ;

2
1

12
1

1
x

tD
B

x

tD
A ii











 
;2 12

1
1

1
1 iii tS

x

tD
G

t

t
C 











 












iiiiiiii YYHYGYYttkf 22111
4

141
2

31
~~

2

 

 





























iim YY
t

t
txF

t

txF
ttq 11

1
1

~
2),(

,

   (3.26)

 

Boundary condition in the point 
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To find the second derivative we use equation (3.24) 
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We obtain: 
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where 
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The formulae of double sweep method are usual: 
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Second boundary condition is written in difference form by similarly way. However, the 

series is constructed for 11 NY
 relatively to the point Ni  . As a result we present the boundary 
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The conditions of stability for double sweep method are right always:  
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To find the second derivative we use the equation (3.25) at the point 0i . After transformations 

similar to previous ones, we come to equations: 
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General formulae for double sweep method are the same, that is 
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Second boundary condition is written in difference form by similarly way. However, the 

series is constructed for 12 NY
 relatively to the point Ni  . As a result we present the boundary 

condition in the form 
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can be realized numerically using Euler method.  

3.3.3. Results and analysis 

 Parameters Evaluation  

In order to discuss the analysis of the result the following parameters must be used. The reaction 

rates and diffusion coefficients depend on temperature by Arrhenius law. The activation energy 

of reactions are 
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While the diffusion coefficient are:
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4

2 1058.3 AD ; 
510306.1 DAE ; 

 19.12 BD ; 
510797.2 DAE ; 700T K 

Here we employment mixture measurement unit that is convenient for calculation and for results 

presentation. Here we also discuss two cases. 

Case-I 

When 0,0 21  tt , this model is interested for slow processes only, when reaction rates are 

determined by slow diffusion. Pre-exponential factors treating the corresponding "ideal" 

conditions for chemical reactions when there are no kinetic difficulties. Mass concentration can 

be calculated by formula. 
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Where km
- molar masses of substances.  

Fig. 3.12-15 shows that, at a temperature T=700 K the phase Ni3Al is absent, while the 

phase NiAl appearing as gradually by increasing the time which show that the process is slow 

and the diffusion is absent. On the other side Ni and Al is transfer to each other for reaction 

continuation and trace more large distance. The rate of new phase formation in this case is slow. 

Whereas at temperature T=800 K, T=900 K and T=1000 K the ratio between the reaction rate are 

changed, and hence, there is a region where we have a finite fraction of phase NiAl and Ni3Al.  
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(c) 

Fig. 3.12. Distribution of elements and phases in surface layer for (a) 
sec105 4t

 (b) 

sec108 4
 (c) 

sec102.1 4
 at temperature T=700 K with mass flux 

sec/1012 23 cmmolqm 
 , 

sec103 3impt
 and sec10 5t . Where 1.-Al , 2.- Ni , 3.-NiAl , 4.-Ni3Al 
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(c) 

Fig. 3.13. Distribution of elements and phases in surface layer for (a) 
sec105 4t

 (b) 

sec108 4
 (c) 

sec102.1 4
 at temperature T=800 K with mass flux 

sec/1012 23 cmmolqm 
 , 

sec103 3impt
 and sec10 5t . Where 1.-Al , 2.- Ni , 3.-NiAl , 4.-Ni3Al  
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(c) 

Fig. 3.14. Distribution of elements and phases in surface layer for (a) 
sec105 4t

 (b) 

sec108 4
 (c) 

sec102.1 4
 at temperature T=900 K with mass flux 

sec/1012 23 cmmolqm 
 , 

sec103 3impt
 and sec10 5t . Where 1.-Al , 2.- Ni , 3.-NiAl , 4.-Ni3Al. 
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(c) 

Fig. 3.15. Distribution of elements and phases in surface layer for (a) 
sec105 4t

 (b) 

sec108 4
 (c) 

sec102.1 4
 at temperature T=1000 K with mass flux 

sec/1012 23 cmmolqm 
 

, 
sec103 3impt

 and sec10 5t . Where 1.-Al , 2.- Ni , 3.-NiAl , 4.-Ni3Al. 

We observed that by increasing temperature the diffusion and reactions accelerated, and 

we come to the treated zone. In the processing zone one can clearly find where the phase is 

preferably NiAl . This is followed by a zone containing main part of phase Ni3Al . Zone sizes 

depend on the temperature of the mass flux density. 

Case-II 

When 01 t  and 02 t , the model corresponds to irreversible conditions and in this case 

diffusion zone forms more quickly. The model is also interested for treating conditions of short 

pulses with a high particle density. 

Here we assume 
sec105.1,sec10 3

2
3

1
  tt

 , 
sec102,8.1 3

20
 imptY

 and 

sec/105.1 25 cmmolqm 
, the chemical reaction occur if the heat flux increase in the range 

84 1010   times. 
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Distribution of elements and phases of different times (given below) for temperature T=800 K 

T=900 K and T=1000 K are given. Fig. 3.16-3.18 shows a gradual increase in the area occupied 

by phase NiAl and a mixture of the two phases NiAl+Ni3Al. Features are only for the clearer 

separation of two zones. 
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Fig. 3.16. Distribution of elements and phases in surface layer for (a) 
sec105 4t

 (b) 

sec108 4
 (c) 

sec102.1 4
 at temperature T=800 K with 

sec105.1,sec10 3
2

3
1

  tt
 mass 

flux 
sec/105.1 25 cmmolqm 

, 
sec102 3impt

 and 
sec10 5t

. Where 1. - Al, 2.- Ni , 3.- 

NiAl , 4.- Ni3Al. 
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Fig. 3.17. Distribution of elements and phases in surface layer for (a) 
sec105 4t

 (b) 

sec108 4
 (c) 

sec102.1 4
 at temperature T=900 K with 

sec105.1,sec10 3
2

3
1

  tt
 mass 

flux 
sec/105.1 25 cmmolqm 

, 
sec102 3impt

 and 
sec10 5t

. Where 1. - Al, 2.- Ni , 3.- 

NiAl , 4.- Ni3Al. 
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Fig. 3.18. Distribution of elements and phases in surface layer for (a) 
sec105 4t

 (b) 

sec108 4
 (c) 

sec102.1 4
 at temperature T=1000 K with 

sec105.1,sec10 3
2

3
1

  tt
 mass 

flux 
sec/105.1 25 cmmolqm 

, 
sec102 3impt

 and 
sec10 5t

. Where 1. - Al, 2.- Ni , 3.- 

NiAl , 4.- Ni3Al. 

Molar concentration  

In the absence of relaxation time the molar concentration distribution of elements and 

chemical compounds are presented in the Fig.(3.19-3.20) for different time moments. In this 

case, when the temperature is low for reaction activation the  distribution is almost near to the 

initial ion distribution after implantation, but when the temperature is increase gradually the 

values of concentration is decreases.  
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Fig. 3.19. Molar concentration distribution of elements and phases in surface layer for different 

time moments t = (1). 
4104  ; (2). 

4106  ; (3). 
4108  ; (4). 

310
sec with 021  tt  

;
KT 650

; 
sec/1013 23 cmmolqm 

; 
sec10 5t

 and 0A . 
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Fig. 3.20. Molar concentration distribution of elements and phases in surface layer for different 

time moments t = (1). 
4104  ; (2). 

4106  ; (3). 
4108  ; (4). 

310
sec with 021  tt  

;
KT 700

; 
sec/1013 23 cmmolqm 

; 
sec10 5t

 and 0A . 

When we take into account the finiteness of relaxation time we obtain some attractive 

result. That is for 
sec103,sec10 3

2
4

1
  tt

 and when the temperature raises the diffusion and 

reaction zones are accelerated and we come to the treated zone Fig.(3.21-3.22). Hence we can 

obtain the composition of treated surface layer by varying the parameters include in the model  

Where 
3

34321 /,,, mmolALNiYNiALYNiYALY 
. 
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Fig. 3.21. Molar concentration distribution of elements and phases in surface layer for different 

time moments t = (1). 
4104  ; (2). 

4106  ; (3). 
4108  ; (4). 

310
sec 

with
sec/105.2 25 cmmolqm 

; sec,103,10 3
2

4
1

  tt ; sec10 5t ;
sec102 3impt

 and with 

temperature T=650 K. 
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Fig. 3.22. Molar concentration distribution of elements and phases in surface layer for different 

time moments t = (1). 
4104  ; (2). 

4106  ; (3). 
4108  ; (4). 

310
sec 

with
sec/105.2 25 cmmolqm 

; sec,103,10 3
2

4
1

  tt ; sec10 5t ;
sec102 3impt

 and with 

temperature T=700 K. 
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3.3.4. Generalization for other chemical systems 

 We can extend and generalize our problems to some more complicated problems: 

Thermal conductivity process is more fast than diffusion one, the heated zone is more extensive 

than specimen size. We believe that diffusion and chemical processes go in some narrow 

temperature interval and assume that temperature is constant which is given. Hence we come to 

thermal elastic diffusion for isothermal conditions with chemical reactions.  

Assume that the n -chemical reactions are possible in the surface layer.  

mkniABBA kikiki ,...,2,1;,...,2,1,  
 

The molar concentration distribution kY
follows from the diffusion equations (1) for moving 

elements and kinitical equations (2) for immobile phases. 

rmk
t

Y
kk

k 



,...,2,1,J

 

mrmk
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Y
k

k ),...,1(, 





 

where 
,k  5,...,2,1k  is the sinks of substances due to the reactions, 






n

1i

ikik 

, 

Where i - are the i-th chemical reaction rate sec/ 3mmol , ki
 are the stoichiometric coefficient 

of k -component in m-th reaction; n  is the number of reactions. 

The reaction rates depend on concentrations and temperature: 

njiYYkYY
RT

E
k kjkiikjki

i
ii ,...,2,1;exp0 










 

where iE
 are the activation energies, R is the universal gas constant and 0ik

 is the pre-

exponential factors. 

The diffusion fluxes sec/ 2mmol  follows from relations 

2,1, 








 k

t

J
t

x

Y
D k

k
k

kkJ
 

where kt  is the relaxation times, kD
 is the diffusion coefficients of elements in the mixture, 

 sec/2m  . 
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The Initial conditions are  

0t    
0kY

 

The boundary conditions are  

0:0  kJx
 

0:  kJx
 

Note, that the same problem can be implemented on other systems,  

for example TiNiAlTi  ,  etc. The problems can be solved numerically. 

3.4. Stresses and strains in the reaction zone 

 Because the temperature is not too big, the stresses in diffusion zone are elastic 

and we can use known solutions of thermal elasticity theory, where some changing are 

permissible. According to Dugamel Neyman relations, we have connection between stress and 

strain tensor components and temperature in the form [80]. 
  Kkkijijij  2
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where zyxji ,,,  ; ,  - Lame coefficients, 


3

2
K

 - is bulk module, connecting with 

technical values – elastic module and Poisson coefficient by relations 
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 03 TTT  
 

T  is thermal expansion coefficient, 0T
 - initial temperature. 

When the composition changes, we can write [81] 
   
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k  - concentration expansion coefficients; kC
 - are relative mass concentrations; index «0» 

relates to no deformed state; n  - is species number (pure elements and chemical compounds). 

Mass concentrations are determined by following way 
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where km
 is molar mass of k-species.   

Hence, we can write for constT 
 

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For coefficients k  the simple evaluation takes a place 

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
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k
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1
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


, 

Where for pure substances i  - are atom volumes; for chemical compounds - molar volumes: 

0i

i
i

m


 

, 

0i  is individual density of substance in standard state. 

3.4.1. Problem on mechanical equilibrium 

 Taking the solution of the problem on mechanical equilibrium of thick plate free 

on external mechanical loading, but absorbing the admixture from environment [80], and taking 

into account the presented above formulae, we write the expressions for stress and strain tensor 

components in the form 
 xxxxx  

, 
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, 
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The similar solution has been used in many publications, for example [82, 21]. Because function 
  equal to zero far from diffusion zone, HxD  , the integrals differ from zero only in 

diffusion zone, Dxx  . This value is determined numerically during solution of diffusion-

kinetic problem. The mechanical properties (modulus of elasticity and Poisson's ratio) can 
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depend on composition. We assume CCBBAA CECECEE 
; CCBBAA CCC  

. In 

accordance with literature data [83], we have 116AE ; ;204BE  
200CE

 GPa; 

32.0A ; 28.0B ; 
35.0C . 

3.4.2. Stresses and strains calculation for the problem with summary reaction 

 In the absences of relaxation time and for small mass flux the stress and strains 

distributions are presented in Fig.(3.23-3.25). The strains are small for small 

sec/105.2 24 cmmolqm


 but increase with temperature as shown in the Fig.( 3.23-3.25, a), 

while the character of strains distribution is look like similar to the reaction product distribution 

Fig.( 3.23-3.25, b). 

0.0 5.0x10
-6

1.0x10
-5

-5

-4

-3

-2

-1

0

T=450 K

GPayy ,

Stresses

5

4

3
2

1

X cm
 

(a) 

0.0 5.0x10
-6

1.0x10
-5

0.00

0.01

0.02

0.03

0.04 T=450 K

Strain

1

54

3

2

E
xx

X cm
 

(b) 

0.0 5.0x10
-6

1.0x10
-5

160

170

180

190

200

T=450 K

GPaE ,

Young Module

5

43
2

1

X cm
 

(c) 

Fig. 3.23. (a): Stresses (b): Strains and (c): Young module in surface layer for different time 

moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec 

with 0At ; 0Bt ; KT 450  and 0A . 
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Fig. 3.24. (a): Stresses (b): Strains and (c): Young module in surface layer for different time 

moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec 

with 0At ; 0Bt ; KT 500  and 0A . 
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Fig. 3.25. (a): Stresses (b): Strains and (c): Young module in surface layer for different time 

moment; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec 

with 0At ; 0Bt ; KT 550  and 0A . 

When the relaxation time is takeing into account the stresses in the reaction zone in the 

direction perpendicular to particle beam action achieve the large values. Most of them 

correspond to the case with large mass fluxes mq
 and short impulse time (Fig. 3.26-3.33, a, b). 

In this case the values of stress and strains are proportional to temperature .The Young module 

changes very quickly, because the properties of materials are near to each other. The E -curves 

repeat qualitatively the implanted particles curves (Fig. 3.26-3.33, c). 

For non-zero relaxation time we have  
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Fig. 3.26. (a): Stresses (b): Strains and (c): Young module in surface layer for different time 

moment; ; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec 

with 
310At ;

3105.1 Bt ; 
3102 it  KT 500  and 0A . 
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Fig. 3.27. (a): Stresses (b): Strains and (c): Young module in surface layer for different time 

moment; ; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec 

with 
310At ;

3105.1 Bt ; 
3102 it  KT 550  and 0A . 
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Fig. 3.28. (a): Stresses (b): Strains and (c): Young module in surface layer for different time 

moment; ; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec 

with 
310At ;

3105.1 Bt ; 
3102 it  KT 600  and 0A . 
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Fig. 3.29. (a): Stresses (b): Strains and (c): Young module in surface layer for different time 

moment; ; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec 

with 
310At ;

3105.1 Bt ; 
3102 it  KT 650  and 0A . 
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Fig. 3.30. (a): Stresses (b): Strains and (c): Young module in surface layer for different time 

moment; ; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec 

with 
310At ;

3105.1 Bt ; 
4105 it  KT 500  and 0A . 
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Fig. 3.31. (a): Stresses (b): Strains and (c): Young module in surface layer for different time 

moment; ; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec 

with 
310At ;

3105.1 Bt ; 
4105 it  KT 550  and 0A . 
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Fig. 3.32. (a): Stresses (b): Strains and (c): Young module in surface layer for different time 

moment; ; ; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec 

with 
310At ;

3105.1 Bt ; 
4105 it  KT 600  and 0A . 
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Fig. 3.33. (a): Stresses (b): Strains and (c): Young module in surface layer for different time 

moment; ; ; t =(1). 
41099.1  ; (2). 

41099.3  ; (3). 
41099.6  ; (4). 

41099.9  ; (5). 
3105.1   sec 

with 
310At ;

3105.1 Bt ; 
4105 it  KT 650  and 0A . 

3.4.3. Stresses and strains calculation for the problem with detailed reaction scheme 

In the absences of relaxation time and for small 
sec/1013 23 cmmolqm 

, the stress and 

strain distribution are presented in Fig.( 3.34-3.35). In this case the stresses and strain Fig.( 3.34-

3.35, a,b) are decreases slowly by increasing the temperature.   
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Fig.3.34 (a): Stresses (b): Strains and (c): Young module in surface layer for different time 

moment; t = (1). 
4104  ; (2). 

4106  ; (3). 
4108  ; (4). 

310
sec with 021  tt ; KT 650

; 

sec10,sec/1013 523  tcmmolqm  and 0A . 
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Fig.3.35 (a): Stresses (b): Strains and (c): Young module in surface layer for different time 
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moment; t = (1). 
4104  ; (2). 

4106  ; (3). 
4108  ; (4). 

310
sec with 021  tt ; 

;700 KT  sec10,sec/1013 523  tcmmolqm  and 0A . 

When we take into account the finiteness of relaxation time that is for 

,sec102,sec10 3
2

4
1

  tt  and when the temperature increases the stress and strain Fig. (3.36-

3.37, a, b) in the reaction zone achieve large values with large mq
. The Young module Fig. (3.36-

3.37, c) also change quickly by increasing temperature. 
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Fig. 3.36. (a): Stresses (b): Strains (c): Young Module in surface for different time moment t = 

(1). 
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  tt ;

sec10 5t
;
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 and with 

temperature T=650 K. 
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Fig. 3.37. (a): Stresses (b): Strains (c): Young Module in surface for different time moment t = 

(1). 
4104  ; (2). 

4106  ; (3). 
4108  ; (4). 

310
sec with 

sec/105.2 25 cmmolqm 
; sec,103,10 3

2
4

1
  tt ; sec10 5t ;

sec102 3impt
 and with 

temperature T=700 K.  
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Conclusion 

This chapter embraces some particular problem of generalized thermal elastic diffusion 

with chemical ration. We started from the known problem in literature and then added additional 

term in order to discuss the chemical aspect. The reactions are written for system Ni-Al based on 

state diagram. The first problem is on the equation system of Ni-Al having united stoichiometric 

coefficient, while the second one are little bit more complicated. We have described the 

generalized formulation as well as the particular problem formulation of the generalized thermal 

elastic diffusion with chemical reaction. We constructed the mathematical models. Since such 

problems are not easy to solve analytically so we have solved it numerically by using the implicit 

deference scheme. The linear difference equations are solved by double-sweep method. The 

numerical algorithm is suggested for all parameters region.  

In the first problem we have disused simple model for new phase formation in surface layer 

during ion implantation, with and without relaxation time for mass flux are take into account.  

It has been shown that finiteness of relaxation time changes the molar concentrations 

distribution in diffusion zone in comparison with usual diffusion problems. The stresses and 

strains can achieve large values. It has also been shown that the concentration distribution and 

stresses values depend on the relation between time scales of numerous physical processes. The 

model can be applied for different chemical system. 

In the second problem simple model has been constructed in order to describe the 

intermetallic formation on surface layers during ion implantation, with the assumption of 

isothermal condition. The implicit difference scheme has been suggested for the solution of 

diffusion kinetic problem describing ion implantation by intermetallic phase formation. We 

actually suggest a model of the surface modification of nickel- aluminum ions with the 

relaxation of mass flows. The model corresponds to irreversible conditions and includes 

finiteness of relaxation times for mass fluxes. The finiteness of relaxation time is very important 

for the initial step of the process. Several specific times are used for example relaxation times, 

impulse duration, chemical reaction time and specific diffusion time. The results illustrate the 

convergence of difference scheme at variation of its parameters. Results analysis evolution in the 

surface layer is obtained different for problem with and without finite relaxation times. It has 

also been shown that the finiteness of relaxation time changes the concentrations distribution in 

diffusion zone in comparison with usual diffusion problems with high temperature. Stresses, 

Strain and Young Module also have been analyzed for the said problem.  

Resultant Conclusion  

Consequently, in our work we embraces some particular problem of generalized thermal 

elastic diffusion with chemical ration. We started from the known problem in literature and then 

added additional term in order to discuss the chemical aspect. The reactions are written for 

system Ni-Al based on state diagram. The first problem is on the equation system of Ni-Al 

having united stoichiometric coefficient, while the second one are little bit more complicated. 

We have described the generalized formulation as well as the particular problem formulation of 

the generalized thermal elastic diffusion with chemical reaction. We constructed the 

mathematical models. Since such problem is not easy to solve analytically so we have solved it 
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numerically by using the implicit deference scheme. The linear difference equations are solved 

by double-sweep method. The numerical algorithm is suggested for all parameters region.  

In the first problem we have disused simple model for new phase formation in surface 

layer during ion implantation, with and without relaxation time for mass flux are take into 

account. It has been shown that finiteness of relaxation time changes the molar concentrations 

distribution in diffusion zone in comparison with usual diffusion problems. The stresses and 

strains can achieve large values. It also has been shown that the concentration distribution and 

stresses values depend on the relation between time scales of numerous physical processes. The 

model can be applied for different chemical system. 

In the second problem simple model has been constructed in order to describe the 

intermetallic formation on surface layers during ion implantation, with the assumption of 

isothermal condition. The implicit difference scheme has been suggested for the solution of 

diffusion kinetic problem describing ion implantation by intermetallic phase formation. We 

actually suggest a model of the surface modification of nickel- aluminum ions with the 

relaxation of mass flows. The model corresponds to irreversible conditions and includes 

finiteness of relaxation times for mass fluxes. The finiteness of relaxation time is very important 

for the initial step of the process. Several specific times are used for example relaxation times, 

impulse duration, chemical reaction time and specific diffusion time. The results illustrate the 

convergence of difference scheme at variation of its parameters. Results analysis evolution in the 

surface layer is obtained different for problem with and without finite relaxation times. It has 

also been shown that the finiteness of relaxation time changes the concentrations distribution in 

diffusion zone in comparison with usual diffusion problems with high temperature. Stresses, 

Strain and Young Module also have been analyzed for the said problem.  
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Appendix 

List of the main symbols 

E  Young’s modulus; 
   Poisson’s ratio; 

  is small strain tensor with components ij ; 

  is stress tensor with components ij
; 

,  are Lame coefficients; 

  is Kronecker delta;  

u  is displacement vector with components iu
 

G  is shear module 
t   is the time 

F  is vector of volume forces 

T   is the temperature 

0T
  is the temperature of no deformed state 

q - is the heat flux 

T  is thermal conductivity coefficient; 

c  is heat capacity 

c  is the heat capacity at the constant strains; 

  is the density; 

kMR ttt ,,
 are the relaxation times 

T is linear thermal expansion coefficient; 

K  is the bulk modulus 
U  is the internal energy 
S  is the entropy  
V  is the Volume  
G  is the Gibbs energy 

F - is free (Helmholtz) energy 

H  - is the enthalpy 
p  - is the pressure  

ijklC
 is tensor of elastic modulus 

D  is diffusion coefficient 
J  is the diffusion flux 

kC
 are the mass concentrations 

ky
 are the relative molar concentrations 

k  are partial densities  

C  is concentration expansion coefficient 

kkk Hgs ,,
 are the partial densities, chemical potentials (partial Gibbs energies) , partial 

enthalpies for species (components) 



86 

 

qqL
 - is the phenomenological coefficients; 

TD  is thermal diffusion coefficient 

ij
 are stoichiometric coefficients 

j  is the reaction coordinate 

x  is the space coordinate 

mq
 - is particle beam density 

k  is the chemical reaction rate 

zyx ,,  are spatial coordinates of Cartesian coordinate system 

...... div  ;  ...... grad  

First problem programing  

program problem_1 

implicit none  

integer, parameter:: n=1000,m=20 

real, parameter:: RR=8.31 

real:: YA(0:n),YAN(0:n),YANN(0:n),X(0:n),alp(1:n),bet(1:n) 

real:: YC(0:n),YCN(0:n),YBNN(0:n)   

real:: YB(0:n),YBN(0:n),YCNN(0:n)  

real:: A,B,C,F,znam,YA0,m0,A0,k0,tA,DA,tB,DB,time,tau,h,time_end,h1,h2 

real:: sig1,sig2,sig3,kappa,R,RA,XDA,XDB,tau_print,tt,kC,kA,kB,RB,YB0 

real:: SZY(0:n),EXX(0:n),EZY(0:n),Eu(0:n),nyu(0:n),alpB,alpA,alpC 

real:: EA,EB,EC,nyuA,nyuB,nyuC,mA,mB,mC,pL(0:n),pL0,pLA,pLB,pLC 

real:: om(0:n),omA,omB,omC,kappaB,H_spes,H_spesD,kap0,myu0,Ft,Ftt,t_imp 

real:: ALP_S,BET_S,GAM_S,N_S,M_S,F_1,F_2,CA,CB,CC,CB0 

real:: ER,k00,TEMPER,tch,xxx 

real:: DA01,DA02,EDA1,EDA2,DB0,EDB,DK 

real:: xdif,ddd,YAS,YBS,YCS,YKR 

integer:: i,j,jprint(1:m),j1,m1,m2,k,n0,kdif,kk 

character*9 X_Y(m) 

character*2 dn(m) 
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character*12 rez 

data dn/'01','02','03','04','05','06','07','08','09','10',& 

'11','12','13','14','15','16','17','18','19','20'/ 

open(1,file='dann.dat') 

!Y - diffusant concentration; YN,YNN - the same, from lower layers  

!DA,DB - diffusion coefficients 

!tA,tA - relaxation times 

!A - Ti 

!B - Ni 

!tau, h - time step and spatial step 

!k00,ER - reaction parameters 

!m0 - mass flux density 

!Eu,EA,EB,EC - elastic modulus 

!nyu,nyuA,nyuB,nyuC - Puisson's ratio 

!alpB,alpA,alpC - concentration expansion coefficients 

!mA,mB,mC - molar masses, kg/mol 

!H_spes - thickness of spesimen 

!nA,nB,nC - stoichiometric coefficients 

read(1,*)tau,n0 

read(1,*)YA0,m0 

read(1,*)A0,k00,Temper,ER 

read(1,*)tA,tB 

read(1,*)m1,m2 

read(1,*)tau_print,time_end 

read(1,*)sig1,sig2,sig3 

read(1,*)EA,EB,EC,nyuA,nyuB,nyuC 
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read(1,*)mA,mB,H_spes,H_spesD 

read(1,*)DA01,DA02,EDA1,EDA2,DB0,EDB,DK 

read(1,*)pLA,pLB,pLC 

read(1,*)t_imp 

read(1,*)rez 

read(1,*)jprint 

close(1) 

PL0=pLB 

DA=DA01*exp(-EDA1/RR/TEMPER/DK)+DA02*exp(-EDA2/RR/TEMPER/DK) 

DB=DB0*exp(-EDB/RR/TEMPER/DK) 

xdif=0. 

ddd=0. 

write(*,*)'DA,DB=',DA,DB 

!specific time of chemical reaction 

xxx=ALOG(10.) 

tch=exp(AlOG(1./k00)+ER/TEMPER/RR) 

write(*,*)'tch=',tch 

!stop 

do i=1,m 

! files for space distributions of concentrations for different time moments  

   X_Y(i)='XY'//dn(i)//'.dat' 

   end do 

write(*,*)(X_Y(i),i=1,m) 

write(*,*)(jprint(i),i=1,m) 

time=0. 

j=0 
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j1=1 

!molar volumes 

mC=mA+mB 

omA=mA/pLA 

omB=mB/pLB 

omC=mC/pLC 

znam=(omA+omB+omC)*3. 

!concentration expansion coefficients (relative) 

alpA=omA/znam 

alpB=omB/znam 

alpC=omC/znam 

write(*,*)'alpA,alpB,alpC=',alpA,alpB,alpC 

pL=pL0 

!pL,pL0,pLA,pLB,pLC - density, kg/m**3; with indexes - for standart state 

! spcific diffusion scales 

XDA=sqrt(DA*t_imp*10) 

XDB=sqrt(DB*t_imp*10) 

write(*,*)'XDA,XDB=',XDA,XDB 

!space step  

h=H_spesD/n 

do i=0,n 

   X(i)=h*i 

   end do 

YA=YA0 

YAN=YA0 

YANN=YA0 
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YC=0. 

YCN=0. 

YCNN=0. 

!diffusion - kinetic problem is solved in cm, g, sec 

!when [Pl]=kg/m3 and [m]=kg/mol, then [YB0]=mol/m3. In mol/cm3 we obtain 

YB0=(pLB/mB)*1.e-6 

YB=YB0 

YBN=YB0 

YBNN=YB0 

YAS=YA0 

YBS=YB0 

YCS=0. 

!only for reaction A+B=C 

k0=YB0/tch 

kdif=3 

!k0=0. 

write(*,*)'reaction rate, mol/m3/sec, k0= ',k0 

!mol concentrations in diffusion problem are measured in mol/cm**3 

RA=tau*DA/h**2 

RB=tau*DB/h**2 

write(*,*)'tau,h =',tau,h 

open(2,file=rez) 

!basic cicle 

do while((time.lt.time_end).or.(j1.le.m)) 

write(2,fmt=2)time,YA(0),YB(0),YC(0),YA(50),YB(50),YC(50),xdif 

j=j+1 
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time=j*tau 

YANN=YAN 

YAN=YA 

YBNN=YBN 

YBN=YB 

YCNN=YCN 

YCN=YC 

!moles number in the reaction and during implantation is not conserved 

!boundary condition, x=0 

!external impulse acts during t_imp 

if(time.lt.t_imp)then 

Ft=1. 

Ftt=0. 

else 

Ft=0. 

Ftt=0. 

end if 

!substance A 

znam=1.+2.*RA+k0*tau*YBN(0)+tA*k0*(2.*YBN(0)-YBNN(0))+tA/tau 

alp(1)=2.*RA/znam 

kappa=(2.*tau*m0/h)*(Ft+tA*Ftt)+YAN(0)*(1.+k0*tA*YBn(0))+tA*(2.*YAN(0)-

YANN(0))/tau 

bet(1)=kappa/znam 

!double-sweep method; stright marching 

do i=1,n-1 

   A=RA       

   B=RA          
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   C=1.+2.*RA+k0*tau*YBN(i)+tA*(2.*YBN(i)-YBNN(i))*k0+tA/tau  

   F=tA*(2.*YAN(i)-YANN(i))/tau+YAN(i)*(1.+k0*tA*YBN(i)) 

   znam=C-alp(i)*A 

   alp(i+1)=B/znam 

   bet(i+1)=(A*bet(i)+F)/znam 

   YKR=bet(i+1)/(1.-alp(i+1)) 

   kk=i+1 

   if((abs(YKR-YAN(i)).le.1.e-20).and.(i.ge.25))then 

   YA(kk)=YAN(kk) 

   go to 6 

   end if 

   end do 

!boundary condition of second type 

kappa=(1.+tA*k0*YBN(n))*YAN(n)+tA*(2.*YAN(n)-YANN(n))/tau 

znam=1.+2.*RA+tA/tau+k0*tau*(2.*YBN(n)-YBNN(n))+tau*k0*YBN(n) 

kap0=2.*RA/znam 

myu0=kappa/znam 

YA(n)=(kap0*bet(n)+myu0)/(1.-kap0*alp(n)) 

6 do i=kk,1,-1 

      YA(i-1)=alp(i)*YA(i)+bet(i) 

      end do 

!end substance A 

!substance B 

!boundary condition, x=0 

znam=1.+2.*RB+k0*tau*YAN(0)+tB*k0*(2.*YAN(0)-YANN(0))+tB/tau 

alp(1)=2.*RB/znam 
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kappa=YBN(0)*(1.+k0*tB*YAN(0))+tB*(2.*YBN(0)-YBNN(0))/tau 

bet(1)=kappa/znam 

!double-sweep method; stright marching 

do i=1,n-1 

   A=RB       

   B=RB 

   C=1.+2.*RB+k0*tau*YAN(i)+tB*(2.*YAN(i)-YANN(i))*k0+tB/tau  

   F=tB*(2.*YBN(i)-YBNN(i))/tau+YBN(i)*(1.+k0*tB*YAN(i)) 

   znam=C-alp(i)*A 

   alp(i+1)=B/znam 

   bet(i+1)=(A*bet(i)+F)/znam 

   YKR=bet(i+1)/(1.-alp(i+1)) 

   kk=i+1 

   if((abs(YKR-YBN(i)).le.1.e-20).and.(i.ge.25))then 

   YB(kk)=YBN(kk) 

   go to 7 

   end if 

   end do 

!boundary condition of second type 

kappa=(1.+tB*k0*YAN(n))*YBN(n)+tB*(2.*YBN(n)-YBNN(n))/tau 

znam=1.+2.*RB+tB/tau+k0*tau*(2.*YAN(n)-YANN(n))+tau*k0*YAN(n) 

kap0=2.*RB/znam 

myu0=kappa/znam 

YB(n)=(kap0*bet(n)+myu0)/(1.-kap0*alp(n)) 

!bechkward marching 

7 do i=kk,1,-1 
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   YB(i-1)=alp(i)*YB(i)+bet(i) 

   end do 

!end substance B 

!calculation of product concentration 

 do i=0,n 

   YC(i)=YCN(i)+k0*YA(i)*YB(i)*tau 

   end do 

!Properties and mechanical part of the problem  

!density  and volume expansion 

 do i=0,n 

!kg/m**3 

   pL(i)=(yA(i)*mA+yB(i)*mB+yC(i)*mC)*1.e6 

!mass concentrations 

   CA=mA*YA(i)*1.e6/pL(i) 

   CB=mB*YB(i)*1.e6/pL(i) 

   CC=mC*YC(i)*1.e6/pL(i) 

  ! CB0=mB*YB0*1.e6/pL0 

   om(i)=3.*(alpA*CA+alpB*(CB-1.0)+alpC*CC) 

   Eu(i)=EA*CA+EB*CB+EC*CC 

   nyu(i)=nyuA*CA+nyuB*CB+nyuC*CC 

   end do 

!stresses and strains 

!Integrals 

 ALP_S=(Eu(0)/(1.-nyu(0))+Eu(n)/(1.-nyu(n)))/2. 

 do i=1,n-1 

 ALP_S=ALP_S+Eu(i)/(1.-nyu(i)) 
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 end do 

 ALP_S=ALP_S*h+EB*(H_spes-H_spesD)/(1.-nyuB) 

BET_S=(X(0)*Eu(0)/(1.-nyu(0))+X(n)*Eu(n)/(1.-nyu(n)))/2. 

 do i=1,n-1 

 BET_S=BET_S+Eu(i)*X(i)/(1.-nyu(i)) 

 end do 

 BET_S=BET_S*h+EB*(H_spes**2-H_spesD**2)/(1.-nyuB)/2. 

 GAM_S=(X(0)**2*Eu(0)/(1.-nyu(0))+X(n)**2*Eu(n)/(1.-nyu(n)))/2. 

 do i=1,n-1 

 GAM_S=GAM_S+Eu(i)*X(i)**2/(1.-nyu(i)) 

 end do 

 GAM_S=GAM_S*h+EB*(H_spes*H_spes**2-H_spesD*H_spesD**2)/(1.-nyuB)/3. 

 N_S=(om(0)*Eu(0)/(1.-nyu(0))+om(n)*Eu(n)/(1.-nyu(n)))/2. 

 do i=1,n-1 

 N_S=N_S+Eu(i)*om(i)/(1.-nyu(i)) 

 end do 

 N_S=N_S*h/3. 

 M_S=(om(0)*X(0)*Eu(0)/(1.-nyu(0))+om(n)*X(n)*Eu(n)/(1.-nyu(n)))/2. 

 do i=1,n-1 

 M_S=M_S+Eu(i)*om(i)*X(i)/(1.-nyu(i)) 

 end do 

 M_S=M_S*h/3. 

 ! integration constants 

 znam=bet_S**2-alp_S*gam_S 

 F_1=(N_S**bet_S-M_S*alp_S)/znam 

 F_2=-(N_S*gam_S-M_S*bet_S)/znam 
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 do i=0,n 

 EZY(i)=F_1*X(i)+F_2 

 EXX(i)=(1.+nyu(i))*om(i)/3./(1.-nyu(i))-2.*nyu(i)*EZY(i)/(1.-nyu(i)) 

 SZY(i)=-EU(i)*om(i)/3./(1.-nyu(i))+Eu(i)*EZY(i)/(1.-nyu(i)) 

 end do 

 !Diffusion zone thickness 

  kdif=1 

  do i=n,0,-1 

  ddd=(YB(i)-YB(n))/YB(n) 

  if(abs(ddd).ge.0.001)then 

  xdif=x(i) 

  kdif=i 

  go to 5 

  end if 

  end do 

 !Average composition in the diffusion zone (it is necessary to change the integral calculation) 

 5 kk=kdif+2 

   YAS=(YA(0)+YA(kk))/2. 

   YBS=(YB(0)+YB(kk))/2. 

   YCS=(YC(0)+YC(kk))/2. 

   do i=1,kk 

   YAS=YAS+YA(i) 

   YBS=YBS+YB(i) 

   YCS=YCS+YC(i) 

   end do 

   YAS=YAS*h/x(kk) 
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   YBS=YBS*h/x(kk) 

   YCS=YCS*h/x(kk)  

!Recording of the results in files with names X_Y(j1)  

   !if((j.eq.jprint(j1)).and.(j1.le.m))then 

   tt=tau*jprint(j1) 

    if((time.eq.tt).and.(j1.le.m))then 

        k=j1+2 

  open(k,file=X_Y(j1)) 

 write(k,fmt=3)(X(i),YA(i),YB(i),YC(i),pL(i),om(i),Eu(i),nyu(i),EXX(i),SZY(i),EZY(i),i

=0,n) 

  close(k) 

  write(*,*)'j1,time,YB(0),YB(n)= ', j1,time,YB(0),YB(n) 

  j1=j1+1  

  end if 

 !if(Y(n).ge.1.e-15)then 

 !write(*,*)'it is nesessary to evaluate massives!' 

 !stop 

 !end if 

end do 

2 format(8(E15.9,2X)) 

3 format(11(E15.9,2X)) 

close(2) 

stop 

end 
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dann file  

 

1.e-5 20     !tau n0   

0.0 2.5e-4     !Y0,m0 2.5 mol/(cm**2 sec) 

0.0 2.e16 450.0 1.181e5   !A0,k0  1.e6 1.e2 1.e3 Temper ER 

0.0 0.0     !tA 1.e-4,DA,tB,DB 1.e-3,Sec, 

cm**2/sec 

5 20      !m1,m2 

1.e-8 1.e-4    !tau_print, time_end 

1.0 1.0 0.0    !sig1,sig2,sig3 

116.0 204.0 200.0 0.32 0.28 0.35 !EA,EB,EC (GPa),nyuA,nyuB,nyuC 

48.e-3 59.e-3 0.1 1.e-3 !mA (Ti),mB (Ni), kg/mol  (Ti 

Ni),H_spes H_spesD (cm) for 

diffusion 

1.09 3.58e-4 251200. 130600. 1.9 279700. 3    

!DA01 , DA02, EDA1.EDA2, DB0.EDB, DK 

4.54e3 8.902e3 6.44e3 ! pLA(Ti),pLB(Ni),pLC(TiNi), kg/m**3 

2.e-     !t_imp 

rez_3.dat    ! <12 symbols 

2 10 20 30 40 50 60 70 80 100 120 150 200 250 300 500 750 1000 

1250 1500 1750 2000 2250 2500 2750 3000 

3500 4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000 

20000 !jprint 

 

Second problem programing  

program problem_2 

implicit none  

integer, parameter:: n=1000,m=20 

real:: Y1(0:n),Y1N(0:n),Y1NN(0:n),X(0:n),Fx(0:n),alp1(1:n),bet1(1:n) 

real:: Y2(0:n),Y2N(0:n),Y2NN(0:n),alp2(1:n),bet2(1:n),S2(0:n),F(0:n) 

real:: Y3(0:n),Y3N(0:n),Y3NN(0:n),G1(0:n),H1(0:n),Y1sum,I3,I4   

real:: Y4(0:n),Y4N(0:n),Y4NN(0:n),G2(0:n),H2(0:n),S1(0:n) 

real:: A1,B1,U1,F1,Y10,m0,t1,D1,time,tau,h,r,time_end,VR1,VR2,DFT 

real:: A2,B2,U2,F2,Y20,t2,D2,W1,W2,C1S,C2S,V1,V2,eps,zna1,zna2,Z0 

real:: kappa1,kappa2,myu1,myu2,XD1,XD2,XD1R,XD2R,tau_print,tt,k1,k2,k3,k10,k20,k30 

real:: SZY(0:n),EXX(0:n),EZY(0:n),Eu(0:n),nyu(0:n),alpB,alpA,alpC,alpD 
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real:: E1,E2,E3,E4,nyu0,nyu1,nyu2,nyu3,nyu4,pL(0:n),pL0,pL1,pL2,pL3,pL4 

real:: om(0:n),om1,om2,om3,om4,H_spes,H_spesD,kap0,myu0,t_imp 

real:: 

ALP_S,BET_S,GAM_S,N_S,M_S,F_1,F_2,CA(0:n),CB(0:n),CC(0:n),CD(0:n),m1,m2,m3,m4 

real:: k0,A0,Ax,Ft,FtN,A,B,C,T,znam,znam1,znam2,znam4,znam6 

real:: RR,TEMPER,D10,ED1,D20,ED2,DK 

real:: E1A,E2A,E3A 

integer:: i,j,jprint(1:m),j1,k,n0,n1,n2,n3,n4,iend 

character*9 X_Y(m) 

character*2 dn(m) 

character*12 rez 

data dn/'01','02','03','04','05','06','07','08','09','10',& 

'11','12','13','14','15','16','17','18','19','20'/ 

!molar concentrations Y1 - [Al]; Y2 - [Ni]; Y3 - [NiAl]; Y4 - [Ni3Al] 

!mass concentrations  CA,CB,CC,CD 

!Al enters into Ni 

open(1,file='dann.dat') 

!time step, point number <n 

read(1,*)tau,n0 

write(*,*)'tau,n0=',tau,n0 

!mass flux density,source parameters 

read(1,*)m0,A0,Ax 

write(*,*)'m0,A0,Ax=',m0,A0,Ax 

!temperature 

read(1,*)TEMPER 

write(*,*)'TEMPER=',TEMPER 

!relaxation times 
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read(1,*)t1,t2 

write(*,*)'t1,t2=',t1,t2 

!parameters for calculation of diffusion coefficients 

read(1,*)D10,ED1,D20,ED2,DK 

write(*,*)'D10,ED1,D20,ED2=',D10,ED1,D20,ED2 

!pre-exponential factors for reactions 

!Z0 serves for normalization of reaction rates  

read(1,*)k10,k20,k30,Z0 

write(*,*)'k10,k20,k30,Z0=',k10,k20,k30,Z0 

!activation energies for reactions 

read(1,*)E1A,E2A,E3A 

write(*,*)'E1A,E2A,E3A=',E1A,E2A,E3A 

! Time for calculation (observation time) 

read(1,*)time_end 

write(*,*)'time_end=',time_end 

!elastic modules 

read(1,*)E1,E2,E3,E4 

write(*,*)'E1,E2,E3,E4=',E1,E2,E3,E4 

!molar masses 

read(1,*)m1,m2 

m3=m1+m2 !NiAl 

m4=3*m2+m1  !Ni3Al 

write(*,*)'m1,m2,m3,m4=',m1,m2,m3,m4 

!specimen size (thickness) 

read(1,*)H_spes,H_spesD 

write(*,*)'H_spes,H_spesD=',H_spes,H_spesD 
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!Poisson coefficients 

read(1,*)nyu1,nyu2,nyu3,nyu4 

write(*,*)'nyu1,nyu2,nyu3,nyu4=',nyu1,nyu2,nyu3,nyu4 

!densities 

read(1,*)pL1,pL2,pL3,pL4 

write(*,*)'pL1,pL2,pL3,pL4=',pL1,pL2,pL3,pL4 

!impulce duration 

read(1,*)t_imp 

write(*,*)'t_imp=',t_imp 

read(1,*)rez 

read(1,*)jprint 

close(1) 

!Universal gas constatnt 

RR=8.3144621 

!initial molar concentrations 

!mol/cm**3 

Y10=0. 

Y20=pl2/m2 

PL0=PL2 

write(*,*)'y20= ',y20 

! Diffusion coeffecients D1 and D2 

D1=D10*exp(-ED1/RR/TEMPER/DK) 

D2=D20*exp(-ED2/RR/TEMPER/DK) 

write(*,*)'D1,D2, cm**2/sec= ',D1,D2 

!files for space distribution of consentration for different time moments 

do i=1,m 
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X_Y(i)='XY'//dn(i)//'.dat' 

   end do 

write(*,*)(X_Y(i),i=1,m) 

write(*,*)(jprint(i),i=1,m) 

time=0 

j=0 

j1=1 

! molar volumes 

om1=m1/pL1 

om2=m2/pL2 

om3=m3/pL3 

om4=m4/pL4 

znam=(om1+om2+om3+om4)*3. 

! concentration expansion coefficients 

alpA=om1/znam 

alpB=om2/znam 

alpC=om3/znam 

alpD=om4/znam 

write(*,*)'alpA,alpB,alpC,alpD=',alpA,alpB,alpC,alpD 

! basic material density 

pL=pL2 

! Specific diffusion scales 

XD1=sqrt(D1*t_imp*10.) 

XD1R=sqrt(D1*t1) 

XD2=sqrt(D2*t_imp*10) 

XD2R=sqrt(D2*t2) 
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write(*,*)'XD1,XD1R =',XD1,XD1R 

write(*,*)'XD2,XD2R =',XD2,XD2R 

! Space step 

h=H_spesD/n 

write(*,*)'tau,h =',tau,h 

eps=0.00001 

!spatial points and space source distribution 

do i=0,n 

   X(i)=h*i 

   Fx(i)=exp(-Ax*X(i)**2) 

   end do 

write(*,*)'X(i)=' 

write(*,*)(X(i),i=0,n,100) 

write(*,*)'Fx(i)=' 

write(*,*)(Fx(i),i=0,n,100) 

!initial concentrations 

do i=0,n 

Y1(i)=Y10 

Y2(i)=Y20 

Y3(i)=0. 

Y4(i)=0. 

Y1N(i)=Y10 

Y2N(i)=Y20 

Y3N(i)=0. 

Y4N(i)=0. 

end do 
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!mol concentrations in diffusion problem are measured in mol/cm**3 

!diffusion - kinetic problem is solved in sm, g, sec 

I3=0. 

I4=0. 

if((t1.gt.1.e-10).and.(t2.gt.1.e-10))then 

   VR1=sqrt(D1/t1) 

   VR2=sqrt(D2/t2) 

   write(*,*)'VR1,VR2= ',VR1,VR2 

   end if 

 !reactin rates 

k1=Z0*k10*exp(-E1A/RR/TEMPER) 

k2=Z0*k20*exp(-E2A/RR/TEMPER) 

k3=Z0*k30*exp(-E3A/RR/TEMPER) 

write(*,*)'k1,k2,k3 =',k1,k2,k3 

r=tau/h**2 

kappa1=t1/tau 

kappa2=t2/tau 

write(*,*)'kappa1,kappa2= ',kappa1,kappa2 

open(2,file=rez) 

Y1sum=0. 

!moles number in the reaction and during implantation is not conserved 

!boundary condition, x=0 

!external impulse acts during t_imp 

do while(time.lt.time_end) 

if(j1.gt.m)then 

stop 
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end if 

!write(*,*)'1' 

write(2,fmt=2)time,Y1(0),Y2(0),Y3(0),Y4(0),Y1(n0),Y2(n0),Y3(n0),Y4(n0),Y1sum,I3,I4 

!write(*,*)'2' 

j=j+1 

time=j*tau 

Y1NN=Y1N 

Y1N=Y1 

Y2NN=Y2N 

Y2N=Y2 

Y3NN=Y3N 

Y3N=Y3 

Y4NN=Y4N 

Y4N=Y4 

FtN=Ft 

if(time.lt.t_imp)then 

!Ft=(-A0*time) 

Ft=1. 

DFT=0. 

else 

Ft=0. 

DFT=0. 

!write(*,*)'Ft= ',Ft 

end if 

!equations coefficients for intermediate calculation 

do i=0,n0 
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   H1(i)=k1*t1*Y1NN(i)+3.*k2*t1*Y1NN(i)*Y2NN(i)**2 

G1(i)=k1*t1*Y2NN(i)+k2*t1*Y2NN(i)*Y2NN(i)**2+4.*k3*t1*Y1NN(i)*Y4NN(i)+1. 

   

S1(i)=k1*Y2NN(i)+k2*Y2NN(i)*Y2NN(i)**2+2.*k3*Y4NN(i)*Y1NN(i)+2.*k3*k2*t1*Y1NN

(i)**2*Y2NN(i)*Y2NN(i)**2 

   H2(i)=k1*t2*Y1NN(i)+9.*k2*t2*Y1NN(i)*Y2NN(i)**2+1. 

   G2(i)=k1*t2*Y2NN(i)+3.*k2*t2*Y2NN(i)*Y2NN(i)**2 

   S2(i)=k1*Y1NN(i)+3.*k2*Y1NN(i)*Y2NN(i)**2 

   F(i)=FX(i)*Ft 

   end do 

!first concentration 

!boundary condition on external surface x=0 

znam1=G1(0)+2.*D1*r+kappa1+tau*S1(0) 

alp1(1)=2.*D1*r/znam1 

bet1(1)=kappa1*(2.*Y1N(0)-

Y1NN(0))+tau*(m0*(F(0)+t1*FX(0)*DFT)+2.*k3**2*t1*Y4NN(0)*Y1NN(0)**2*Y1NN(0)**

2) 

bet1(1)=(bet1(1)+G1(0)*Y1N(0)-H1(0)*(Y2N(0)-Y2NN(0)))/znam1 

!write(*,*) '1', alp1(1),bet1(1)  

 ! Double sweep method, Stright marching 

 do i=1,n-1 

   A1=D1*r       

   B1=D1*r          

   U1=kappa1+G1(i)+2.*A1+tau*S1(i)  

   F1=2*tau*k3**2*t1*Y4NN(i)*Y1NN(i)**2*Y1NN(i)**2+G1(i)*Y1N(i)-H1(i)*(Y2N(i)-

Y2NN(i))+ & 

   m0*tau*(t1*DFT+F(i))-kappa1*(Y1NN(i)-2.*Y1N(i)) 

   znam=U1-alp1(i)*A1 
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   alp1(i+1)=B1/znam 

   bet1(i+1)=(A1*bet1(i)+F1)/znam 

   iend=i 

   C1S=bet1(i+1)/(1.-alp1(i+1)) 

   if((abs(C1S-Y1N(i)).le.Y1N(i)*eps).and.(i.ge.25))then 

   go to 4 

   end if 

end do 

   iend=n 

   zna1=2.*D1*r+kappa1+G1(n)+tau*S1(n) 

    V1=2.*D1*r/zna1 

    V2=kappa1*(2.*Y1N(n)-Y1NN(n))+G1(n)*Y1N(n)-H1(n)*(Y2N(n)-Y2NN(n))+& 

 tau*(m0*F(n)+t1*m0*Fx(n)*DFT+2.*k3**2*t1*Y4NN(n)*Y1NN(n)**2*Y1NN(n)**2) 

 V2=V2/zna1 

   Y1(iend)=(V1*bet1(iend)+V2)/(1.-V1*alp1(iend)) 

   go to 5 

 4 Y1(iend)=C1S 

5 do i=iend-1,0,-1 

!write(*,*)'3' 

    Y1(i)=alp1(i+1)*Y1(i+1)+bet1(i+1) 

 if(Y1(i).le.0)then 

 Y1(i)=0. 

 end if 

  end do 

!write(*,*)'2', Y1(1),Y1(N) 

!stop 
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Y1sum=(Y1(0)+Y1(n))/2. 

do i=1,n-1 

Y1sum=Y1sum+Y1(i) 

end do 

Y1sum=Y1sum*h 

!Second concentration 

znam4=2.*D2*r+kappa2+H2(0)+tau*S2(0) 

alp2(1)=2.*D2*r/znam4 

bet2(1)=(kappa2*(2.*Y2N(0)-Y2NN(0))+H2(0)*Y2N(0)-G2(0)*(Y1N(0)-Y1NN(0)))/znam4 

do i=1,n-1 

   A2=D2*r       

   B2=D2*r          

   U2=kappa2+H2(i)+2.*A2+tau*S2(i) 

   F2=kappa2*(2.*Y2N(i)-Y2NN(i))+H2(i)*Y2N(i)-G2(i)*(Y1N(i)-Y1NN(i)) 

   znam=U2-alp2(i)*A2 

   alp2(i+1)=B2/znam 

   bet2(i+1)=(A2*bet2(i)+F2)/znam 

   iend=i 

   C2S=bet2(i+1)/(1.-alp2(i+1)) 

   if((abs(C2S-Y2N(i)).le.Y2N(i)*eps).and.(i.ge.50))then 

   go to 6 

   end if 

   end do 

   iend=n 

   zna2=2.*D2*r+kappa2+H2(n)+tau*S2(n) 

    W1=2.*D2*r/zna2 
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    W2=(kappa2*(2.*Y2N(n)-Y2NN(n))+H2(n)*Y2N(n)-G2(n)*(Y1N(n)-Y1NN(n)))/zna2 

    Y2(iend)=(W1*bet2(iend)+W2)/(1.-W1*alp2(iend)) 

   go to 7 

6 Y2(iend)=C2S 

7 do i=iend-1,0,-1 

Y2(i)=alp2(i+1)*Y2(i+1)+bet2(i+1) 

if(Y2(i).le.0)then 

 Y2(i)=0. 

 end if 

   end do 

!kinetic equation 

!It is necessary to use more rigorous methods for stiff problem!!! 

do i=0,n 

   Y3(i)=Y3N(i)+tau*(k1*Y1N(i)*Y2N(i)+3.*k3*Y4N(i)*Y1N(i)**2) 

   if(Y3(i).le.0.)then 

 Y3(i)=0. 

 end if 

   Y4(i)=Y4N(i)+tau*(k2*Y1N(i)*Y2N(i)*Y2N(i)**2-k3*Y4N(i)*Y1N(i)**2) 

   if(Y4(i).le.0.)then 

 Y4(i)=0. 

 end if 

    end do 

 

!Properties and mechanical part of the problem  

do i=0,n 

   !Density and mass concentrations g/cm**3 
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   pL(i)=Y1(i)*m1+Y2(i)*m2+Y3(i)*m3+Y4(i)*m4 

   !Mass consentrations 

   CA(i)=m1*Y1(i)/pL(i) 

   CB(i)=m2*Y2(i)/pL(i) 

   CC(i)=m3*Y3(i)/pL(i) 

   CD(i)=m4*Y4(i)/pL(i) 

   !Mechanical properties 

   !volume expansion 

   om(i)=3.*(alpA*CA(i)+alpB*CB(i)+alpC*CC(i)+alpD*CD(i)) 

   !elastic stresses 

   Eu(i)=E1*CA(i)+E2*CB(i)+E3*CC(i)+E4*CD(i) 

   !Poisson coefficicent 

   nyu(i)=nyu1*CA(i)+nyu2*CB(i)+nyu3*CC(i)+nyu4*CD(i) 

   end do 

!Total mass consentration CC(i) i.e integral from 0 to L CC(x) dx 

I3=(CC(0)+CC(n))/2 

do i=1,n-1 

I3=I3+CC(i) 

end do 

I3=I3*h/H_spesD 

!Total mass consentration CD(i) i.e integral from 0 to L CD(x) dx 

I4=(CD(0)+CD(n0))/2 

do i=1,n-1 

I4=I4+CD(i) 

end do 

I4=I4*h/H_spesD 
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!Stresses and strains 

!Integrals 

ALP_S=(Eu(0)/(1.-nyu(0))+Eu(n)/(1.-nyu(n)))/2 

do i=1,n-1 

 ALP_S=ALP_S+Eu(i)/(1.-nyu(i)) 

 end do 

 ALP_S=ALP_S*h+E2*(H_spes-H_spesD)/(1.-nyu2) 

BET_S=(X(0)*Eu(0)/(1-nyu(0))+x(n)*Eu(n)/(1.-nyu(n)))/2. 

do i=1,n-1 

 BET_S=BET_S+Eu(i)*X(i)/(1.-nyu(i)) 

 end do 

 BET_S=BET_S*h+E2*(H_spes**2-H_spesD**2)/(1.-nyu2)/2. 

GAM_S=(X(0)**2*Eu(0)/(1-nyu(0))+x(n)**2*Eu(n)/(1.-nyu(n)))/2. 

do i=1,n-1 

GAM_S=GAM_S+Eu(i)*X(i)**2/(1.-nyu(i)) 

end do 

GAM_S=GAM_S*h+E2*(H_spes*H_spes**2-H_spesD*H_spesD**2)/(1.-nyu2)/3. 

N_S=(om(0)*Eu(0)/(1.-nyu(0))+om(n)*Eu(n)/(1.-nyu(n)))/2. 

do i=1,n-1 

N_S=N_S+Eu(i)*om(i)/(1.-nyu(i)) 

end do 

N_S=N_S*h/3. 

M_S=(om(0)*X(0)*Eu(0)/(1.-nyu(0))+om(n)*x(n)*Eu(n)/(1.-nyu(n)))/2. 

do i=1,n-1 

M_S=M_S+EU(i)*X(i)*om(i)/(1.-nyu(i)) 

end do 
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M_S=M_S*h/3. 

!Integration constants 

znam6=bet_S**2-alp_S*gam_S 

F_1=(N_S*bet_S-M_S*alp_S)/znam6 

F_2=-(N_S*gam_S-M_S*bet_S)/znam6 

do i= 0,n 

  EZY(i)=F_1*X(i)+F_2 

  EXX(i)=(1.+nyu(i))*om(i)/(1.-nyu(i))/3.-2.*nyu(i)*EZY(i)/(1.-nyu(i)) 

  SZY(i)=-Eu(i)*om(i)/(1.-nyu(i))/3.+Eu(i)*EZY(i)/(1.-nyu(i)) 

  end do 

!According to the results in files with names X_Y(j1) 

!If ((j1.eq,jprint(j1)) and (j1,le.m) then 

tt=tau*jprint(j1) 

 if((time.eq.tt).and.(j1.le.m))then 

 k=j1+2 

 open(k,file=X_Y(j1)) 

write(k,fmt=3)(X(i),Y1(i),Y2(i),Y3(i),Y4(i),pL(i),CA(i),CB(i),CC(i),CD(i),om(i),& 

Eu(i),nyu(i),EXX(i),SZY(i),EZY(i),i=0,n) 

  close(k) 

  write(*,*)'j1,time,Y1(0),Y1sum=',j1,time,Y1(0),Y1sum 

 j1=j1+1 

 end if 

 end do 

 2 format(12(E15.9,2X)) 

3 format(16(E15.9,2X)) 

close(2) 
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 end 

dann file 

0.00001 1000    !tau 2.0 n0<n  

1.5e5 0.0 1.e9  !m0 2.5 (e3) mol/(cm**2 sec), A0, Ax1.5e5  

1000.0   !TEMPER 

1.e-3 1.5e-3  !t1 1.e-4,t2,1.e-3,Sec, 

4.36 2.69509e5 1.9 2.797e5 2.0   

!D10,ED1 (Al),D20,ED2 (Ni) cm**2/sec, J/mol !Ni с Al??? 

8.994e16 1.517e21 0.853e14 1.e-8     

!k10,k20,k30,Z0 - transition to measurement unit 1.e-12 1.e-4 

86128.0 169149.0 48715.0  !E1A, E2A,E3A 

1.e7      !time_end 

200 70 270 670    !E1, E2,E3,E4 GPa 

26.98 58.69     !m1(Al),m2 (Ni)Molar masses, g/mol 

0.1 1.e-3     !H_spes cm H_spes H_spesD (cm) 

0.31 0.35 0.27 0.28  !nyu1,nyu2,nyu3,nyu4 Poisson Coefficient  

2.7 8.9 11.6 29.4  !pL1(Al),pL2(Ni),pL3,pL4 Density g/cm**3 

2.e-3    !t_imp 2.0 

rez.dat    ! <12 symbols 

4 10 30 50 60 80 100 120 140 160 200 220 240 260 280 300 320 340 

360 400 15000 20000 25000 30000 35000 40000 45000 50000 

20 50 100 200 300 400 500 600 700 800 1000 1100 1200 1300 1400 

1500 1600 1700 2500 3000 5000 7500    !jprint tau=0.1 

8 20 40 80 120 160 200 240 280 320 400 440 480 520 560 600 640 

680 720 800 1000 1250 1500 1750 2000 2250 2500 2750 3000 3500 

4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000 

20000   !jprint tau=0.25 

4 10 20 40 60 80 100 120 140 160 200 220 240 260 280 300 320 340 

360 400 600 1000 1250 1500 1750 2000 2250 2500 2750 3000 3500 

4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000 

20000   !jprint tau=0.5 

2 5 10 20 30 40 50 60 70 80 100 110 120 130 140 150 160 170 180  

300 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3500 

4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000 

20000   !jprint tau=1 

When t1=t2=0, this problem is interested only for slow 

processes, when reaction rates are limited by slow diffusion. 

2 50 75 150 300 500 750 1000 1250 1500 1750 2000 2250 2500 2750 

3000 3500 4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 

18000 20000   !jprint 

0.1 400   !tau 2.0 n0<n  

0.35 0.0 50.0   !m0 2.5 (e3) mol/(mkm**2 sec), A0, Ax1.5e5  
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1000.0   !TEMPER 

0.0 0.0     !t1 1.e-4,t2,1.e-3,Sec, 

1.09 2.512e5 3.58e-4 1.306e5 1.9 2.797e5 

!D101 ,ED11,D102,ED12,D20,ED2 cm**2/sec, J/mol 

8.994e16 1.517e21 0.853e14 1.e-12    

!k10, k20, k30, Z0 - transition to measurement unit 1.e-12 1.e-4 

86128.0 169149.0 48715.0  !E1A ,E2A,E3A 

1.e7      !time_end 

200 70 270 670    !E1 ,E2,E3,E4 GPa 

26.98 58.69     !m1,m2 Molar masses 

1.0      !H_spes mkm 

0.31 0.35 0.27 0.28  !nyu1, nyu2, nyu3, nyu4 Poisson Coefficient  

2.7 8.9 11.6 29.4  !pL1, pL2, pL3, pL4 Density g/cm**3 

4.e2     !t_imp 2.0 

0.0 1.8  !Y10,Y20 - initial molar concentration, mol/mkm**3 

rez.dat    ! <12 symbols 

20 50 200 400 800 1600 2400 3200 4000 4800 5600 7200 8000 9000 

10000 12000 15000 20000 25000 30000 35000 40000 45000 50000 

20 50 100 200 300 400 500 600 700 800 1000 1100 1200 1300 1400 

1500 1600 1700 2500 3000 5000 7500    !jprint tau=0.1 

8 20 40 80 120 160 200 240 280 320 400 440 480 520 560 600 640 

680 720 800 1000 1250 1500 1750 2000 2250 2500 2750 3000 3500 

4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000 

20000   !jprint tau=0.25 

4 10 20 40 60 80 100 120 140 160 200 220 240 260 280 300 320 340 

360 400 600 1000 1250 1500 1750 2000 2250 2500 2750 3000 3500 

4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000 

20000   !jprint tau=0.5 

2 5 10 20 30 40 50 60 70 80 100 110 120 130 140 150 160 170 180 

300 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3500 

4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000 

20000   !jprint tau=1 

When t1=t2=0, this problem is interested only for slow 

processes, when reaction rates are limited by slow diffusion. 

2 50 75 150 300 500 750 1000 1250 1500 1750 2000 2250 2500 2750 

3000 3500 4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 

18000 20000   !jprint 

***** 


