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INTRODUCTION

General characteristics of the work

The problems of thermal elastic diffusion study the interrelation between stress, strain,
temperature and concentration fields. This theory is interesting for the situation where material
behaviour under intensive thermal and mechanical action is studied. In this case, the processes in
solid are irreversible and can be accompanied by chemical reactions. For example, at the
condition of surface material treatment by intensive particle beams, the chemical conversion
happen which change the materials composition and properties. As a result, stresses and strains
appear during composition change. The generalized thermal elastic theory doesn’t take into
account the chemical conversions. It is necessary to include the chemical reactions in thermal
elastic diffusion and investigate as an example the problems for typical experimental situation.

One of the traditional areas of mechanics of deformable solids is to investigate the
influence of thermal elastic diffusion in the solid phase. This is due to the theoretical study of the
problem of interaction field various physical nature, with the construction of models of multi-
component and multiphase media and the challenge of managing physical and chemical
processes in modern technology. Mechanical stress can be either static (tensile, shear, torsion,
rotation) or dynamic (shock waves, blast vibration, pressing, ultra-sound). In any case, the
influence of the external load is associated with the change of transformation modes (speed,
direction). This fully applies to the processes of self-propagating high-temperature synthesis and
sintering. There are a number of scientists, working on the construction of models of
multicomponent media associated with the names A.K.Ohringen, R.M.Bowen and W. Nowacki
etc.

Study of mutual influence of stress and diffusion (both theoretical and experimental
methods) has a rich history, the first works connected with the name S.A Gorsky devoted to the
phenomenon of ascending diffusion. At the moment, there is another surge of interest in both
domestic and foreign researchers Lei this matter. This is due to the fact that diffusion processes
appearing, on the one hand, defining, and often limiting in large an amount of observable
phenomena, and, on the other hand, the mass transfer subject to influence of various physical
fields, including temperature, electric electromagnetic field, or the field of mechanical stresses.
The impact of recent actively studied in connection with the development and research of
various technological processes.

The ion implantation of metal surfaces by particles (ions) of other metal can accompany
by intermetallic compounds formation [1, 2]. It promotes the surface properties modification.
The model construction for this technology process will assist to physical phenomena study and
treatment conditions optimization.

The work is devoted to the models construction for ion implantation with intermetallides,
analytical and numerical methods development to realize the models of new phases formation in
surface layer under the action of a particle beam. The models are based on the generalization of
thermal elastic diffusion theory started from the simple and known problem in classical
approximation. Particular problems are solved analytically and numerically with the



demonstration of the stresses and strains evolution in treated surface layer with constant and
changing properties.

The aim of this work:

Numerical and theoretical study of new models of generalized thermal elastic diffusion
with chemical reactions, accompanied by various cross physical effects in the surface layer of
material under particle beam action. In accordance with the intended purpose is required:

1. To build the related models of thermal elastic diffusion with chemical reactions under
different conditions.

2. To formulate mathematical models taking into account the various cross effects between
concentration, stresses and strains.

3. To develop the algorithm for the numerical investigation of formulated models, taking
into account the specific condition of diffusion and thermoelasticity.

4. To implement the detailed parametric study of particular problems with the purpose of
parameters defining and modes of processing.

5. To analyze the influence of various cross effects and thermal effects on the processes of
redistribution of concentrations.

Corresponding to this, we formulate the tasks:

1. To develop mathematical model of generalized thermal elastic diffusion with chemical
reaction with and without time relaxation.

2. Find analytical and numerical solution with wide range values of parameters.

3. For solving the problem using the double sweep method and Laplace transformation
method and coding in FORTRAN.

Novelty of a scientific work

The thesis for the first time:
1. Formulated and investigated related models on thermal elastic diffusion with chemical
reactions.
2. The algorithms were developed excluding the possibility of inconsistency appearance in
terms of physical solutions.
3. Based on the results of numerical modeling the new effects were revealed.

Theoretical and practical significance of the work:

The work presents a new knowledge in the thermal elastic diffusion theory with chemical
reactions. Results of the study can be used to develop models and methods of composition
modification with acceptable stress-strain state of processed samples. Models admit their further
development by taking into account the different parameter and conditions of ions deposition. It
is the practical and applied value of the work.

The validity of the scientific results is confirmed by thorough testing program, comparing
numerical results with exact analytical solutions in various limiting cases. Correct formulation is
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solved in dissertation work tasks using modern physical understanding of the processes,
analytical and computational methods; consistency of the results and their compliance in extreme
cases the theoretical results known from literature and available experimental facts.

Personal contribution of the author was to analysis of data in the literature, writing and
debugging programs, a numerical study set out particular tasks, judgment of the results, the
formulation of basic scientific positions and conclusions. All works published in collaboration,
met with the personal participation of the author.

Testing of work:

The main results of the thesis were reported and discussed at the following international
conferences:

1.

International Conference of young scientist “High Technology Research and Application
2014” (HTRA 2014) held at Tomsk Polytechnic University Tomsk, Russia: March 26" -
28™, 2014.

Russian-German School of young scientists Conference “Biotechnology, Energy and
nanotechnology” Tomsk Polytechnic University Tomsk, Russia: May 20" -23", 2014,
International Conference on Physical Mesomechanics of Multilevel Systems 2014.
Tomsk, Russia: 3 -5 September, 2014.

International Congress on Energy Fluxes and Radiation Effects 2014. (EFRE-2014)
Tomsk, Russia: September 21 -26, 2014.

International Conference of young scientist “High Technology Research and Application
2015” (HTRA 2015) held at Tomsk Polytechnic University Tomsk, Russia: April 21 -24,
2015.

The structure and scope of the thesis: The thesis is composed of introduction and three
chapters, conclusion, appendix and bibliography. The work is described on page 114, including
37 figures and 01 table.



Chapter 1
Theory of thermal elastic diffusion

1.1. Definitions

In the mechanics we speak about behavior of bodies at the loading. To describe the
behavior of real bodies it is necessary to introduce some conditional concepts and definitions.

The linear theory of elasticity deals with problems in which deformations, displacements,
and rotations are small. In this case we determine the relations between stresses and strains.

Thermal elastic diffusion theory deals with the elastic body behavior when not
homogeneous fields of temperature and species concentrations exist.

Firstly it is necessary to introduce some definitions and postulate governing equations.

1.2.  Elasticity theory

Elasticity theory is based on two experimental laws: Hook and Poisson [3, 4] First law
speaks that strain linearly connects with stress when external load is applied to rod
oc=Ee¢, (1.1)

_I=lg
o .

where
&

is relative elongation of the rood; IO-is its initial length E; is proportional coefficient called as

elasticity modulus or Young modulus.
Besides the strain in the tension direc,tion,_tbs lateral strain &' exists, where
g =

bo

where by and D - are lateral size of the rod before and after deformation.

. . 4 . . .
Second law ascertains the relation between lateral ¢ and longitudinal ¢ strains. For
isotropic material the value ¢ is the same for all directions in the cross-section. If strain is

elastic and satisfies to Hook’s law (1.1), so the value € /& is constant:
g=—ve=-v E

(1.2)
This is Poison relation and the coefficient v is called as Poisson’s coefficient.
For three-dimensional case in arbitrarily coordinate system Hook’s law has the form
oij = 2ueij + A (1.3)

where 4 and # are Lame coefficients: % is Kronecker delta,
1Li=j;
5"' =|: . J
0, 1#],

I are stress tensor components; ! are small strain tensor components satisfying to Cauchy
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relations 1 [ ou; 5Uk j

ol ax T ox,
k i (14)
Ui are components of displacement vector, Xi are components of radius-vector.
The equations (1.3) and (1.4) are constitutive equations of thermal elasticity theory.
In Cartesian coordinate system,
X =XXp =Y, X3=2. U =Ug, Uy =Uy, Uz =U; o
and, instead (1.4), we have o éuy o
E = = & - — E = 72
XX OX | yy ay ’ z oz ’
ou ou
26, =26y =X+ Y=y, 2e,=2e,=t+ Y=y
Xy yX Xy yz zy yz
o X : o , (1.5)
ou, ou
2¢ 26y, =X 4L =
ZX Xz az 8)( X

Uy,u,,u : . . :
where ~ X’ 7Y’ 72 are the components of displacement vector in Cartesian coordinate system.

The Hook’s law takes the form
O-XX :2/U8XX +ﬂ,€kk O'yy = 2,U8yy +ﬂ’8kk
2z zzﬂgzz"'ﬂ‘gkk’ (1.6)
Oxy = ZIngy Oy = 2’“‘(")/2 O zx = 21E 75

Ekk =&11 T €2 +&33

The value is first invariant of strain tensor and describes the small

change of the volume of elastic body.
The Lame elastic constants 4 and # are connects with technical characteristics E and

V as VE _ E
C(@+v)i-2v)' T

where G is shear module.
Note that the following relatlon hold |[<5 6& (BA+2u)u y)

SAreu=s (A+u)

204+ u)

To describe the mechanical behavior of the elastic body we must add the above equations the

equilibrium equations for quasistagigxe(robg\(mg e
+ +X =0
OX oy 0oz
80'Xy+80'yy 0oy, LY =0
x oy : (L7
80')(2 aO'yz 86224-2:0
OX oy oz



XY, Z

where are the components of the volume forces in the % Y2 directions respectively.
For the dynamical problems the inertia forces are taken into account. In the general form
the motion equations have the form 2
V-o+ pF = 7[.1
(6] Yo o2
where U is the time, F is vector of volume forces with components X Y.z
For Cartesian coordinatg system we ha 2
83—¥X +r®wxy \ggxz + X :p8 Uy
OX oy 0z ot .
doy 00, 00 o%u
Xy L W, YLy = D 2y
2
aO'XZ+aO-yz+aGZZ Z:p8 u,
OX oy oz at®

In elasticity theory, it is assumed that temperature and body composition do not change.
1.3.  Thermal conductivity theory

Thermal conductivity theory studies the temperature field change in the bodies under
different thermal actions. In this case, it is assumed that the body is none deformed, and their
composition does not change.

Corresponding to Fourier law, heat flux is proportional to temperature gradient

q=—AVT, (1.10)
where T is thermal conductivity coefficient. In Cartesian coordinate system and for isotropic
body, we can write aT oT aT

ax T ox . ’ y T oy ; q; T
Using balance equation aT
co—=-V-Qq

ot

we come to thermal ¢gpductivity equatign P oT 6 oT
cp—-=V-(4V g (}“T ) A —— (/IT ]
ot ax\"Tax ) ey oy T oz

where C is heat capacity. It is parabolic differential equation. Here
V-...sdiv...; V..=grad...

If we take into consideration the generalized ther%al conductivity law [7]
g=-4VT -ty rl

(1.11)

we come to hyperbolic equation with finite relaxation time tR of heat flux



"ol T ) Ty Ty )T\ a

o°T oT 0 or 0 orT 0 oT

This equation is suitable for description of thermal problems for irreversible conditions.

1.4.  Thermal elasticity theory

The development of the theory of thermal stresses connects with the names of Duhamel
J.M.S [8], Neumann F.E. [9], Gatewood B.E. [10] of 1941 and Boley B. [11] of 1956. The first
papers of importance seem to be those of Duhamel J. M.S, published in Paris in 1.837, 1838, and
1856, and a paper by Neumann F. E, published in Berlin in 1841. With the passage of time, more
and more researchers became interested in thermal stresses. We should also need to mention the
work that appeared after the Second World War by J. Lighthill and J. Bradshaw [12] of 1949 on
thermal stresses in turbine blades, by S.S. Manson [13] of 1947 on gas turbine disks, and by J.
Aleck [14] of 1949 on thermal stresses in rectangular plates.

The phenomenon of thermal expansion is taken into account here. Compared to the
history of the theory of elasticity, which is traced to Robert Hooke and Edm’e Mariotte in the
seventeenth century or, even earlier, to Galileo Galilei in the 16th century, the history of
thermoelasticity and thermal stresses is much younger [8]. Thermal elasticity theory appearing is
connected in 19 Century with Duhamel (1837) and Neumann (1885). Thermal action on the body
leads to thermal strains appearing. In this case the additional term appears in the constitutive
equations (1.3). We have

o = 2ueij + S Ay —3Karr (T =Tp)] (1.12)
where @T is linear thermal expansion coefficient, 2K is the bulk modulus
K=4A+—u
3 .
New form of constitutive equations is accomé)pnled by new form t@}ance equation
Cep— = =-V-q- 3Ka TT A
ot o (1.13)

where © is the heat capacity at the constant strains.

Classical quasistatic thermo elasticity theory includes equilibrium equations (1.7),
balance equation (1.13), and constitutive equations (1.5), (1.10) and (1.12). Thermal conductivity

equation takes the form oT o¢

Generalized quasistatic thermo elasticity theory uses the generalized equation (1.11)

instead of (1.10) and cormies to t ermat-conductivi £q atlon
T +tRb 9{r+3K Tb{;j (4Va)

or

&

2
or tRﬂ 3K | T 00 a(T agkkj =V-(4VT)
o a2 at ol ot



Most of early works of thermal elasticity theory were devoted to static problems [15].
Integration of thermoelasticity equations was reduced to problems of action of body forces with
the potential of which density is the temperature of the body. Besides the development of the
theory, a number of specific problems were solved. We should mention the work of C.W.
Borchardt of 1873 on a solution in integral representation for a sphere acted upon by an
arbitrarily distributed temperature, by J. Hopkinson on thermal stresses in a sphere in 1874, by
A. Leon on a hollow cylinder in 1905, and by S. Timoshenko on bi-metallic strips in 1925.

Dynamical theories using motion equations (1.8) instead (1.7) study the wave phenomena
[16]. The theory of thermal elasticity is usually studying in two approaches: Coupled and
uncoupled thermal elasticity [17]. Although J.M.C. Duhamel presented equations of thermo
elasticity with coupling of field of deformation with field of temperature already in 1837, only
papers published 120 years later by M.A. Biot and M. Lessen in 1956 [18] and 1957 [19]
respectively, gave a new impulse to do research in this area. In classic thermo elasticity, a
problem of temperature was solved first, and then stresses were received from Duhamel-
Neumann equations.

Generalized theory appears when H. Lord and Y. Shulman [20] postulates new thermal
conductivity law in mechanics (1.11) instead of classical Fourier Law. Numerous problems of
generalized thermal elasticity theory with finite time of heat flux relaxation were described in
[21-23].

1.5.  Thermodynamical basis for thermal elasticity theory

Based on thermodynamical theory of potentials, we can give thermodynamical definitions
for elastic and thermal physical properties and ascertain thermodynamical constitutive equations
[5-7].

Internal energy U is basic thermodynamical potential. It depends on entropy and volume,

U :U(S’V). The first and second laws of thermodynamics together lead to Gibbs equation
where (au j (au j

| =T — | =-p

oS )y .\ 0OV Jg

Using other thermodynamical potentials

F=U-TS . free energy (Helmholtz energy);
G=U-TS +PV Gibbs energy;

H=U~+DV _enthalpy (heat content),

we can write Gibbs equation in different forms.
dF =—SdT — pdV dG=-SdT +Vdp dH =TdS +Vdp (1.15)

where P is the pressure.

The laws of classical thermodynamic cannot establish why irreversible processes occur
and why all real processes are irreversible.
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To describe irreversible processes (deformation and diffusion etc.) there are different
ways in thermodynamics and in continua mechanics. The choice of the description way depends
on the phenomena under study.

If we know one of thermodynamical potentials, we can use the properties of potential
functions and can find all thermodynamical properties of the system.

For deformable medium instead of (1.14) and (1.15) we have

dU =TdS + p~ audgIJ dF =-SdT + p~ audgIJ (1.16)

dGZ—SdT—p gijdo-ij dH =TdS—p gijdo_ij_

In this case, all thermodynamical variables are the functions of the spatial coordinates and the
time.
According to thermodynamécal d(egntl(ﬂ:\ the{nﬁ@&ipamty at the constant pressure is
oT

where R, is the heat supplied to the thermodynamical system. By analogy, for deformable

media, we can write oS
c, T( j
oT

Because we have from Gibbs equatslons ( an
oT

we obtain 2
Cp =T — oG
oT?

It is the heat capacity at the constant stresses.
Similarly to previous we shall fin(c:zl the hl_efgéq;pjcity for constant strains

| ot

Thermodynamical state equations in differential forms also follow from theory of

thermodynamical potentials.
Y P F=F(T.&)

Really, from Gibbs equation for Helmholtz energy, we have . Hence
S:S(T,gij)and Gij :O-ij(T’gH) “Th a\él can wWr t%s
oT . 85,1
T ; (1.17)
80“- 80,
dO'ijZ oT dT + P d8k|
¢ ot (1.18)

Some derivatives in these equalities are known for us.
First equation contains the heat capacity

11



oS
Cc. =|
A(3),

Second equations give th? Cﬁenirralif@b]ln][jok’s law, if T =const

Oij dey = Cijdey

&kt , (1.19)

where i is tensor of elastic modulus. Fir isotropic medium and small strain, the equation (1.3)

is obtained from (1.19).
Other derivativey d@cilibe tHe Knc V@cho s effe cmﬁﬁﬁﬁn with interrelation between
temperature and strain figls; T Ogi \ T ), ; Ogij \ T

&)
00
1 AT
=—p ( ”J =p By =, Ciuan,
&

oT

where %Kl s tensor of thermal expansion coefficients.

For isotropic medium and small strains we shall obtain from (1.18) the Dugamel relations (1.12).
In general case, we have in differential form .
dojj =Cjpqdeg — £ dT .

a5 (1.20)
ds=pialde; +—£dT
s=p fi glj+-|- .

(1.21)

These are thermodynamical irreversible state equations in differential form.
In first equality, the summation goes with indexes k and I. In second one, summation goes with
indexes i and j.

1.6.  Theory of multi component diffusion

As a rule, multi component diffusion in solid bodied has been studied for isothermal
conditions and without stresses and strains. And strain — stressed state has been analyzed without
taking into account the composition change.

When we have simple body which contains the admixture of one kind, or this admixture
enters in the body from environment, only one diffusion equation for one species is necessary to
describe this process.

According to Fick law, the diffusion flux of species is proportional to concentration
gradient

J=-pDVC (1.22)
where C is species concentration, D is diffusion coefficient.
Balance equation
p%f =-V-J

together with (1.22) gives the diffusion equation

12



pc:f V- (pDVC)

For 2 =C0NSt and immobile medégm we obtain

-v-(DvC
-V )

In Cartesian coordipgte sygttn[w) Tor Is rog@ Ted@u \5/@ jave
ot ox

This is similar to usual thermal conductivity equation

For multi component body, the gener d Fick law takes a place
JJ =— DJkVCk

k=1

where P are partial diffusion coefficients,
e
k=1 , (1.23)

because the definitions are assumed:
M=M;+M,+...+ M,

Is the mass of the systerﬂ/(boqk){)l”r M,+..+M,
D=

=PIt Pyt Py = D P

Vo Vv s
is density of the system (body), M,
Pk =,
Vo (1.24)
are partial densities of species (compone(r:ns), Pk
k="~
P - (1.25)

are the mass concentrations of species.
For particular problems in the cbgmiﬁr&é@&diffusion theory, molar concentrations are

d:
use Z pi/m
i=1

(1.27)

where M are molar masses of species.

Nowadays, theory of multi component diffusion has thermodynamical basis and used for
numerous applications [24-27].

However, these laws are simplified laws that does not take into consideration the mutual
interaction between the introduced substance and the medium into which it is introduced or the
13



effect of the temperature on this interaction. Thermal diffusion utilizes the transfer of heat across
a thin liquid or gas to accomplish isotope separation. There is a certain degree of coupling with
temperature and temperature gradients as temperature speeds up the diffusion process. The
thermo diffusion in elastic solids is due to coupling of fields of temperature, mass diffusion and
that of strain in addition to heat and mass exchange with the environment. Due to these cross
effects the thermal excitation results in an additional mass concentration, this generates the
additional temperature field. The diffusion kinetics is described by a parabolic equations under
corresponding initial and boundary conditions. The thermal stress field is caused by non-uniform
distribution of temperature.

1.7. Thermal elastic diffusion

Thermoelastic diffusion involves the coupling of the fields of temperature, mass diffusion
and strain. It has a wide range of applications in geophysics and industries. In particular,
diffusion is used to form the base and emitter in bipolar transistors, form integrated resistors,
form the source regions in Metal oxide semiconductors transistors and dope poly silicon gates in
Metal oxide semiconductors transistors. Using the coupled thermoelastic model, Nowacki [28-

30] developed the theory of thermoelastic diffusion. In this ﬁheory the relations
O'ij = Z,u&‘” +5ij ﬂ’gkk — Kw (128)

where

w=3[ar (T -To)+ac(C-Cy)] (1.29)

are used. New coefficient *C is called concentration expansion coefficient. The fluxes of the

heat and mass satisfy to Fourier and Fick laws.
If we use (1.28), (1.%%Land (1.5), we come from (1.8) to equations
p— =(A+u)VV-u+uAu—3K(ar VT +acVC)+ oF
ot (1.30)
These are the motion equation or Lame equation in thermal elastic diffusion.
Classical theory deals with equation (1.30) and parabolic equations thermal conductivity
and diffusion. The theories based on therm(‘)]dynaIanlivcs use the equation
=-b'Vg
instead (1.22). The species flux is proportional to gradient of chemical potential corresponding to
this component. The relation g
3= _LVU

IS more correct.

When the composition change and temperature gradient presents, we should speak about
the thermodynamical system, state of which and internal energy depends not only entropy, but
on concentration. Hence, in this case (in the literalized theory) we have three types of thermal
state equations [31, 32].

PToS = pC. O+ LrToer + TpaC

oij = 2wij +5ij [/Lﬁ'kk —(ﬂT®+bCC)] (1.31)
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P=-a0-fce+ AC

where P is difference between chemical potentials of admixture and basic material for unit of

mass (P = P92 - 91), a=3521P s difference between their partial entropies;
pr =3Kay . fo=3Kag . ©=T Ty

Different theories (coupling and no coupling) admit the infinite propagation velocity for
thermal and concentration waves [33].

Sherief end etc. [34] develops the theory of generalized thermal elastic diffusion with
finite velocity of thermal and diffusion waves. However there are numerous inaccuracies in this
and other papers. Furthermore, the linearization for the equations is not justifying.

Based on irreversible thermodynamics [35] we can derive the constitutive equation
containing known theories [5,6] necessary for the following investigations.

Really [36], for two-component body, internal energy depends on entropy, strains and
concentrations 1 and CZ, and free energy F depends on temperature, , strains and

concentrations:
F=F(T,&.C.C,)

dF =-SdT + pildijdgij + gldc_l_ + gZdCZ

Hence, entropy S, stresses i and chemical potentials 91 and 92 (they are partial Gibbs

energies, C=Co+ gZC2) depend on the same thermodynamical variables. Therefore, we can

write T
ds = C_i_ng + Pi

dgij + Sldcl + SZdCZ
el

doyj =—4; dT +Cijydeg — B;7dC, - B;°dC, ’
dg, = -s,dT - B;'p dey + BdC, + p3dC,
dg, = —s,dT — f3; Zpildgij + BLdC, +,322dC2.

We have 9 (6FJ 9 (aF j
1= 2~ 2= A~
oGy T.&C,. 0oC, T.&,C .

ﬁg:(agl] ( 629] [ 629] _
0Co Jrpc, \0C20C ). |GG, )

Because 1 1tC2=1 \ve obtain 5T
ij

ds = Cing + 7d8ij + (52 - Sl)dCZ
T p

(1.32)

doyj =—4;" dT +Cjj dey _(/Bijz —ﬁijl)dcz
d(g2 —91)=—(5, — 51 )dT - (ﬁ'ij2 —ﬂijl)/fldgij + (ﬁzz - B )dC2 _
Now it is convenient to use the above designations (1.31) for isotropic body
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pdS = p_(l_:ng +ﬁngkk +adC

do—ij = Z/Jdé'ij +5ij [ﬁdé‘kk —(ﬂT dT +ﬁCdC)]
dP =-adT _ﬂcdgkk + ﬁdC

, (1.33)

Generalized Fourier and Fick laws in extended thermodynamics [37] for multi component
system can be presented in the form n dJ
_ q
Jg=LogXr + D LgXi +1g o
k=1

(R

n
‘Jk = quXq +Zijxj +tk qt

j=1

where VT 1
Xq =12 Xk =[Fk —(ng)T]?

are the generalized thermodynamical forces, P are the part of external mass force acting to the

component with number k; Laar Lok = bar b = Gk _ are the phenomenological coefficients;
Jg=0- ) Hid
k=1

4 - is heat flux for simple body.

Using (1.32) we can present the fluxes formulae in the form suitable for the following
investigation [38, 39].

Based on [39], we shall obtain now the equations for the fluxes containing cross-effects
known in literature. Note that the description of cross effects (Sore and Dufour effects, for
example, and diffusion under pressure gradient action) should be made step-by step, because the
simple summation of the phenomena known from experiment leads sometimes to the appearing
of superfluous independent coefficients or to loss of important terms.

Let we have two species. In two-component system [39]
C1+C2 =1. J1+J2 :O.

Then we have only two formulae dJ;
Jp = Lyg (Xg = Xz)+LygXq +tw dt
a3,
Jg =Lau(Xg = X3)+LggXq +1tr a
where VT 1 1
Xq =2 Xa= [Fl—(Vgl)T]?_ X, =[F, —(ng)r]?
Hence L. VT dJ
Ji= %(Fl —F + (Vg2 )y = (Vo )- Lig TTHM (Ttl
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] AN
0= MR- Fo+ (Va2)y ~(Var) ) Lag 2R (1.34)

J

Gibbs ence;rglgs(Targ trclte funjtlons of temperature, concentration and stress tensor components,
because ~ -\ "~1~2:90) gnd 9192 are partial Gibbs energles Then we can write [39]

le)‘r =—p auvau +ﬂ1 VG + 5, vCZ
(Voo ) =—p Vol + B*VC + B, VCz

where B _(@Jk j _ RTgy
i = an = .
oC. kak k _ pi

1T oy and i =5 (1.35)

9% _are thermodynamical factors, dependlngton é}}? composmon and structure,

O =0k +
) Cy ol ck (1.36)

Vi are activity coefficients, Mk are molar masses of species.
Taking into account the relation VCI:_VCZ,We shall find the thermodynamical
diffusion force: at

Xp=|F-F+ up ”V i (ﬁl ~po-pf+ ﬂZ)vcl

(1.37)

Thermodynamical force conjugate to the heat flux does not change. )

For isotropic medium, tensor of concentration expansion coefficients " has a simple

form y
a.

ij =%

Because the coefficients ﬂ ) are symmetrltézi2 we shall find

_ 921
mC;  m,yC,

C,0nC, C,alhC

Hence, —a,

RT 1
Xp :{F1 F, + & Vo e mlClx[gll_zng + r:‘;glz gZZ]Vcl}T

(1.38)

In the particular case of ideal solution (this approximation works well for small concentrations of
admixtures), we can assume

911=02 =1L 01p=02=0
Corresponding to diffusion theory [40, 41], phenomenological coefficient La1 s
determined through self-diffusion coefficient:
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0
L. = pD;m Gy
11=— 5 —

R (1.39)
Comparing the formulae for the heat [Iqléx with experimental Fourier law, we obtain
T2
The rOX|mat| ofjideal solutiggrw) sh
eI AP e digea ple a6 VG, |+ Ly YTty 921,
RT £ mlcl m2C2 dt

L _ dJ
Jg= R -F+ A" %2vsf - RT (14 MG \ge, |- 4 vT 414 o0
T P m1C1 m2C2 dt

We introduce the designation for tranE)f@r coefficient under stress action

11 1
B =gy @@ 2). (1.40)

This coefficient is derivative from other parameters.
Diffusion coefficient in the approximgl[cl)n %{@eia} solution is:
+

1= Y11

M2C2 (1.41)

Coefficient Lig IS assumed usuaIIyLas [42]

T 2 ClDTp
where Dr is thermal diffusion coefficient. Sometimes, the Sore coefficient is a more suitable for
applications (it is measured in K%) Dy

Sy =T
T D1

Hence, )
Ly =T°CiDrp =T?C,DiSrp

As a result, we obtain the formulae

0
3y =-pDVC, + BCV ot ~CiDyS; pvT + PPUMCL(E g B
RT dt | (1.42)
* dJ
Jq =-—A4VT -DQ VC, +C, DTSt [(Oll -y )Vo-lfk + ,O(F -F )]+ tg dtq 43
where N 2
Ql _ pRT ST (1+ m1C1 j
m m,C,

is the transfer heat (J/kg).
If we have non ideal solutions, the form of the equations does not change. However, some
concentration function appears in the coefficients [43]:

18



«  pRT?

St f(C
D1:D101f(C1); o mo ( 1)1
m,C
f(Cy)=0y1 — 201 + — 2~
(C1)= 011201 mz(l_cl)gzzl

We see that, only three from six transfer coefficients are independent.

No all physical effects are taken into account in modern theories of thermal elastic diffusion.

We mark, that non classical theories known as generalized thermo elasticity were
introduced into the literature in an attempt to eliminate the shortcomings of the classical
dynamical thermo elasticity [44, 18]. The problem of half space subjected of thermal shock,
known as the theory of uncoupled thermo elasticity. In this theory, the temperature is governed
by a parabolic partial differential equation that does not contain any elastic terms, unlike the
conventional thermo elasticity theory [18], based on a parabolic heat equation, which predicts an
infinite speed for the propagation of heat, generalized and modified into various thermo elastic
models based on hyperbolic thermo elasticity [45]. These theories, referred to as generalized
thermo elasticity, were introduced in the literature in an attempt to eliminate the shortcomings of
the classical dynamical thermo elasticity. For example, Lord and Shulman [20], incorporated a
flux rate term into Fourier’s law of heat conduction and formulated a generalized theory
involving a hyperbolic heat transport equation, admitting finite speed for thermal signals.

Lately, Sherief and Saleh [32] investigated the problem of a thermo elastic half space in
the context of the theory of generalized thermo elastic diffusion with one relaxation time. Singh
discussed the reflection phenomena of waves from free surface of a thermo elastic diffusion
elastic solid with one relaxation time in [46] and with two relaxation times in [47]. It does not
violate Fourier's law of heat conduction when the body under consideration has a centre of
symmetry, and it is valid for both isotropic and anisotropic bodies. Aouadi studied in [48] the
generalized thermo elastic diffusion problem with variable electrical and thermal conductivity.
Aouadi [49] also studied the interaction between the processes of elasticity, heat and diffusion in
an infinitely long solid cylinder [50] and in an infinite elastic body with spherical cavity.
Uniqueness and reciprocity theorems for the equations of generalized thermo elastic diffusion
problem, in isotropic media, was proved by Sherief et al. [44] on the basis of the variation
principle equations, under restrictive assumptions on the elastic coefficients. Due to the inherit
complexity of the derivation of the variational principle equations, and by Aouadi [51] proved
this theorem in the Laplace transform domain, under the assumption that the functions of the
problem are continuous and the inverse Laplace transform of each is also unique. Aouadi [52]
derived the uniqueness and reciprocity theorems for the generalized problem in anisotropic
media, under the restriction that the elastic, thermal conductivity and diffusion tensors are
positive definite. For the coupled problem, the existence of a generalized, regular and unique
solution has been proved by Aouadi [53] by means of some results of semigroup of linear
operator’s theory. Recently, Aouadi derived the general equations of motion and constitutive
equations of the linear micro polar thermo elastic diffusion theory in both classic [54] and
generalized [55] context, with uniqueness and existence theorems. lesan [56, 57] has developed a
linear theory of thermoelastic materials with voids. Aouadi [53, 55] has extended the
thermoelastic theory with voids to include diffusion effects.
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Elhagary [58] has discussed the one dimensional problem of generalized thermo elastic
diffusion for a long hollow cylinder. Aouadi [50] studied the one dimensional problem of
generalized thermo elastic diffusion for an infinitely long solid cylinder. Recently, Tripathi et al
[59] discussed a two dimensional dynamic problem of generalized thermo elasticity in Lord-
Shulman theory for a thick circular cylinder with hear sources. The work of Aouadi [50] is
extended by [60] considering a two-dimensional generalized thermo elastic diffusion problem in
a thick circular plate of infinite extent and finite length subjected to an axisymmetric heat supply
with one relaxation parameter and discussed the effects of thermo elastic diffusion. The classical
couple thermo elasticity is recovered as a special case. This is a new and novel contribution to
the field.

Serious attention has been paid to the generalized thermo elasticity theories in solving
thermo elastic problems in place of the classical uncoupled/coupled theory of thermo elasticity.

At present mainly two different models of generalized thermo elasticity are being
extensively used one proposed by Lord and Shulman [20] and the other proposed by Green and
Lindsay [61]. Lord and Shulman theory suggests one relaxation time and according to this
theory, only Fourier’s heat conduction equation is modified; while Green and Lindsay theory
suggests two relaxation times and both the energy equation and the equation of motion are
modified.

In this work we generalize the thermal elastic diffusion for constant temperature to the
body with chemical reactions.

1.8.  Body with chemical reactions

In multi component body, the chemical reactions happen. It could be taken into account
in the equations used for the description of applied problems.

Theory of kinetics of chemical reactions for homogeneous media is very well developed.
For moving gas and liquid phases we can use the known theories without special restrictions.

Above we introduce two types of concentrations: mass concentration Ci (1.25) and

relative molar concentrations Yk (1.27). The values Pic/ M determine the number of mole of k-

components in the unite volume: 0= P
k M,
and M
Nk = 7k
My _

is the number of moles in the vgz;wn'élwﬁ/: nMi/mi _ nCi /m;
Then additionally to (1.27) we can write Z M Z
k /M Cy /My
k=1 k=1

where
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n n

N:ZNi Zy,—l

i=1 and i=1

The change of the i-particles number in the reaction j follows from the equality [62]
djni =Vijq)jdt’
where ®j . is the j-reaction rate, mol/(m3sec), "ii are stoichiometric coefficients for i —

component in j- reaction. We can find the reaction rate through the concentration change of any
component and introduceq;[he_nel/v dahjes: 1 djn, 1 djny dS;
J_Vlj dt _V2j dt _'”_Vij dt - dt

where g is the reaction coordinate, [gijzmollm? It can be called as conversion degree for the
reaction. So, for any ', we have dn

d§j:L

Vij

These values are state variables together with the temperature, pressure or together with
temperature and volume, and etc. If ris number of the reactions, so change of the i-component

in all reactions is (in the unlt volu
djn = V,Jcp idt = Zv,jdgj

Gibbs equation for internal energy N
gu Tds+ p~ O'Udgu Z 0, dCy

gi\/es dS 1 dU O-ij dgij _ & dci:—zgi
dt T dt T dt @ T
Hence, for closed thglgnodym yﬁ , UE; havg dcfJ 1w
= Ad;
Pt T V”dtT Jdt TJZ;JJ (40
= , 1.44
where n
Aj ——Z gim;vij
i=1 _ (1.45)

is chemical affinity for j-reaction.
Hence, entropy production due to chemlcal %@qm]s
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Corresponding to irreversible thermodynamics, the rate of chemical reaction is generalized flux,
and chemical affinity is generalized force conjuﬁ to rg%ction rate. Then Onsager theory gives
i =Pi= im T
m=1

Chemical affinity is the function of composition and thermodynamical parameters determining
the state of the system.

At the practical description of concentration change in chemical reactions various authors
use experimental laws, however thermodynamics give some restrictions for the reactions [42,
43].

If only one reaction goes in the s%m, we cgn write its equation in the form
VM =

k=1 . (1.46)

Mass concentrations of species change dqu@i the Kkinetical equations or balance equations:

P '=w
dt (1.47)
dci Z—V'Ji + wj;
dt : (1.48)

where @ =ViMi®  \ith [a}']:Kg/(m3sec); [@]=mol /X‘jgsec);

@
os=1 Iy

where k=L , [Al= Jimol; loc]= JIkg; [GS]:J /(K m3sec).
For example for closed system, we have
X+Y =227,
then dny dny, dn,
-1 -1 2
and

A=—[myvy gy +My1y Oy +Mzv; 07 |=my gy +my gy —2m, gy _

Entropy production in the reaction is:
dS; = ogdt = ?[mx Oy +My gy —2mzg; Jd& >0

Gibbs energy in the reaction
Gxyz =Mx9x +My Gy —2mMz0z _
is the function of the composition and conditions.

If Cxvz >0, 59 ¢ grows, and the reaction goes in the forward direction.

If Gxvz <0, 50 & diminishes.
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If concentrations, temperature or stresses field are not uniform, the reaction rate depend
on transfer processes.
It is necessary to refine this theory for solid substances and for irreversible conditions.

Conclusion

Elasticity is an elegant and fascinating subject that deals with determination of the stress,
strain, and displacement distribution in an elastic solid under the influence of external forces.
Hooks and Poisson laws play a significant role in the theory of elasticity, based on these two
experimental laws, which speak about the stresses, strain and the relation between them. In
general the hooks law and the Cauchy relation are the theory of thermal elasticity.

The theory of thermal elasticity is usually studying in two approaches: Coupled and
uncoupled thermal elasticity. Coupled problem of thermal elasticity take into account the time
rate of change of the first invariant of the strain tensor in the first law of thermodynamics causing
the dependence between the temperature and strain fields, and thus creating the coupling
between elastic and thermal fields. The uncoupled thermal elasticity approach is characterized by
absence of the coupling term in the equation of heat conductivity. Using the coupled thermal
elastic model, Nowacki developed the theory of thermal elastic diffusion. Sherief et al.
introduced the theory of thermoelastic diffusion in the framework of Lord-Shulman theory by
introducing thermal relaxation time parameter and diffusion relaxation parameters governing the
field equations. Many researchers studied various types of problems in thermoelastic diffusion.

Serious attention has been paid to the generalized thermo elasticity theories in solving
thermo elastic problems in place of the classical uncoupled/coupled theory of thermo elasticity.

In our work we generalize the thermal elastic diffusion for constant temperature to the
body with chemical reactions. Theory of kinetics of chemical reactions for homogeneous media
is very well developed. We have introduced two types of concentrations: mass concentration and
relative molar concentrations.
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Chapter 2

Thermal elastic diffusion theory for the multicomponent body
with chemical reactions

2.1.  Physical phenomena

lon implantation technique initially developed for microelectronic applications. This is a
process in which ions are accelerated in the material and the electric field effect in the rigid
body. The technique dates back to the 1940’s when it was developed at Oak Ridge National
Laboratory as part of the Manhattan Project.2 Since then the technique has found a variety of
applications in materials processing. In the 1970’s the use of ion implantation to modify the
electrical properties of semiconductors, metals, insulators and ceramics became extremely
popular. Usually, the Monte Carlo and molecular dynamics methods are used for particle
redistribution during plasma treatment or ion implantation. This process is used to alter the
physical, chemical or electrical properties of the solid. lon implantation is used in the
manufacture of semiconductor devices and iron finishes and even for different applications in
materials science studies. The method allows to obtain a very large range of concentrations

. 14 . 22/, 3 :
ranging from less than 10" to some amount of time 10 fem® The process can be carried out at

any temperature. Different regions of semiconductor devices conduct via electrons or positive
holes, with the dominant conducting species being termed the majority carrier and the lesser the
minority carrier. In order to make a region of a semiconductor electron or hole rich, impurity
atoms have to be introduced into the semiconductor lattice. These impurities can either donate
electrons (e.g., arsenic (As), phosphorous (P), or antimony (Sb) in silicon (Si)) or accept
electrons and thereby create positive holes (e.g., boron (B) in silicon (Si)). These impurity atoms
are called dopants.

lon implantation is a low-temperature technique for the introduction of impurities
(dopants) into semiconductors and offers more flexibility than diffusion. For example, in MOS
transistors, ion implantation can be used to accurately adjust the threshold voltage. In ion
implantation, dopant atoms are volatilized, ionized, accelerated, separated by the mass-to-charge
ratios, and directed at a target that is typically a silicon substrate. The atoms enter the crystal
lattice, collide with the host atoms, lose energy, and finally come to rest at some depth within the
solid. The average penetration depth is determined by the dopant, substrate materials, and
acceleration energy. lon implantation energies range from several hundred to several million
electron volts, resulting in ion distributions with average depths from <10 nm to 104 poses

11 2 18 2
range from 10 atoms/em? g0 threshold adjustment to 10 atoms/em® g0 pyried dielectric

formation. lon implantation represents a particularly useful means by which to modify the
surface properties of a variety of materials. This prosaic statement, however, does not convey the
depth of basic understanding which has been developed to fully utilize the advantages of ion
implantation. The interaction of a host lattice with the energetic beams produces metastable
states and structures which cannot be achieved by other means. However, ion implantation also
requires an understanding of the fundamental physics and chemistry that dictate the interaction
of the ion beam and the target. In addition to the fundamental nature of the process, ion

24



implantation is important to a wide variety of technologies. While ion implantation has indeed
become a technologically important processing component of the semiconductor fabrication and
other industries, new developments demonstrate that ion implantation is an important tool for
basic research and for future applications, with nanoclustered materials as an intriguing example.

lon implantation allows low temperature forming of any thermodynamically stable or
metastable Matrix-impurity combination that can be annealed in a wide range of temperatures in
the movement afterward implantation thermal treatments. As a consequence, this method offers
the perfect tool to study phase transformations and atomic transport in solids. Incoming ion
piercing into a solid goal, losing their own energy with the support of two independent
processes: inelastic collisions with the target electrons and elastic collisions with nuclei of the
target [62-65]. First leads to ionized states, which in alloys rapidly target electrons recombine. In
most cases, when the target material alloy (withdrawal compose only irradiation spectrum GeV
energy) inelastic collisions lead only to the target heating .Elastic collisions between ions and
target nuclei may lead to the highest accomplishment hundred keV energy is transmitted, that is,
the main exceeding the binding energy of atoms in rigid bodies. These actions lead to collision
cascades. Thorough description of the evolution of collision cascades allowed collision may be
finding in numerous review articles [63-66].

lon implantation also allows the reaction between two different atomic species implanted
in the inert matrix. Pattern such experiment is described in [67]. The Previous research works for
application of ion implantation in the transformation of the surface [65, 66] and were divided
into two groups. Most studies of heavy ion implantation are focused on studying the effects of
radiation damage or intense ion beams solid interactions. On the other hand, the light element of
the ion implantation may well be advantageous to modify the physical structure of the materials
near the surface. Being from excessive damage solids free, easy element of physical modification
is effective in curing and strengthening solid through ion implantation.

Using implantation to advance processing for a variety of device structures is also
becoming more important. lon beams are used to modify optical properties of dielectric materials
to fabricate optical waveguides, other related photonic devices, and novel crystal hosts. Focused
ion beams represent another means to produce three-dimensional structures, including those for
piezoelectric nanostructures. Likewise the formation of plasmonic nanocomposites using
metallic species to form core-shell geometries can be controlled through implantation. In
particular, the ion implantation can be used as a simulator to investigate the role of alloying
elements or species in the design of coatings, various studies have been reported in the surface
modification of the films of metal and clay coatings.

One of the major advantage of ion implantation is the fact that almost all of the process
parameters (concentration of contaminants, the temperature, the types of atoms, the defect
concentration, etc.) can be controlled independently. Thus, it is possible to study in detail the role
of a particular parameter, keeping all other factors constant. This, along with the ability to
modify the characteristics of the process in an extremely wide spectrum, makes ion implantation
powerful machine in the formation phase and nuclear studies of movement [68]. Nitrogen
implanted iron is one of the most well-studied systems in ion implantation metallurgy [69-72].

Detailed phase diagram of nitrogen implanted iron was published in [73].
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The remixing of the particles in molecular level, we could use for chemical conversion
description the traditional laws of chemical kinetics and diffusion kinetic models. Examples of
enough complex similar models one can find in [68].

It is a powerful technique to introduce desired impurities irrespective of chemical and
other limitations in and near the surface region of any substrate. It has both accelerator and
plasma versions. The latter is cheaper and thus friendly for industry. lon implantation service is
available for partners from industry and can be used for basic and applied research to modify
surface-sensitive properties like adhesion, wear, roughness, hardness, corrosion of metal or other
materials.

lon implantation is used in a number of applications, namely,

+ Semiconductor doping,

* Synthesis of compound layers,

» Materials modification,

* Understanding the effects of radiation on living tissue.

» Low-temp. Process (can use photoresist as mask)

» Wide selection of masking materials e.g. photoresist, oxide, poly-Si, metal
* Less sensitive to surface cleaning procedures

lon-implantation represents one method to modify materials, the range of implant
conditions provides for some very creative approaches. The ability to optimize the properties of
silicon nanoclusters in SiO2 through implantation using a combination of properly chosen
annealing and irradiation conditions shows promise. Modification of phase change materials,
crystallization rates and phase stability, for example with readily and controllably achieved
through implantation of nitrogen or oxygen. Implantation of low energy nitrogen in GaAs also
modifies the surface to produce quantum dot structures, alloyed semiconductors or GaN
structures, depending on the conditions. Implantation into Ill-nitrides and ZnO to modify
electrical properties has important technological applications as well as the study of interesting
physical interactions in these systems.

Alumina, one of the most widely used wear, heat and electrical resistant materials, has a
high hardness and excellent chemical stability even at high temperatures. At high contact stresses
significant amounts of cracking can occur around scratches in brittle materials. Surface
modification by energetic particles leads to surface damage, even though a new functional layer
is generated on the materials with improved physical and chemical properties, such as adhesion,
surface hardness, corrosion resistance and wear resistance. Implantation-induced changes in the
surface charge state may also affect the adhesion of lubricant molecules. An increase of
mechanical strength by high energy ion implantation has been attributed to compressive surface
residual stress upon volume expansion in the implanted region by introduction of defects. For
example the ion implantation of an AI203 surface leads to significant modifications of
mechanical properties such as hardness, fracture toughness and friction. The properties are very
sensitive to the presence of ion species induced by implantation and to modification of the
surface composition. The implantation reaction produces Al, AIN or AION with nitrogen
whereas carbon film, Al, Al4C3 or Al404C are obtained with carbon, which lead to different
physical properties of the resulting samples. The possibility of forming solid-lubricant films, new
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self-lubricating ceramic-matrix composites, or other reaction layers using ion implantation at low
temperatures.

The field of ion implantation is not static. Improvements in equipment, understanding of
beam-solid interactions, applications to new materials, and the recent developments to use
implantation for nanostructure formation point to new directions for ion implantation.

2.2.  General equations

To describe the new phase formation during ion implantation we use isothermal theory of

thermal elastic diffusion. It includes the following equations:

Balance equation:
M _ oy

—kiYs ;
ot OX 11
3 ok i — _

Where Y1(mol/m®) 4 olar concentration, Kt =YiK 1=12.3= ic the rate constant for chemical
reaction and V1 =V2=V3=1,

Generalized diffusion flux equation:

Ji :_Di ai_ti %; i :1,2
OX ot

Where Ji (mol /m°sec) D, (m?/sec)

is the 1— substance flux, G is the relaxation time,

is the diffusion coefficients.
Balance equation for concentration: oY,

—==-V-Ji+w ;
P 1ty
Y,
—£=-V-Jr,+w ;
ot 2ty
Where r

Wy = szi(ﬂi

i=1

Vki

i _ ith chemical reaction rate - stochiometric coefficient of K -component in t-th reaction;

I — number of reactions.

Diffusion fluxes:

Ji=- i%_ti%, =1,2
OX ot
where G are the relaxation times, Di are diffusion coefficients of elements in the mixture,
(mzlsec)
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2.3.  General Problem formulation

When particle beam acts on the material surface, and the particle rate is uniform along it,
we can restrict the particles redistribution by one-dimensional problem (Fig.1). The form of
impulse can be various (Fig.2). When the chemical reaction is possible in the surface layer, the
particles (atoms, ions) are consume for new phase formation.
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Fig.2.1.1llustration to problem formulation Fig.2.2.Various form of impulses

2.4 Qualitative results
2.4.1. Simple problem without chemical reaction

We can come to irreversible process description step by step starting from simple
problems. When particle beam acts on the material surface, chemical reactions are absent, and
the particle rate is uniform along it. The simple and known problem without chemical reaction is
stated as

The diffusion equation has the form

ox? 2.1)

With boundary and initial condition

x=0; JA=—DA6(;/)? Om

X—00:Ja=0

t—>0:ya=0,

where YA is molar concentration of the particles, U is the time, X is the space coordinate in the

Da

direction of particle beam action, - is diffusion coefficient, Im - is particle beam density.

The analytical solution of the known problem can be found by using any integral
transform methods and has the form (it is cantained in many reference books):

Om |1
2
\feXp 4Dt \f 2\/DAt}

(2.2)
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That is the particle concentration distribution along the coordinate perpendicular to
treated surface is monotonic singularity-free function. It is shown on the Fig.3.

_ 2 _10-7
Concentration YA changes in the point X=0 as \ﬁ. Om =1.5 moI/(m S); D =10
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Fig 2.3
2.4.2. Simple problem with chemical reaction

When the chemical reaction is possible in surface layer [74], the particles are consume for

new phase formation. Assume the chemical reaction occurs by the simplest scheme
A+B—>C.

where the letter B correspond to the substance contained in initial specimen, C — to the reaction
product.

The additional term appears in this case in diffusion equation, and we come to the second
simple problem.
VA 0°ya
“A=D —kpy
ot A2 AYA 2.3)

0
x=o:JA=—DA%=qm

X—00: Jp=0,

t—>0:ya=0,

The exact solution of (2.3) can be calculated by Laplace transformation method and has
the form:
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Om I(A X
=———10_ lexp| —X [ lerfg ———— . /Kt [—
I ZX/DAkA{ p( \DAJ C(Z/DAt \/T]

-ouf 5 o | @4

The formula (2.2) is limit of this solution for Ka—0

Because the entered particles are consumed for new phase formation, the diffusion concentration
decreases in the volume. The prodggy‘(t: concentration changes by equation

W:a)c , ac =KeYa (2.5)

For simple reaction of first order we can evaluate the product concentration. Using
Laplace integral transform method, we shall find

)

—exp(x\/?}j(t r)erf({ o xkAr]olr

The reagent and product concentrations behavior with time is shown on the Fig.(2.4, a, b)
in the point X=0. Since the substance A is consumed for new phase formation, the reagent
concentration grows slowly.

(2.6)
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Fig.2.4. The dynamics of concentration change. Gm
_ 103
ke =ka=10%1/s: (b solid line - YA: dotted line Y .

For the analytical solution of the known problem 5yassume that
JA—_DA =0y F (1)

We have (2.3)
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Taking Laplace transformation

That is
t —S, YA(t)—>YA(S)

And using the Initial condition, we get 5y

A 55y,
ot A
Put these values and simplifying (2.3), we get d2v,
Or dZYA_ S+kA YA:O
dX2 DA

_ cpX .
Let YA=CE™" e the solution , then stk
APce™ — (DAJce“ =0

Or
P S+kp

So the solution is of the form
Ya =A™+ Aje ™™ 27)
Where Atand 2 are constant to be determined
So for X=0 oY s
InZ TN here JA=n (1)

f(t)=e 503, =qpf(t)=0ne™

od p _At
“A__pq.e
ot Om

Let

Na
A OX
A __p oYa

e —— - A
Om A ox

‘]A:_

Or
oY _At
Dp—-2=0pe
A ox qm

Again using Laplace transformation

31



D, dYa(s) q L

dx s+ A
Also at X—>©
Yo = Ae ™
So dv, dv(s)
A= _Ajde™or —Dy LAY A D e
dx 2 A dx 2TA
Implies A~ Om
,= M
DaA(s+A)
Om _
Hence Da(s+A) put in (2g7), gives [ S+kpa }
Yu= P BRI
Da(s+A) Stk L 1 Da

\

qm S+kA 0
= ex - Ax|=Y,
YA (s A)/s+kn Dn p{\ D, } A

" Jq[TA H (s+ A)Es +k A)J{ x@ ex'{‘ me =

| =YE=R()Fls)

S 1
+ A — At)-k -
o Asii Ak, Aol Ak

Fy(s)= VSZkA exp{—\ SBEA x}+jgexp{ (4:;1 +kAt]]

o s o ool B o

Therefore, the solutlpr{ gets the form

o Aexp(— Alt— 7))~k exp(— kalt 7)) { 1 exp{_( 2 +wﬂ+
4D

Fi(s)=

~ /Da A—k N AT
+ Jka {exp[ Ion Jerfc{z b WJ—exp( \FJerfc{AéM+\ kArJ:lHdr
2.8)
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In this case the concentration distribution depends essential on relations between different
physical scales: diffusion rate, reaction rate, and reactant intake. Because the mass flux
diminishes quickly with time, it is necessary to large reaction rate constant to product appearance
would appreciably.

The form oéy'gns somzrce could be different gg,lgime. For example, we can write

JA:—DA§=% a+pt) o JA:—DA§=%(1—C05(7'[))

Or
‘]A --D ayA — Om

Aox 1+t

For these cases, analytical solutions are not possible or are obtained very cumbersome
and do not handy for using. Hence, we will use numerical methods.

Conclusions

We have tried to construct some models of thermal elastic diffusion with chemical
reaction, for which we need some basic concept that is, ion implantation which is a technique for
introducing foreign atoms into materials by bombarding it with energetic ions of the desired
species. The process can be carried out at any temperature. One of the major advantage of ion
implantation is the fact that almost all of the process parameters (concentration of contaminants,
the temperature, the types of atoms, the defect concentration, etc.) can be controlled
independently. For mathematical purpose we have designate in detail the equation of motion, the
relation between strain and displacement and the compatibility equation which has a key role in
the theory of thermal elastic diffusion. The governing equations of generalized thermal elastic
diffusion are also demarcated. Regarding to the problem formulation, we have started from the
basic and known problem. The solution of the known problem is present in many books in detail.
But when the chemical reaction is possible in surface layer, the particles are consume for new
phase formation and, the additional term appears in this case in diffusion equation, and hence we
come to the second simple problem, where the chemical reaction occurs corresponding to
reaction scheme having unit stoichiometric coefficients. In the next problem we take into

account three chemical reaction with the molar concentration distribution of Ni’AI’NiAI,

NizAl The same problem will correct for other systems, for example T+ Al Ni+Ti

Finally, we analytically solve the problems by Laplace transformation method, but sometime it is
complicated to solve analytically in that case we are trying to approach numerically with
different methods, and that’s what we are doing in the next chapter.
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Chapter 3

The nonlinear models with chemical reactions

3.1. Description of physical situation

When we have the body, the surface of which is treated uniformly by particle beam with
given intensity and given time structure.The isothermal problem describes the composition of
surface layer change during particle beam action [75]. The finiteness of relaxation time for mass
flux is taken into account. While the concentration distributions for reactants and reaction
product depend on relation between various physical scales. We have carried out the analytical
solutions and Numerical solution of total problem.
3.2. The problem with summary reaction

Let the chemical reaction occurs correspondingly to reaction scheme

VAA+ VBB —> VCC
where VA'VB'VC are stoichiometric coefficients. For example, for the systems Ti + Ni, Ti +

Al, Ni + Al we can suggest the simplified reaction schemes: Ti+Ni —>TiNi = Ti+Al > TIAl
Ni+ Al - NIAl | respectively. In this case, the absolute values of stoichiometric coefficients
equal to unity VA ="8 =Vc =1

In this case, the reaction rate is

@=k(T)Ya¥s
When YA <<YB one can assume
p= k'(T)YA,
where
k'(T)Z kyg

In general case, correspondingly to mass action law, the chemical reaction rate could be written
as
®=kyp"*yp"®

where YB - is concentration of basic substance. But, in many situations we can assume then the

substance is in excess supply, and its concentration does not change practically. Then
w=KYyp

This linearization was allowed above using analytical methods.
3.2.1. Mathematical problem formulation
The implanted particles concentration in surface layer can change due to the diffusion and
due to the reaction (the particles are consumed in reaction), that the balance equation reproduces
Va9, AT OA
o ox (3.1)

The implantation process is irreversible, the specific time is very small, and hence we could use

for diffusion flux the generalized equation Oy A 0J 5

JA :—DAaT—tA

ot (3.2)
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The boundary and initial conditions take the form
Xx=0:Jp=0nf(t).
Ja=0
raiAA_ 0
t—>0:y,=0, o

X—>w0:ya=0,4

Here: YA - concentration of A-substance (implanted particles, mol / ms), JA is the A-substance
3 — — _ . .
flux (mO'/ m Sec) ); @a=KaYa=@va (1/seC). ka=vak _ rate constant for chemical reaction, A

2
is the relaxation time , DA is the diffusion coefficient (m /Sec).

3.2.2. Simplification and analytical estimations.
In order to solve the problem analytically we will use the Laplace transformation method.
Therefore from equation (3.2) we éhave
A__

2
DA DAM
X NG

and from (3.1)

Hence 0Jd A aZyA azyA 6C()A
7:—DA ) +tA 2 A
OX X ot ot

Using the flux derivative from , we shahkfind 2
g a)A —(%Z—DA% 9E+tA[8 yA _8(0Aj
ot ox> otz ot

(3.3)
Where A is the relaxation time, for which we are discussing two cases.
Case-I. When relaxation timg is not equal to zero, ta#0 e have
tA—5 + - =Da—5 —KaVa
ot ot OX (3.4)

Taking Laplace transformation

That is
t—5S, Ya(t) >Ya(s)

And using the Initial condition, we. get
%jsz s, , (i;(tA —> Y,
Put these values and simplifying (3.4), we get 427,
A

tASZYA+SYA = DA _kAYA

dx?

Or
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d2Y, B thS2+5+kpy YA
dX2 DA

DA

Or P tAsz+s+kA
Da

So the solution is of the form

Let YA= ce™ be the solution , then 2

Vo =A™ + A
Where A and Ay are constant to be determined

SOfOI’XZO JA:_DA%_ A%
OX ot where ‘JA =qu(t)

Let

Ja At

— A =—Ag.,e

ot Om
‘]A = —DAaaYXA‘l‘ AtAqme_At
Qme_At - AtAQme_At =-Dp ag)?

Or

oY _At

-Dp A =q,0-At
A ox qm( A)e
Again using Laplace transformation yv- (s 1
o0 a6 g g0 L
dx s+ A
Also at X > ®©
Y, = Ae ™
So
ddzA =—Ayde ™ or —D, dva(s) = AAD e

Implies A - q(1— Atp)

2 Dp(s+A)

Ay = (g)mg:—At::) A =0

Hence adls+A) put in (3.5), gives
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YA — Om (1_ AtA) exp| —
tAsz+s+kA \
\

2
taS +s+kAX}

Da(s+A)

tA+OtA )
tA_O

s+k
YAOt y — exp{ | 5 Ax}
g DA(s+A)JD A A

~A

Using Lorient series and takln%tA sna I, We(@vgj

A
(a\TAj _ g A exp[— s+ky }_
6tA ta=0 DA(3+A)\/S+kA \ DA
q xs? s+k A q 52 s+k
— m exp| — Ax|— m exp| — Ax
2Dp(s+ A)s+kp) | Da 3 1| Da

v0 =9 (s). Fy(5) = Im| _® [Pa \S+kAexp— Stkay
Da Dals+As+kp S Da
F(s)=—— (D xﬁ{ L ka1 }—) [Pa (Ae‘A‘—kAe‘kAt)

s+As+k A-Kkps+A A-kps+ka A—Kp

Fa(s) = \/S:kAeXp[ | S+ka x} — 1exp{ ( x + kAtJ:I

4Dt

R e o e e By

t
Y9 5P =gij1(t—f)-F2(r)df
A

2
YA0—>Y£= Gm Ak J-Ae Al=7) i e kalts T)){%exp{ [43 T+kArﬂ
A

e oo

Now
YO =l +1,+1
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rlz_qu 1 1 exp — S-i-kAX =
DA S+A S+kA DA
I/ Da
\/Dals+As+ky S Da

qm A 1 kA 1
r Fa(s)
Da| A- kAs+A A—Kkp s+kp

qm 1 A kA
Fs (s
\/EA kAL+A s+ka (%)

o ke

t 2
[ ——dmA 1J. Ae‘A(t—’) —kpe kN L e | Xy
A—k : A/t 4Dp7

Ka ex X Kar |—expl - x Ka erfd — >+ fk d
' [ p[ \D A} {Zx/DTT Rl I BTN AR
2
O X S S+kA
=— - =
2= 75D, (s+A)(s+kA)eXp[ JTAX}

Om X

2
_ S expl— X /s |exp _ o kax 1
2D, | (s+ Afs+kp) oK 2.Dp s
O X k2 1 A2 1 X kax 1
- 1 - exp| ———~/s || 1- —
2DA(+A—kAS+kA A—kns+A P \ﬁf 2.[Dp /s
K oX

where

F1(s)F2(s)

E

L

71

k2 . A2 . " exp[‘Di
:_qu(“ A _ jexp{— X \E}— A~

2Dp|l" A—kps+ky A-kps+A 2./Da /s

where kA 1
X 2./Dp Jat|
exp| — ——~/S
Qm X X KaX \/Da
=— EXP| ———=—+/S |~ -
2DA ,\/ﬁ 2 DA A/S
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X
exp| - =——-/s
dnx 1 [ ki A {x/DAx}
- - exp| ————+/s |-
2Dp A—Kp|s+ky S+A r 2 DA s

kax 1

2.0, ]

where

kax 1
2/0a pr }
= _ _L\ i|_ KaX \/7
4(S) exp[ Dx s 2\@ N

O X OnX 1
A F, - F:(s)-F,(s) where
272D, * 2D, A—k, () Fale)

G x?
exp| — exp| —

LoX 4Dat | kX 4Dt

P S s N

2 2
Fo(s) = ka A% _)(kie—kAt_AZe—At)
25Rka S+A 2
exp| — exp| —

qmX X 4DAt 3 kAX 4DAt 3

r2—>|2=—2DA 2Pn [at? /Da  mt

x2 x°
exp| — exp| -
X 4DAT kAX 4DAT

2000 re?  Du e

t

COpx 1 J‘(kz oKalt=7) _ AZE—A(t—T)).

2Dp A=Kn s
where
2,2
5> KBX
4DA7Z'
3 2
A (s+ANs+kp)2 I Da
Am 33 M S+kA
-— 5 exp| — [~ X
2.[Dal (s+ANs+ky) S | Da
3 2 3
O [y A 2 1 +kA(3A—2I;A) 1 ka 1 IS
2./Dp (A—kp)"S+A  (A—kn) S+ka A-Kka(s+kp)
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Om A2 1 KiBA-2k,) 1 k3 1
AN - + F,(s
2./Da ) Z\DA((A—kA)ZS"‘A (A=K, s+ka A—Kka(s+k,Y 2(8)
3 2 3
Fu(s) = A : 1 _kA(3A—2I§A) 1, ka 1 2
(A-ka)"S+A  (A-kn)" s+ka A-Ka(s+kp)
A oAt _ ki(?’A_ZKA)e—kAt . k3 foKat

(A=kn) (A—kn) A=Ka
qn 1 x2
3> ly=— 7 Kt
37T D, { (4DA ’ Aﬂ

T A
3

N J‘ ~A(t-c)_ KABA=2Ka) ky(tr) | tekalt=r) |.
2 DA (A- kA (A—kp)? A-Ka

-[1exp|: [ x +kArJ:D+

Jnt 4Dpr

/7 IKa X

2[ Xp —x\ DJerfc[z Dar )/kArJ—eXp[—x\ DJerfc[z DAr+ kArJJdrThus

YO =+, +1,

t A(t-7) kat-)) 1 x°

IAe —kpe A ——exp| —| ——+Ka7 ||+

5 *\7Z't 4DAT
JKa X

A rf k erfg — ——+./k dri+
2 C[Z DA AT] { \DJ {{\/ v Arj]} T}

exp| —
_qu X 4DAt kAX 4DAt

2D4 | 2,/Dp \/ﬂts ﬁ Jt

2 2
XL [fgertaoe) peranl) Oar]_kax | 4Dw
2Dp A-ka o 2.Dp [z JDa  Jmr
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bl ol )

+ I ~Alt-7) _ Me_kA@_r)_}_ kA te_kA(t_T)~
2 DA (A- kA (A—ky ) A-Kna

iexp X —————+KuT
\rt 4Dpr A

+\F exp| — X Kaerf L—\kAr —exp| — X k— erfd — =+ Jkar ||dz
2 \DA 2 DAT \ 2 DAT
2,2

Kax
AT

where t >>

Al 1 X2
vO__mAJ L oy ———+k
A Da |t Y 4D,z AT

k k k
S Lyt )
exp

exp| — -
O X p{ ADpt 4DA‘}

-k
§ 2\/7Z't3 A \/E

2D2p

—Kp
3 A—kp s Tt

2
o ol 2]
_OpX 1 j(kie—kA(t—r) _ Aze_A(t_T)) AT
2D2p 0

mwmA L an \[([an A ate
(\/DA(A_kA) 2 DAJ}[([A (A_kA)Zj

ka(3A—2kn)  Ka(t—7)) —kait—0) | [ 2 x?
‘[k (AP Ak J | )MH‘{ [ km

e ol o ol )]

2,2
KaXx

AT

where t >>

Now
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That is

Ya—oYa=Y+YDt,

Implies that when ta #0

k,ix2
4DA7T

1 x2
v® __Omta Xk
A ./Da N 4Dy A

+£ exp| — X Kalerf —.[kaT |—exp| —X Ka lortd X Kaz ||t —
2 Dy 2N D 2.[Dar

2 2
— qm ;( 1 . _ kA exp|:_ X:I
> |2/t Jxt 4Dt

2D2p

t>>

t
G @-Aty) . G j [ A J—A(t—ﬂ
+ + 2A+— e -
(\DA(A—kA) 2,/D, ![ (A—kp)
L KAGBA- 2kA)+kf\(t—r) ekalt=2) || L oyl x° A hkar || [+
A kA A—kA At 4DAT

g
R R R R

2,2
Kax

AT

where t >>

The exact analytical solution can be obtained for some other functions 0N
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Case-Il. When the relaxation time is equal to zero

When, ta=0 the analytical solutions can be found without any complexity using Laplace
integral transform method, for f (t ) = 1, we shall obtain (2.4).

3.2.3. Numerical algorithm

The difference between two neighboring values of the function YA in neighboring mesh
points is finite difference of first order Backwar(j difference s<jheme VYA , Forward difference
A

Ay . . A,j 2 yA +VYA
scheme ~?AJ and Central difference . The finite difference of second

order can be presen£ as
AYp,; —A(AYA ) (YA i YA ) YA 27 2YA T YA

AVyA,j = A(yA,J - yAvj—l): yA,j+1 _ZyA,j + yAvj—l

or

A yAJ AvyA J+1

Here the symbol A is used for difference designation.

Then the difference of m-order can be \%rltten as (.
YA ( YA )

For first and second sgga}ce derplatlve§,we can>yvr|te thg,dlffergnce appgpxmatlon as

' j+1 ' j+1
%
OX h h 2h
02 Ya L YA j+1—2YAj YA ja
ox? h?

We introduce the discrete time points
At=7,t, =7-k, k=012,.

For time derivatives we have

k k k k k
A VAT Yai N YAT“YAI  OYa AT Yai
ot 27 or ot T or ot T
%ya _YAi~2YAiTYA;
5'[2 T2

We call time point as time layer. And we can calculate the space derivative in any time layer. We

will use the designations: 1
+

YA =Vaii YA =YaAji YA} =

YA j
Now we come to our problem. In order to solve the problem numerically, from equation (3.2) we

have
&]A DA6 Ya

OX ox2
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and from (3.1) YA __QQJ +5”A

a2 atax Moot

Hence 8J 0%y D’y Owp
7:_DA +tA —_
OX ox? a2 ot

Using the flux derivative from , we shalk§ind 2
g a)A—(%Z—D Qj pp+tA[8 yA_aa)A]

A ox? aZ ot (36)
Or for given kinetics
th L Wa_ Da 82yA Ka y
1+tAkA atz 61: l+tAkA aX 1+tAkA A (3 7)

-1
- : . -1
We have several specific physical scales. For example time scales are Ka AT ta and space

-1 -1
scale are" DAtA; JDAA ; \/DAkA .The result of the solution depends on proportions between
scales. We solve the problem (3.7) numerically with initial and boundary condition below
0
- D YA~ g - ta e (- AL)

Xx=0 :

X—>00: yA:OOI’ 'JA:O;
EAN
t=0: Ya=0. at

The numerical solution of the problem carried out by using implicit difference scheme, which
leads from differepgial equation,(3.7y ip the,equation in fynjle differeRces ,  Ka

l+tAkA 2'2 T 1+tAkA 7,'2 1+tAkA

YA

The implicit difference scheme of (13 .7) takes the form

1 :
ta  Yai'lT -2y’ +yai’ N Yai'" - Yai _
1+tAkA 2'2 T
j+1 j+1 j+1
_ Da Yairr —2Ya' + YA _ ka yaidHt
1+takp h? T+tgky

In this case we obtain the linear equations system which could be solved by double-sweep
method. In computation area we introduce the difference mesh. Let h - mesh step. Then instead
of continuous space coordinate we come to discrete space points

Xi=J-h j=012..,n
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where N is point number in integration interval.
In cases of implicit difference schemes and in some stationary problems, we have obtain

the algebraic equation system of the form
ajUj_l—CjUj +bjuj+l :—fj

a;#0,b; #0; j=12..,N-1

(3.8)

Let us Assume that the equality

Uj=ajygUja+Pia

takes a place. Here % Fin are double-sweep coefficients which are undefined now. Hence
Ujg=ajuj+pj (3.9)

Substituting (3.9) in the equation 63 .8), we obtain

ajlajuj +Bj)-cuj +bju

J ] 17 ] J+1__f

j

Or
ujlaje; —c )+bul+1__(fj+aiﬂj)_
Hence, we come to correlations b; a;Bj+f;
ajp=—-_-— Pju=—""—"-
Ci—aa; Ci—aa;
T %% TR el

We use the condition in zero- pcunt a;gqjeqruztl n (3.9) for =1
F: o =Ky, ,31—#1

Up =aqU; + By

Because 1, A1 are known, we can determine sequentially all coefficients %I, Pi 1o point N .
Now we use the condition in point nggg%g%g? 43@) }or .

Un_g = anUy + By

Implies that i+
1—K‘2aN (310)

Here straight marching stops.
Backward marching uses the equation (3.9) for points

For our differential equation (3.7) we can suggest the family of difference schemes
corresponding in generam::}se gmmer-ygo]nt temp/lalte_ YA j (1 )YA i~V
. -

j=N-1,N-2...10

Dy YA j+1— 2ij+ijl YA j+1— 2YA1+YA11
1+tAkA h h
=2 i+ ; .+ .
+(1_O_2 —63) yA,j+1 yg\,] yA,j—l _ kA yA,J yA,]
h 1+tpka 2

(3.11)
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Comparing coefficients of (g .8) and (3.3 )ave can get t Dar
2tk n? T T2 Ltk n?

Ci= B G425, DAT

P Qrtaka ) (1+1tpkp)h?

DAT
fi” (:l-"'tAkA)h2[03(yA‘i+1 —2Yajt Yaia)+ (1o, —GSXS’A,M ~2¥aj+ yA,j—l)]_
& YajtYaj t
_1+t:kA£ J 2 JJ+T(1+?AkA)(ZYA,j_yA,j)+O'1yA,j+(1—O'1)(yij—yA’j)
(3.12)
where 1:2:73 gre the weights of difference schemes, 1 <1; P2+ 03 <1,

To complete the problem formulation, we add to the equation (3.3) and with the boundary and
initial condition, the kinetic equation forgygction product:

— - @c
ot (3.13)
where ¢~ kcw, and equation for basic material (because the moles are not conserved during

the reaction). When the species B is mobile and could diffuse also in the mixture from three
component A+B+C we could assume that relaxation time for this element '8 js not equal to

ta, Hence, we obtain the equations

oyg oJg
Je=-D —t
B B, B o
And 62 2
Yg Owg | OYg 0°Yp
t - + =D + o,
B( atg ot j ot B 5X2 B

For example, for reactions
Ti+Ni >TiNi Ti+Al >TiAl Ni+ Al — NiAl

absolute values of stoichiometric coefficients equal to unity:
va=vg=Vvc =1

and we have
w=KypYp

Then the diffusion equations take the form
52
ta yA (1+tAk)’B)ayA =Da y2A —Kkya| Yg +1ta
ot® o Ox : o J. (3.14)

0%y Oyg 0%y i N
tg +(L+tgkya) 2B =Dg —kyg| Ya +1g
ot? ot ox? i ot J. (3.15)

Kinetic equation does not change.
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Assuming f(t): exp(— At), from (3.1) and from boundary and initial conditions we shall find

B A —-D. YA
O (L—taA)exp(= At)=—Dp x=0 (3.16)

In this point Js=0,

The last boundary and initial conditions:

X—>0:ypa=0 . Jy=0;J5=0 (3.17)
t=0:ys=0; 8‘]—A=0; yB=yBo:a‘]—B=0: yc =0
ot (3.18)

The problem (3.13), (3.14)- (3.18) was solved numerically. The implicit difference scheme for
diffusion equations was used.

3.2.4. Results and analysis
Parameters evaluation

According to periodic table, for the Ti —Ni _system we have

We can determine partial densities of species _
pi=Yim 1=AB,C

and calculate the density change
P=PAtTPBTPC
during implantation accompanied by chemical reaction.
Assuming 8 =89 giem3, we shall find Y80 0151 mo1em3. Impulse source could be

t=(2+4)207" . gy =(0.1+2)-10°

characterized by impulse duration mol/(cm?sec).

Relaxation time depends on material structure, but for majority of substances it is
unknown. It is interested for investigation the parameters region, when various physical
processes could effect on each other. In this model there are several specific times. Relaxation
times tA, ts impulse duration £ , chemical reaction time tCh, specific diffusion time. The

correlations between these times will determine the concentration distributions.

Analysis of dimensionality allows writing
teh = Yo /K ]

k =k exp(— Er

- . 16 frd . 5 -
Taking RTj; Ko/Ygo =210 1/sec; Er =1.181-10"  j/mo [76], we find

0125 4. -7 _
t,, =0.135; 1.1-10™; 9.7-10 T =400,500,600 Really,

sec for temperature the reaction

constant could differ from pure thermo dynamical evaluation due to activation phenomena [77],
but it changes in wide limits when the temperature varies.
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Diffusion coefficients depend on temperature in gegprdance with Arrhenius’s law also
Dic = D"OeXp(_RT k=AB

It is not difficult to find in the literature the data concerning self-diffusion. The diffusion
coefficients in complex media are proportional to self-diffusion coefficients. Diffusion data
depend essential on structure material, impurity presence, and conditions of measurement.

Since [FS]szg*m'@Tl and titanium we hr\/e251200 130600
R

Dy =1.9exp Dy; =1.09 - exp| — }+3.58 2074 exp[—

and } cm?/sec,

D, =1.39-107%6;1.51.107%

so for temperature T=500,600 e obtain and

_ -27. -25
Dg =5.03-10°7:8.2-10 " o ry2/sac respectively. Hence it is impossible to expect diffusion zone

formation during times tA, t8 and i without additional acceleration of diffusion.

Experimental data indicate that the materials activation happens under irreversible
conditions of particle beam action. It leads to diffusion acceleration and changes many physical
properties [77]. Diffusion acceleration could be connected with activation energy reduction.
Kinetics of this physical process would be investigated especially. Here we assume that the
activation energies reduction in four times. That gives for 1=500,600  the giffusion

D =1.46-10"°%;4.21-107° Dg =4.31-1077;1.54-107°

coefficients respectively are and cm?/sec.

The concentration distributions for ta=t8 =0 js presented in the Fig. (3.1-3.3) for
Om =25-107" mol /cm’sec. T=550K T=600K T=650K , 4 A=0Q

h =8.36-107° sec, 9.67-10~ sec,1.56-10" sec

. In this case we

have b ' respectively. While, when we increase

the temperature the reaction time decreases as showed in the table and the concentration change
for B-substance is more visible Fig. (3.1-3.3). The temperature leads to diffusion acceleration
and diffusion zone increase gradually.

Table 1
S# | Temperature teh sec DA cm2isec DB cmZsec Reaction rate
mol/m3sec
1 450 2.59.107° 3.35-107° 2.82-.1071 58.06
1 500 1.1.107 1.201-107° 34110710 1.36-10°
2 550 8.36-10° 3.81:107° 2.62-107° 1.80-10%
3 600 9.67-107" 1.13-10°7 1.43-107° 1.55-10°
4 |650 1561077 3.15-107' 6.06-10°° 9.64-10°
5 700 3.28-10°° 8.12-107' 2.07-1077 4.59-10°
6 750 8.48-107° 1.92-107° 6.05-10~" 1.77-107
7 800 2.59.107° 4.20-10°° 1.54.10°° 5.81-107
8 850 9.12-10710 8.50-107° 3.51-10°° 1.65-10°
9 900 3.60-10° 0 1.60-107° 7.32.10°° 4.18-108
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10

950

1.57-10710

2.84.10™°

1.41-107°

9.60-10°

11

1000

7431071

4.77-107°

2.54.107°

2.03-10°

In the absence of relaxation time the concentration distributions are presented in Fig.
_ 4 2
(3.1-3.3) for dm=2:5-10 mol/(cm“sec). A=0 gng T=450K,T=500K onq T=550K

respectivelly. We can actually neglect the initial substance concentration change for small times,
. . . . . . -3
less than specific reaction time. In this case we have the reaction time 2.59-10 sec for

T =450K

, While, when we increase the temperature the reaction time decreases see Table 1 and

hence the concentration changes for B-substance is more visible showed in Fig. (3.1-3.3, ¢). The

temperature leads to diffusion acceleration and diffusion zone increase gradually.

3 Y, molim® 3
Y, . mol/m c Y., mf)l'/m
0.0016 » 0.1508 1~
0.181 T=450 K
a0 K 0.0012) \_ : 0.1504 17" /4
= 5
0.12N\\ 5 ‘ : 0.0008 \4 0.1500
: T=450 K
0.06 A\ AN\ 0.0004
: 5 k 0.1496
. 0.0000{°1 ; - ‘ ‘
0-0%_0 30010°  6.0x10° X om 0.0 3.0x10° 6.0x10° X cm 0.0 3.0x10°  6.0x10° X cm
(@) (b) (©)

Fig.3.1. (a): The concentration distribution in specimen for implanted element, (b): Reaction

product (c): Initial substance for different time moment; t=(1). 1.99-107*: (7). 3.99-107*: (3,
6.99-107": (4). 9.99-10*: (5) 1.5:10"% ge¢ with ta=te =0, T=450 K gpq A=0

Y, mol/m® Y., mol/m’ Y,, mol/m’
1
0.081 0.018; 0.1501
T=500 K
0.06+ T=500 K 0.0121 01451
5 .
0.041\\4 y |
AN 0.0061 0.140/ T=500 K
0.021\/
0.000]
0.00 . - 0.0 ' A6 105 X cm 0.13 ' 6 A5
00 50x10° 1.0x10° X cm 5.0x10" 1.0x10 b0 5.0x10° 1.0x10°  Xem

(@)

(b)

(©)

Fig.3.2. (a): The concentration distribution in specimen for implanted element, (b): Reaction

product (c): Initial substance for different time moment; t=(1). 1.99-107: (7). 3.99-107*. (3y
6.99-107": (4). 9.99-107". (5) 15-107° gec with ta=te =0, T=500 K gpq A=0
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3

Y, mol/m® Yo, mol/m® Y, , mol/m
0.0281 0.151 .

0.06+ T=550 K 0.14 .
0.0211 %, 1 3 ;

0.04. 0.13 /4
0.0141 4 0.121 5 T

0.02{-3 0.11 1 T=550 K
0.0071 2

~ .10

0.00/ ‘ ‘ 0.10 | |

0.000 — = 0.0  50x10° 1.0x10° Xcm 0.0 50x10° 1.0x10° Xcm
0.0  50x10° 1.0x10 Xcm
(@) (b) ()

Fig.3.3. (a): The concentration distribution in specimen for implanted element, (b): Reaction

product (c): Initial substance for different time moment; t=(1). 1.99-107: (2). 3.99-107*: (3)
6.99-107; (4). 9.99-10*: (5) 1.5-10~° gsec with ta=t8 =0, T =550 K a3q A=0

When we take into account the finiteness of relaxation time we shall obtain some

interested result for T=600K and T=650 respectively. In this case we can discuss two main cases.

_10-3
Case-1: When the releaxiation times are less than the time impulse that is for ta=10

ty=1.5.10"3 t<t;=2.1073

sec and

sec along with , the implanted particles are distributed

monotonically and almost linearly Fig.(3.4-3.7, a). The concentration curves for reaction product
do not change Fig. (3.4-3.7, b). Redistribution of initial substance is observed in diffusion zone

Fig. (3.4-3.7, ¢), that leads to density evaluation.

Y , mol/m® Y, , mol/m’ Y, , mol/m’
A 0.0121 s
0.150 (2,
0.06- T=500 K
. T=500 K 0.0081 5 0.147 */4
0.041 T=500 K
N 0.004 14 0.144 1 5
0.02] N3
\ 0.000 5 0.1411
0.00 ‘ ‘ 0.0 10° 10° 0.0 10° 10°
'S oot 6 om0® X cm 3.0x10°  6.0x10°x o 3.0x10°  6.0x10°y ¢y
(@ (b) (©

Fig.3.4. (a): The concentration distribution in specimen for implanted element, (b): Reaction

. ) i 4 4
product (c): Initial substance for different time moment; t=(1). 1.99-10 7. (). 3.99-10 ": (3),
6.09-107. (4). 9.99-10*. (5) 15-107% go¢ with ta=10"".t4=15:10"

A=0
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Y, mol/m?® o mol/m® Y, mol/m®
0.06{ 0.15+

0.0254 2
0.0201 ! 0.141

s T=550 K 0.041 g
0.015 ' 0131 -
0.010\ 3 : 0.02; T=550K

0.127/5
0.000 0.0 10°° 107 = 0.0 10 10°°
0.0 3.0x10° 6.0x10° Xcm 3.0x10 6.0x10° Xcm 3.0x10 6.0x10" Xcm
@ (b) (c)

Fig.3.5. (a): The concentration distribution in specimen for implanted element, (b): Reaction

product (c): Initial substance for different time moment; t=(1). 1.99-10*: (). 3.99-107*: (3,
6.99-107%. (g 9.99-10%. (5) 15-10° goc with ta=10"".ta=1510"". T=550K o

A=0
3
Y, , mol/m’ Y., mol/m’ Y, , mol/m
0.10] 0.15{4
0.08 T=600K 01412
0.0041 U8 ‘ ! . \
. T=600 K 0.06\ 5 - 0.131
0.04 4% 0.12 |
0.002\\* 0.02] \
4 : 2 0.111
1 2\\\ 000 0.1 — : ‘
0.00Q — — 0.0 3.0x10°  6.0x10°X cm 0 3.0x10°  6.0x10° X cm
0.0 3.0x10 6.0x10° X cm
(@ (b) (©

Fig.3.6. (a): The concentration distribution in specimen for implanted element, (b): Reaction

product (c): Initial substance for different time moment; t=(1). 1.99-10*: (). 3.99-107*. (3),
6.99-107%. (g 9.99-107%. (5) 15-10° goc with ta=10"".ta=1510"". T=600K o

A=0
3 3 3
Y, mol/m Yo mol/m Yo mol/m
0.00121 0.15 _ 0157 ;
T=650 K 2
0.14]
0.0008 \\3 T=650 K 0.10{ % Wi
4 0.13,/4 e N
4 ] ; .
0.0004\\\; 0.05\ / T=650 K
» }2 \ 0.121 " -
0.0000-—+ e R S S —
. : : 0.0 1.0x10°2.0x10°3.0x10 0.0 : X
30 20m0° somo® Xem 1.0x10°2.0x10°3.0x10°x m 5.0x10° 1.0x10 cm

(@)

(b)

(©)

Fig.3.7. (a): The concentration distribution in specimen for implanted element, (b): Reaction

. i ) -4 -4

product (c): Initial substance for different time moment; t=(1). 1.99-10": (2). 3.99-10 ": (3),
N _ 103t _ 3 T _

6.99-107": (4), 9.99-107*: (5) 1.5:107% ge¢ ith ta =107 ta =1.5-107. T =650 K,

A=0
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Case-11: While in opposite case, when the releaxiation times are greater than that the time

—10-3 _ 73 A
impulse that is for, for ta =10 "Se€C gnq tg =1.5-10 G =5-10""sec

along with , that is when

mass source acts, no monotonic concentration curves appear for implanted particles after G
(Fig.3.8-3.11.a) that propagates into the depth and leads to new phase formation acceleration

(Fig. 3.8-3.11,b). In this case, the extreme is observed in initial substance concentration (Fig.
3.8-3.11, c). The evaluation of mass flux density allows seeing the stepped concentration curves

for small times and thus After i step-by-step concentration of implanted material is visible (Fig.
3.8-3.11.a).

3
Y , mol/m® Y, , mol/m’ Y, , mol/m
A 1.
0.03{ 0.006] ! » i
T=500 K 0.150 1 ;
0.024 T=500 K 0.004 s ‘ 13
0.1481
0.002] / 5 T=500 K
0.011 2\3 0,146 /
0.000{>1 146
| 2\&\5 ' ' ' '
0.00+— = — 0.0 3.0x10°  6.0x10°X cm 0.0 3.0x10°  6.0x10°X cm
0.0 3.0x10 6.0x10° X cm
(@ (b) (©

Fig.3.8. (a): The concentration distribution in specimen for implanted element, (b): Reaction
product (c): Initial substance for different time moment; t=(1). 1.99-107*: (7). 3.99-107*. (3,

6.99-107%. (g 9.99-107*. (5) 15-10° goc with ta=10".tg =150, T=500K ,q
A=0
Y, . mol/m® Y, , mol/m’ Y., mol/m’
0012 01501 % T=550 K
0.008 T=550 K 01457 4 S, 0.02]
0.1407/ 4 0.01| AN
o ] 0-135$5 0.00
0.000 : :.oklz%)kl(ﬁ\Xcm 00 3.0x10° 6.0x10° X cm 00 3.0x10° 6.0x10° X cm
(a) (b) (c)

Fig.3.9. (a): The concentration distribution in specimen for implanted element, (b): Reaction

product (c): Initial substance for different time moment; t=(1). 1.99-10*: (). 3.99-107*. (3),
6.99-107%. (g 9.99-107%. (5) 15-10° goc with ta=10"".tg=1510"". T=550K o

A=0
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YA , mol/m

0.003

0.002

0.001+

0.000

0.0

3.0x10°

(@)

6.0x10° Xcm

YC , mol/m®
0.04) - T=600K
5

0.02{ \\;

2
0.00| >

0.0 3.0x10°  6.0x10°X c¢m
(b)

3
YB , mol/m

0.157 1

5

0.13

/ //
0.14 72 4 ;

T=600 K

0.0 3.0x10°

(©)

6.0x10°

Xcm

Fig.3.10. (a): The concentration distribution in specimen for implanted element, (b): Reaction

product (c): Initial substance for different time moment; t=(1). 1.99-107*: (7). 3.99-107*; (3).
T =600 K

6.99-107. (5). 9.99-10*. (5) 15-107° go¢ with ta=10"".tg =15:107"

; and
A=0
Y, , mol/m’ Y. . mol/m’ Y, , mol/m’
0.0008 0.061 _ T=650 K 0.1507/1 ////
0.0006 0.04] oaas] 4 7
5
0.0004 | 0.02\, 0_140%4/ T=650 K
\
0.00021 ™1
0.00 ‘ ‘ 0.135] ‘ ‘
0.0000 ‘ ‘ 0.0 2.0x10°  4.0x10° X cm 0.0 6.0x10°  1.2x10° X cm
0.0 2.0x10° 4.0x10° X cm
(a) (b) (©

Fig.3.11. (a): The concentration distribution in specimen for implanted element, (b): Reaction
product (c): Initial substance for different time moment; t=(1). 1.99-107%: (7). 3.99-107: (3,
6.99-107%. (g 9.99-107%. (5) 15:10° goc with ta=10"".tg=1510"". T=650K o
A=0

3.3. The problem with detailed reaction scheme

This problem is actually the continuation of the above model by adding new chemical
reactions. We consider a model for non-equilibrium conditions of three stage reactions for the
formation of intermetallic compounds. Consider the plane layer of nickel. The flow of aluminum
particles distributed uniformly along the surface to be treated. Assume the implantation of
aluminum ions in the surface layer of nickel may occurs the chemical reactions. In general, the
problem is conjugate (there is the interface), coupling (there are the interrelation between various
physical phenomena) and demands the large calculating resources. That connects with the
difference between scales of various physical and chemical phenomena.

3.3.1. Mathematical problem formulation

We use the model [75] and add it by new chemical reactions. We assume that three
reactions are possible in the surface layer.
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(a) Ni+Al — NiAl

() 3Ni +Al > NigAl

©) Nis Al + 2Al — 3NIAl

of  Ni,AI NiAl NizAl

The molar concentration distribution and

follows from equations

8[@?]: V- +op +nF (X 1)
6[8l\t|i] =V -Jy + oy
a[l\éitAl] = ONiAl
a[l\g'iAl]= ONi;Al

where % k=Ni, Al, NiAL, NigAl the summary sources and/or sinks of substances due to the

4
oy = Z‘/kiﬂ
i=1

reactions,

m

Pi - are the reaction rates ( ol / (m Sec)), Yki are stoichiometric coefficients. For our reaction

scheme, we have

wop =1+ 0, +203) , oy =—(o1 +39,)

ONial = @1+ 303, Oni Al = P2 — @3

The reaction rates depend on concentrations and temperature:
E . )
o=k exp[— R;][Nn]-[AIJ =k [Ni]-[AI]

02 =kager9| - £2 | INIF (] =k [NGF (A

@3 =Kgg exp[— FE_?_][N@AI]-[AI]Z = kg -[NizAl]-[AIT?
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E.E,,

where Es are the activation energies, R is universal gas constant, kio:ka0.Kzo pre-

exponential factors.

2
The diffusion fluxes (mol/(m sec)) follows from relations

J[Al] ANN
Jy =-D -t
Al Al oy Al o
J[Ni] G
Jn: = =Dy —th I
Ni Ni ox Ni ot
where Car i are the relaxation times, Dt D are diffusion coefficients of elements in the
2
mixture, (m /sec)_

The Initial conditions,t =0 ,are

[Al]=[NiAIT=[NizAl]=0, [Ni]=[Nj,]-

The boundary conditions are

X

0: ‘]AL:‘]NiZO

X

©. JaL=JIni =0
Note, that the same problem will correct for other systems, for example Ti+ Al Ni+TH pe

problem is solved numerically.
In the simplest case, we can restrict the chemical reaction by one stage and take F=0 in
diffusion equation. That corresponds to the condition X=0:Ja=0n f(1) when ions enter from

the surface.

Y, =[AL], Y, =[Ni]Y; =[NiAL]Y, =[NizAL]

For simplicity we assume that so that the above

problem statement can be respectively written as

(Z\?:—V-JﬁmﬁqmF(x,t)
Where
F =F(x)F(x)
o,

=-V-J,+w
ot 2 T @
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oY,

— 2 =
a3
oY,
— T =w
o @
5-p M
OX ot
J2=_D2% t, 9y
OX ot

r

Wy = ZVkiCDi

i=1

(3.19)

Vki

- ith chemical reaction rate - stochiometric coefficient of K -component in t-th reaction;

I — number of reactions.

3.3.2. Numerical algorithm

The system (3.19) can be written as
[@ Y, 0w aF(x,t)] oY, _ o%,

> m — =D~ +o +0nF(x1)
ot ot ot ot OX (3.20)
2
(a Y, awzJ M _p, Y2+w2
ot 2

(3.21)

ot (3.22)

ot (3.23)

The boundary conditions are
X= 0 . ‘]1 = JZ = 0

X= L X Jl = Jz = 0
The initial conditions, t = 0 , are
Yl :Y3 =Y4 :0, Y2 =Y20.

To solve this problem we must write down the sources “% explicitly.
For system Ni—Al e have reactions (a)-(c)
The reaction rates are s X

e =K1Y . @2 =KV1Yo" 3 =KsYaYy
Hence, for sources in the diffusion and kinetic equations we shall find
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3 2
) = —(% +@o+ 2(P3) =k Y1Yo —KyY1Y5™" —2K3Y,Yy
@y = (01 +3p7) = —k¥iYy —3kVyY," *Ni
2
CO3 = (D_I_ +3¢3 = lele +3k3Y4Y1 : NlAI

3 2
03 =0 ~p3=KYo" —K¥ai© i

Determining the derivative 5@ ( VDRIV RPN Y2)
11172 = RoT1lp = £K3Tgly )=

ot
3 0 2
=k a(Yle) -k *(Yle ) —2k3 *(Y4Y1 )
0 2 0 20
=k (Yl Yz +Y, *Yl) ko (3Y1Y, a2 +Y,° *Yl) 2k3 (Y Pl 2Y1Yy *Yl)

and substituting |t uatlo 3.20) we obgin
{@éﬂ N §Y2+Y2 gvljmz(svlvzz §Y2+Y23 stvlj

) 0 oF(x,t) oY, o2y
+2Ka| Yi2 DY, +2YY, Y, || =gt Do T 4 g+ g, F (X
3(16,[4 148,[1)} mb P amF(x,1)

or 2
t) aiv + (kltle +KotyYo2 + AkatyYyY, + 1)86t + (kltlYl +3K Y, Yo ); Y, +

20 oF (x,t) 2y,
+2K3tyY aY4 —40n a Dy o +ay + O F(X.1)

oF(x,t)

or 62Y 8

2
=D ZXY (lele S ANAETIAAY )+ OmF (1)

or 2 2
0 Y1 d F(xt) . &%

t + Y +H;—Y, -t = —
12 Gl 1+ Yo~ Dy 2

—Y,S; + 2ka?t Y, Y, + g F (X, 1) (3.24)

e Gy(Yie, )= KetyYy +KotyY5 + 4kt Y,Y, +1, k =1,2,3,4
Hy (Vi) = ketyY; +3koty VoY,
Si (Vi oty ) = KeYo + KoYy + 2KaY, Y + 2kgkstyY; Y,
Differentiating the source for second component (Ni), we come to the equation
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6w, 0 0 0
WZ B a(—lele —3koYiY,") =Ky *(Yle) —3kz *(Y1Y23)

0 0 2 0
==K (Y1 = Yo +Yo —Y;) =3k, (3Y,Y5" — Y, +Y. —Y
1(16t2 26,[1) 2(128t2 2 1)

From e n (3 e obtain 2
Tl"ﬂo f? L Y, +Y, avlj + 3k2(3Y1Y22 sth +Y,° ;ylﬂ Y, _ =D, ‘ZYZ W,
X

ot
t a2Y+(kt\( + 9Kt YyY. +1)6Y +tkrtY +3th3)9Y =D @M)Z
26‘t 17271 227172 atZ 14272 21272 8t1 Zaxz or
2 2
t28Y2+H28Y2+623Y1_D26Y ~Y,S,
at o ox* (3.25)

where
Ho (Y ) = kato¥g +9KotoY Y2 +1 k =1234.
Gy (Y, ty ) = ytpYy +3kytoY,>
Sy (Yieotr) = kyYy +3ko VY,
Other equations do not change.

To solve this problem (3.24), (3.25), (3.22) and (3.23) with initial and boundary
conditions we can use various methods [79].

First Concentration:

Vv

- - ~ Vv ~
Fist concentration (3.348 Y1i—2Y1£+Y1i +(v3 (Yll Y1']+ﬁ|1. Voi—Yai |
At At

. — . . \Y \Y
—40m o Fa(tx’t)—CImF(X,t): Dl(YlHl 2((12' +Yl'_1J—Y1i Sy +2kg?Y 4i Yo
or D, At t, Y D, At DAt
AN | LG+ 2 A+ ALSy Y. L Vi
AX2 1i-1 ( At 1 AX2 i V1t Ax2 1i+1s

o VNV NV \ - v
=— 2Atk3"t Y 4i Y1i "+ Gai Yy; —Hai| Yo —=Y2i |+

+ Atqm(tl 8F§<,t) +F (x,t)) - iltb?li —2Yy ﬂ

By comparison with
AiYia —CpiYri +ByYig s+ Fi =0
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We can get the Doubleﬁ Aelep coefﬁcBnﬁ t, Y D, At
All - B1| - ) C1i At +Gii+2 X Atsl|’

fi = 2Atk32t1Y4i Y1+ Gy Vi — Hy (Vm -Y Zi}r

F v >
+ Atqm(tl 0 gt) + F(x,t)) - ilt[Yli - 2Y1i]

(3.26)

Boundary condition in the point oY,

at x=0, J;=0, J;=-D; =1 —tlaJl

aY1 0Jy
— tl
OX ot

OX ot

=0

Present concentration in the point X =0+0dX(or in the point i =1) in form of series relatively to

point X=0 for small AX 2 2
Yll_Ylo+(%Y1ij+ o A)Z(+O(Ax3)
X

ox?
Hence, (ale _Yi-Yio 0% | Ax
X Jo AX ox* ), 2
To find the second derivative W§g+se equgtgl\?n (3. 245 0
Tl =t —Yy+H; Y, —
Dy ol a2 Gl 1+ M ot 2
AF (x,t)

+Y,S; — 2ka?t Y, Y, — g F (X, 1)

- thm

Hence we Wrytie towgus RoiNty 5. Y ~ 2V, +y10 +GlO Yy Vi N IZ|10 Voo Y20
At A

AX D 2|t At?
oF (x,t e VT
— g F =10, ( )—Y1810+2k3t1Y104Y4o}:0
We obtain:
Yio =11 +,31,
where 2DAt 1

o= —
1 AXZZ'

\ A\
By = [Atqm F(x,t)+tAtg,, aFg’t) + 2Atkg?t; Y10 Y 20+

é Y, I\-/l Y, \? L% 2Y, \\(/ 1
+ — - + - )
10 110 10| Y20 20 i 10 10 7
(3.27)
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where v 4

7 Gos iy 2D1At
At

+ At S10
AX

The formulae of double sweep method are usual:

Yii =i+ Bia (3.28)

Here %+1 541 are double- -sweep coefflcgnts AB+ T

Qi1 = CiA,, Bia= Ci—Ad; (3.29)

Second boundary condition is written in difference form by similarly way. However, the
series is constructed for YIN-1 relatively to the point ' =N As a result we present the boundary
condition in the form

YiN =KYiNa A

This equality together with
Yin-1 =anYin + On

gives Voo =  + K1 Py
IN —
l=may (3.30)
Here v v
_2DAt L g =| Atg, F(x,t)+ L Atg,, Fxt), 2Atk2t YINY an+
k1= AX2 7 . ot

v 1 (331)
+G]_N YlN H]_N Y2N —YZN + 2Y1N —YlN Z

Vv Vv
Z=GiN+ L+ 4 + 2D1At + AtS1N
At AX®

The conditions of stability for doubleseeetbmethicdlage right-always:

Second concentration:

Difference equation fo t@e sepﬁpqcpgc ntratlf(w@zs; j \? 1i
At At

Yoin1 — 2Yq + Yy V VM
:Dz( 21+1 szzl 2'1J—(klvli+3k2Y1iY2i2]Y2i,

or
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AoiY2i1 —CoiY1i + ByYoig +Fp =0

where

D,At D,At t DpAt :

Poi="20 1 By="2, ; Cy=2 2+
AX AX
v v -~ Vv t ~ v
fo; = Hai Yy _Gzi(Yli —YlijJrAzt(ZYzi —YZi]
: (3.32)

Boundary condition oY, _

XZO,J2=O, D2 0

OX

(5\(2) Yo —Yao (0%, A
X Jg AX ox% )y 2

To find the second derivative we use the equation (3.25) at the point | =0 After transformations

similar to previous ones, we come to equations:
Yoo = Yoy + ﬂl

r_
1=

where t, 1
o= 2DoAt L B= H20Y20 Gzo Ylo—Ylo +A 2Y20—Y20 =

&2 (3.33)
\Y4 \Y4
Z =Ho+ 3 + 2D22At +AtSo0
t  AX
General formulae for double sweep method are the same, that is
Yoi = iYoin + B
(3.34)
Here %y Bin are double- -sweep coefflcvgnts AB+ T
Ay = , Bia= I
CI Aai Ci - Aai . (3.35)

Second boundary condition is written in difference form by similarly way. However, the
series is constructed for Y2N-1 relatively to the point 1 =N . As a result we present the boundary

condition in the form
Yon =KpYoN-1+ My

This equality together with
Yon-1=anYan + O

gives Y,y = H2* K2N

1=ran (3.36)

Here
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Y - v _ v t, - v 1
K2:2D2At£ ty = Han Yo —Gan| Yoy —YiN * At 2Yon —YonN || =

7 (337
7= H1N+ti+ 2D22At +AtS2oN
At AX
Kinetics equati
quations (22) and (23) oY;
R

3= + 3@3 = k1Y1Y2 + 3k3Y4Y12 s
aY4 —

—t=0
a4

3 2
@y =Pp — P3 =Ka¥1Yo" —Ka¥g¥p",
can be realized numerically using Euler method.

3.3.3. Results and analysis
Parameters Evaluation

In order to discuss the analysis of the result the following parameters must be used. The reaction
rates and diffusion coefficients depend on temperature by Arrhenius law. The activation energy
of reactions are

Ex =86128 . E,, =169149 . E,q =48715 ;.
Koy =8.994 *10* | kyp =1.517 *10° , kos = 0.853*102

While the diffusion coefficiTnt gre:
RT

E E

2
Dy =1.09 cm®/sec. Epy =2.512x10° /. ).
D, =3.58x107%. Ep, =1.306 x10°

Dyg =1.19. Epp =2.797 x10°. T =700 k
Here we employment mixture measurement unit that is convenient for calculation and for results
presentation. Here we also discuss two cases.
Case-I

Whenl =0 &2 :0, this model is interested for slow processes only, when reaction rates are

determined by slow diffusion. Pre-exponential factors treating the corresponding "ideal”
conditions for chemical reactions when there are no kinetic difficulties. Mass concentration can
be calculated by formula.
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Where k- molar masses of substances.

C

Yiemy

k=7
ZYi m;
i=1

Fig. 3.12-15 shows that, at a temperature T=700 K the phase NisAl is absent, while the
phase NiAl appearing as gradually by increasing the time which show that the process is slow
and the diffusion is absent. On the other side Ni and Al is transfer to each other for reaction
continuation and trace more large distance. The rate of new phase formation in this case is slow.
Whereas at temperature T=800 K, T=900 K and T=1000 K the ratio between the reaction rate are
changed, and hence, there is a region where we have a finite fraction of phase NiAl and Ni3Al.

1.0 1.0
c 10]

0.8—-\ f . 3 / c 0-3’—\ ﬁ
c n 2 t=5%10" sec 5 084 S 1 2
% 0.6 T=700 K % 0.6 2 t=8+10" see % 061 (212710 sec
g 04 2 04l T=700 K £ 04 T=700 K
3 g 1 “
o 02 0.21 \ 9 0.2
1] 3 s
S o= ‘ ! 0.0 ‘ = 0.0 ‘ —

0.0 1.0x10* 2.0x10* X cm 0.0 1.0x10* 2.0x10* Xcm 0.0 1.0x10™" 2.0x10" X cm

(a) (b) (c)

: U, : t=5-10"*sec
Fig. 3.12. Distribution of elements and phases in surface layer for (a) (b)

8-10*sec © 1.2-10 % sec

timp =310 sec

at temperature T=700 K with mass flux

Om =12-10% mol /cm?sec

-5
and At=107"S€C \where 1.-Al, 2.- Ni, 3.-NiAl , 4.-NizAl

1.0

1.0

f £ 10| T=800 /
c 0'87\1 2 =5%10" sec gO.Sf é 081 2
l‘% 061 T=800 K % 0.6 2 =8+10" sec ‘% 0.6 t=1.2%10" sec
g 04 2 04l T=800 K S 04 T-800 K
s g 1 o
@ 02| = 02 9 021
7] 3 =
s 0.0 : : ‘ 0.0 : : 4 0.0 ‘ ‘
0.0 2.0x10°* 4.0x10* X cm 0.0 2.0x10™ 4.0x10* Xcm 0.0 2.0x10™ 40x10°  xcem
(a) (b) (c)
i istributi : t=5-10""sec
Fig. 3.13. Distribution of elements and phases in surface layer for (a) (b)

8-10*sec ,. 1.2-10*sec
(c)

timp = 3-10 > sec

at temperature T=800 K with mass flux G

-5
and At=10"S€C \where 1.-Al, 2.- Ni, 3.-NiAl , 4.-NizAl
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1.0 1.0
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0.8+ = 0.8+ T=900 K
c g 0.8 '5 2
S o6 N1 2 . 3 S 0.6
g t=5%10"" sec S 0.61 1 =
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(a) (b) (©)

_ =4
Fig. 3.14. Distribution of elements and phases in surface layer for (a) t=5-10""sec (b)
8-10~*sec © 1.2-10*sec Oy =12-10% mol /cm? sec

timp = 3-10 > sec

at temperature T=900 K with mass flux

-5
and At=10"S€C \where 1.-Al, 2.- Ni, 3.-NiAl , 4.-NizAl.

1.0 - y 1.0
=5%10" sec < 1.04 t=8+10" sec t=1.2%10 " sec
= (=}
0.8,\%1000 K 2 T=1000 K 0.8 T=1000 K
@© | c
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] 0.4 © < 0.4
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Fig. 3.15. Distribution of elements and phases in surface layer for (a) t=5-10""sec (b)

8-10 % sec © 1.2-10*sec —12.10° mol /cm? sec

_2.10"3 -5
limp =3-1077sec 4 At=10"sec \yhere 1.-Al . 2.- Ni . 3.-NiAl , 4.-NizAl.

at temperature T=1000 K with mass flux Gm

We observed that by increasing temperature the diffusion and reactions accelerated, and
we come to the treated zone. In the processing zone one can clearly find where the phase is
preferably NiAl . This is followed by a zone containing main part of phase NizAl . Zone sizes
depend on the temperature of the mass flux density.

Case-I1

When 6#0 and b ¢O’ the model corresponds to irreversible conditions and in this case
diffusion zone forms more quickly. The model is also interested for treating conditions of short

pulses with a high particle density.

—-10-3 — -3 = . -2.107°3
Here we assume 1=107sec,t;=15-10"sec Y20 =18, timp =2-10""sec

G =1.5-10° mol /cm? sec _ _ _ . :
, the chemical reaction occur if the heat flux increase in the range

4 .108 .
107 +10 times.
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Distribution of elements and phases of different times (given below) for temperature T=800 K
T=900 K and T=1000 K are given. Fig. 3.16-3.18 shows a gradual increase in the area occupied
by phase NiAl and a mixture of the two phases NiAl+NizAl. Features are only for the clearer
separation of two zones.

1.0 1.0 \ 1.0
g 98 o 08 1 zf . 08
8 2 2
£ o6l 8 0.6 £ 0.6/ 1 2
8 4 S 4 S 3
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cf/’n ] %]
£ 0.2y ¢ 0.24 2 0.29 3
= =
4 4 4
0.0 0.0 ‘ ‘ 0.0
0.0 6.0x10° 1.2x10% X cm 0.0 6.0x10° 1.2x10* X cm 0.0 6.0x10° 1.2x10" X cm
() (b) (c)

_ =4
Fig. 3.16. Distribution of elements and phases in surface layer for (a) t=5-10"sec (b)

810 sec © 1.2-10 % sec t; =10 3sec,t, =1.5-10 > sec

at temperature T=800 K with mass

5 2 -3 -5
=1.5-10°> mol /cm“sec i, =2-10""sec At=10"sec .
flux dm , 1mp and . Where 1. - Al, 2.- Ni , 3.-
NiAl , 4.- NisAl.
1.0 1.0 1.0
t=1.2%10" sec
S 081 0.8 0.8
N e '
£ 06 8 0.6 £ 06/ 2
@ £ c
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g 0.2+ % 0.2 ﬁ 0.2
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Fig. 3.17. Distribution of elements and phases in surface layer for (a) t=5-10"sec (b)

8-10*sec © 1.2-10 % sec t; =10 3sec,t, =1.5-10sec

at temperature T=900 K with mass

5 2 -3 -5
=1.5-10°> mol /cm“sec tj,, =2-10 ~sec = .
flux 9m , 'Mp and At=10 "S€C \yhere 1. - Al, 2.- Ni, 3.-
NiAl , 4.- NizAl.
1.0 1.0 1.0
t=1.2%10" sec
08{ \ 0.8 08{ 1
c L .5 ,§ 2
S 06 S 0.6 £ 06
© € c
£ =510 sec g =8+10" sec ]
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z 0.2 é 0.2 é 0.21
8 4
= 00 : . 0.01 : : 0.0 : -
0.0 6.0x10° 1.2x10" X cm 0.0 6.0x10° 1.2x10* X em 0.0 6.0x10° 1.2x10° X em
@ (b) (c)
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_ -4
Fig. 3.18. Distribution of elements and phases in surface layer for (a) t=510"sec (b)
-4 -4 _10-3 _ -3
8-10 “sec ©) 1.2-107"sec temperature T=1000 K with t; =10 “sec,t, =1.5-10 " sec

—1E.10° 2 . —2.1073 _1n-5
=1.5-10°> mol /cm sec timp =2-10 " sec and At=107"sec \prare 1 - Al 2.-Ni . 3.-

mass

flux Um

NiAl , 4.- NisAl.
Molar concentration

In the absence of relaxation time the molar concentration distribution of elements and
chemical compounds are presented in the Fig.(3.19-3.20) for different time moments. In this
case, when the temperature is low for reaction activation the distribution is almost near to the
initial ion distribution after implantation, but when the temperature is increase gradually the
values of concentration is decreases.

Y1 mol/m?®
2.5
t=1. 4 10™
2.0 2.6 10‘4
s
sec 4
1.0
0.5+ K
0.0 . .
0.0 2. OxlO 4. OxlO X cm 0.0 2.0x10 4.0x10™ X cm
(@) (b)
Y, mol/m? Y, mol/m®
- ” 1.5x10°
t=1. 4 194 =1 410"
0.021 2.6 10»4 > 610*
3.8 10»3 1.0x10° 3.810"
4.1 10" sec 4.1 107 sec
0.011 4
\” 4 5.0x107 \ 3
™~ 2 \ 2
1 1
0.001 , , 0.0+ , ,
0.0 2.0x10™ 4.0x10™ X cm 0.0 2.0x10™ 4.0x10* X cm
(c) (d)

Fig. 3.19. Molar concentration distribution of elements and phases in surface layer for different
4 4 _ _ e

time moments t=(1). 4107 . (2). 6107, (3) 8:107 (4) 10 °sec with L=t =0

T=650K. g, =13-10° mol /cm?sec . At =10">sec and A=0
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Y, mol/m? Y, mol/m?®

0.15/
1.64 t=1.4 10" 1 /k
> 610 / > /
1.2 3.810" 0.14</ 3
4.110° -
o8 4 Sec 2 t=1. 4 10"
' 2 \3 0.131 2.610"
0.4 3.810"
] 1¥ . 4.110° sec
0.0 ‘ ‘
0-0 2.0x10™ 4.0x107 Xem 0.0 2.0x10™ 4.0x10* X cm
(@) (b)
Y, mol/m® Y4 mol/m?3
0.057 8.0x10°1 -
0.041 t=1. 4 10" t=1. 4 104
' 2.6 10" 6.0x10°1 2.6 10"
0.03- 4 3.810" 4 3.8 1073
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]¥
0.00 0.04
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2.0x10™ 4.0x10* X cm

o
o

Fig. 3.20. Molar concentration distribution of elements and phases in surface layer for different
—4 -4 _ = —t. —

time moments t= (1), 4107 ; (2). 61077 (3) 8:107"; (4). 10 sec with & =t2 =0

.T=700K. Oy =13-10° mol /cm?sec . At =10°sec and A=0

When we take into account the finiteness of relaxation time we obtain some attractive
= _4 = . _3 - - -
result. That is for it =10 " 5€C.t; =3-1077S€C oy \yhen the temperature raises the diffusion and
reaction zones are accelerated and we come to the treated zone Fig.(3.21-3.22). Hence we can
obtain the composition of treated surface layer by varying the parameters include in the model

Y,=AL,Y,=Ni, Ys=NiAL , Y, = NizAL mol /m°

Where
Y1 mol/m?® Y2 mol/m®
504 0.15
t=1.- 4 10" a

40 2.-6 10™
3.-810" 0.10 3 t=1.- 4 10™
30+ 4.-1 10° sec 2.6 10"

4 /
3.-810"
20 3 |
0.05 1 4.-110° sec
1 ! 2\ _/
o K 0.00{

0.0 2.0x10™ 4.0x10™ X cm 0.0 2.0x10™ 4.0x10™ X cm

(a) (b)
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Fig. 3.21. Molar concentration distribution of elements and phases in surface layer for different
. 1074 1074 —4 -3
time momentst= (1. 410, 6107, (3 8107". (4) 107s
—25.10° 2 107 t,=3.10"3 -1075 t =2-10"3sec
with dm 2.5-10°mol /cm Sec. =10",t,=3-10 ,sec. At=10"sec . limp and  with
temperature T=650 K.
Y, mol/m® Y, mol/m®
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4.-110° sec 0.081 t=1.-4 10"
2.-6 10"
0.041 4 3.-810"
' 4-1107°sec
o 0.00
0.0 2.0x10"  4.0x10®  6.0x10™ X cm 0.0 2.0x10”"  4.0x10*  6.0x10™ X c¢m
(a) (b)
Y, mol/m°® Y, mol/m®
.16 o '
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Fig. 3.22. Molar concentration distribution of elements and phases in surface layer for different
. 1074 1074 -4 -3
time momentst= (2). 410" . (2), 61077 (3) 8:107™. (4) 10 gec

with Im = 2.5-10° mol /cm? sec.t; =10 t, =310 sec. At =10 °sec . timp =2 103 sec

temperature T=700 K.

and with




3.3.4. Generalization for other chemical systems

We can extend and generalize our problems to some more complicated problems:
Thermal conductivity process is more fast than diffusion one, the heated zone is more extensive
than specimen size. We believe that diffusion and chemical processes go in some narrow
temperature interval and assume that temperature is constant which is given. Hence we come to
thermal elastic diffusion for isothermal conditions with chemical reactions.

Assume that the M -chemical reactions are possible in the surface layer.

VkiA+VkiB —)VkiAB,i =12,...,n; k =12,....m

The molar concentration distributionYk follows from the diffusion equations (1) for moving

elements and kinitical equations (2) for immobile phases.

aaYtkz—V'Jk +wy k=1,2,...,m—r

Yy
X = , k=m—(r+1),...m
e (r+1)

e % k=12,..,5 is the sinks of substances due to the reactions,

n

¢ = kaﬂ’i

i=1

wher

] 3 .
Where ?i- are the i-th chemical reaction rate M°1/ M SEC Vki are the stoichiometric coefficient
of k -component in m-th reaction; N is the number of reactions.

The reaction rates depend on concentrations and temperature:
E; .
¢ = kiO exp[— R_;_:|'Yki ij = ki 'Yki ij NS :1,2,...,n

where Ei are the activation energies, R is the universal gas constant and kio is the pre-
exponential factors.

2
The diffusion fluxes M°!/M“S€C fo110ws from relations

S

Dy

where b is the relaxation times, is the diffusion coefficients of elements in the mixture,

(m2 /sec) _
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The Initial conditions are

The boundary conditions are

Note, that the same problem can be implemented on other systems,
for example 11 + Al NE+TE o0 The hroblems can be solved numerically.

3.4. Stresses and strains in the reaction zone

Because the temperature is not too big, the stresses in diffusion zone are elastic
and we can use known solutions of thermal elasticity theory, where some changing are
permissible. According to Dugamel Neyman relations, we have connection between stress and

strain tensor components and temperature in the form EBO]
Ojj = 2usij + O [ Ay — K]
or E Ev E(v-1)
=2 &ji + O;i Ekk — w
71 = o y) "{(1—2v)(1+v) K- 2v)1+v)
2
Li=xy.z. Lu . K=dtgnm -

where " 1 e 2 - Lame coefficients, - is bulk module, connecting with

technical values — elastic module gnd Pmsson coegffjcient by relat|0r|§
S 31-2v) T ([+v)i- 2v) T 2(1+v)

and gj =Lifi=j
5ij :O,if i = j,

=307 (T -Tp)

2T is thermal expansion coefficient, To _initial temperature.

When the composition changes, we can write [811"
w=23 aT(T _TO + ak(Ck—Cko)

k=1

a Cy

- concentration expansion coefficients; - are relative mass concentrations; index «0»

relates to no deformed state; M - is species number (pure elements and chemical compounds).
Mass concentrations are determlned by ﬁgllowfknﬁ(way Z
Cy = - Pk

yo,
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where Mk is molar mass of k-species.

Hence, we can write for T =const o m
w=3 kk(ykpo_ykoJ
1 Po P
1 Cl)k
For coefficients “k the simple evaluation take ce
@

i=1

Where for pure substances “i _ are atom volumes;,for chemical compounds - molar volumes:
I
= —
Pio

Pio s individual density of substance in standard state.
3.4.1. Problem on mechanical equilibrium

Taking the solution of the problem on mechanical equilibrium of thick plate free
on external mechanical loading, but absorbing the admixture from environment [80], and taking
into account the presented above formulae, we write the expressions for stress and strain tensor
components in the form
Exx :gxx(x)’ Eyy =¢u :g(x)’ Exy =&z = &y =0

Oy =0y :a(x) Oy =0y =0z =0

11+v ' 2v
= o Fix+F
Exx 31—Va) 1—v (1 2)

o E E
0=ayy=azz=—§—1_V+1—_V(F1X+F2)
8:F1X+F2

where Nﬁ Mo Ny—-Mp
p*-ra p* e
H 1H
j zt—dz sz (z,t)z.—dz
3 -V

0 0

Idz p= —zdz % = 7%dz

-V -V
0 0 0

The similar solution has been used in many publications, for example [82, 21]. Because function
@ equal to zero far from diffusion zone, Xp <<H, the integrals differ from zero only in

diffusion zone, X <*D. This value is determined numerically during solution of diffusion-
kinetic problem. The mechanical properties (modulus of elasticity and Poisson's ratio) can
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depend on composition. We assume = = EaCa +EgCg + EcCc. v=vaCa+vgCa+1cCc

accordance with literature data [83], we have EA:116; Eg =204, Ec =200 GPa;
vA=0.32. v5=0.28. vc =0.35

3.4.2. Stresses and strains calculation for the problem with summary reaction
In the absences of relaxation time and for small mass flux the stress and strains

distributions are presented in Fig.(3.23-3.25). The strains are small for small

_nrE.qn4 2 _ _ _ _
Gm = 2.5-10"" mol /em” sec but increase with temperature as shown in the Fig.( 3.23-3.25, a),

while the character of strains distribution is look like similar to the reaction product distribution
Fig.(3.23-3.25, b).

o ., ,GPa & E ,GPa
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(a) (b) (c)

Fig. 3.23. (a): Stresses (b): Strains and (c): Young module in surface layer for different time
moment; t=(1). 1.99-107*: (). 3.99-107*. (3) 6.99-107*: (4y 9.99-107*: (5) 1.5:107° gec
W|th tA:O;tB 201 T :450 K and A:O

o,  GPa €. E.GPa
011 0.04 : T=500 K 2001 1 / »
ol 2 /3 i 0.031 Strain 1954 4 ;
4/, Stresses

0.021 ; : 190 5 '

-4 . T=500 K 1851 T=500 K
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Fig. 3.24. (a): Stresses (b): Strains and (c): Young module in surface layer for different time
moment; t=(1). 1.99-107*: () 3.99-107. (3) 6.99-107*; (4). 9.99-107*: (5) 1.5:107° gqc
W|th tA:O;tB :O’ T :500 K and A:O
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04— 1 0.101

204 :
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Fig. 3.25. (a): Stresses (b): Strains and (c): Young module in surface layer for different time
moment; t=(1). 1.99-107*; () 3.99-107*: (3) 6.99-107*; (4). 9.99-107*: (5) 1.5:107° g¢c
with ta=0.tg =0. T=550K 4 A=0

When the relaxation time is takeing into account the stresses in the reaction zone in the
direction perpendicular to particle beam action achieve the large values. Most of them

correspond to the case with large mass fluxes Um and short impulse time (Fig. 3.26-3.33, a, b).

In this case the values of stress and strains are proportional to temperature .The Young module
changes very quickly, because the properties of materials are near to each other. The E-curves
repeat qualitatively the implanted particles curves (Fig. 3.26-3.33, ¢).

For non-zero relaxation time we have
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3.4.3. Stresses and strains calculation for the problem with detailed reaction scheme

—13-10° mol /cm?sec

In the absences of relaxation time and for small Um , the stress and

strain distribution are presented in Fig.( 3.34-3.35). In this case the stresses and strain Fig.( 3.34-
3.35, a,b) are decreases slowly by increasing the temperature.
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Fig.3.34 (a): Stresses (b): Strains and (c): Young module in surface layer for different time
-4 -4 _ _
moment; t= (1). 4107 (2). 6107 (3) 8:107". (4) 10%sec with =1, =0. T =650 K

3 2 -
O, =13-10° mol /cm? sec, At =10 sec and A=0

ny GPa & E, GPa

XX
0] TFTOK 0.201 Strain 200+ Young Module

Stresses /— T=700 K \ T=700 K
-204 // 1C 1 S~ ]

2.
0.161 100/ —
-25,
-30] ‘ ‘ 0.144 ‘ ‘ 50 ‘ ‘
0.0  20x10* 4.0x10* X cm 0.0  20x10* 4.0x10* Xcm 0.0 2,0x10* 4.0x10" Xcm
(a) (b) ()

Fig.3.35 (a): Stresses (b): Strains and (c): Young module in surface layer for different time
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T=700 K; Om =13-10° mol/cmzsec,At:10‘55ec and A=0

When we take into account the finiteness of relaxation time that is for

= _4 = . _3 - - -
t =10 "sec, t; =2-10"seC, 54 when the temperature increases the stress and strain Fig. (3.36-

3.37, a, b) in the reaction zone achieve large values with large Um . The Young module Fig. (3.36-

3.37, c¢) also change quickly by increasing temperature.
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Conclusion

This chapter embraces some particular problem of generalized thermal elastic diffusion
with chemical ration. We started from the known problem in literature and then added additional
term in order to discuss the chemical aspect. The reactions are written for system Ni-Al based on
state diagram. The first problem is on the equation system of Ni-Al having united stoichiometric
coefficient, while the second one are little bit more complicated. We have described the
generalized formulation as well as the particular problem formulation of the generalized thermal
elastic diffusion with chemical reaction. We constructed the mathematical models. Since such
problems are not easy to solve analytically so we have solved it numerically by using the implicit
deference scheme. The linear difference equations are solved by double-sweep method. The
numerical algorithm is suggested for all parameters region.

In the first problem we have disused simple model for new phase formation in surface layer
during ion implantation, with and without relaxation time for mass flux are take into account.

It has been shown that finiteness of relaxation time changes the molar concentrations
distribution in diffusion zone in comparison with usual diffusion problems. The stresses and
strains can achieve large values. It has also been shown that the concentration distribution and
stresses values depend on the relation between time scales of numerous physical processes. The
model can be applied for different chemical system.

In the second problem simple model has been constructed in order to describe the
intermetallic formation on surface layers during ion implantation, with the assumption of
isothermal condition. The implicit difference scheme has been suggested for the solution of
diffusion kinetic problem describing ion implantation by intermetallic phase formation. We
actually suggest a model of the surface modification of nickel- aluminum ions with the
relaxation of mass flows. The model corresponds to irreversible conditions and includes
finiteness of relaxation times for mass fluxes. The finiteness of relaxation time is very important
for the initial step of the process. Several specific times are used for example relaxation times,
impulse duration, chemical reaction time and specific diffusion time. The results illustrate the
convergence of difference scheme at variation of its parameters. Results analysis evolution in the
surface layer is obtained different for problem with and without finite relaxation times. It has
also been shown that the finiteness of relaxation time changes the concentrations distribution in
diffusion zone in comparison with usual diffusion problems with high temperature. Stresses,
Strain and Young Module also have been analyzed for the said problem.

Resultant Conclusion

Consequently, in our work we embraces some particular problem of generalized thermal
elastic diffusion with chemical ration. We started from the known problem in literature and then
added additional term in order to discuss the chemical aspect. The reactions are written for
system Ni-Al based on state diagram. The first problem is on the equation system of Ni-Al
having united stoichiometric coefficient, while the second one are little bit more complicated.
We have described the generalized formulation as well as the particular problem formulation of
the generalized thermal elastic diffusion with chemical reaction. We constructed the
mathematical models. Since such problem is not easy to solve analytically so we have solved it
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numerically by using the implicit deference scheme. The linear difference equations are solved
by double-sweep method. The numerical algorithm is suggested for all parameters region.

In the first problem we have disused simple model for new phase formation in surface
layer during ion implantation, with and without relaxation time for mass flux are take into
account. It has been shown that finiteness of relaxation time changes the molar concentrations
distribution in diffusion zone in comparison with usual diffusion problems. The stresses and
strains can achieve large values. It also has been shown that the concentration distribution and
stresses values depend on the relation between time scales of numerous physical processes. The
model can be applied for different chemical system.

In the second problem simple model has been constructed in order to describe the
intermetallic formation on surface layers during ion implantation, with the assumption of
isothermal condition. The implicit difference scheme has been suggested for the solution of
diffusion Kkinetic problem describing ion implantation by intermetallic phase formation. We
actually suggest a model of the surface modification of nickel- aluminum ions with the
relaxation of mass flows. The model corresponds to irreversible conditions and includes
finiteness of relaxation times for mass fluxes. The finiteness of relaxation time is very important
for the initial step of the process. Several specific times are used for example relaxation times,
impulse duration, chemical reaction time and specific diffusion time. The results illustrate the
convergence of difference scheme at variation of its parameters. Results analysis evolution in the
surface layer is obtained different for problem with and without finite relaxation times. It has
also been shown that the finiteness of relaxation time changes the concentrations distribution in
diffusion zone in comparison with usual diffusion problems with high temperature. Stresses,
Strain and Young Module also have been analyzed for the said problem.
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Appendix

List of the main symbols
E Young’s modulus;
V' Poisson’s ratio;
¢ is small strain tensor with components i ;

O is stress tensor with components Y ;

A M are Lame coefficients;

J is Kronecker delta;

U s displacement vector with components Ui
G s shear module

U s the time

F is vector of volume forces

T is the temperature

To is the temperature of no deformed state
4. is the heat flux

A s thermal conductivity coefficient;

C is heat capacity

€ is the heat capacity at the constant strains;
P is the density;

&Rt T are the relaxation times

2T is linear thermal expansion coefficient;
K is the bulk modulus

U is the internal energy

S is the entropy

V' is the Volume

G s the Gibbs energy

F - is free (Helmholtz) energy

H - is the enthalpy

P s the pressure

ikl s tensor of elastic modulus

D is diffusion coefficient
J is the diffusion flux
Ci are the mass concentrations

Yk are the relative molar concentrations
Pk are partial densities
@c js concentration expansion coefficient

SOk Hk are the partial densities, chemical potentials (partial Gibbs energies) , partial

enthalpies for species (components)
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Loq . Is the phenomenological coefficients;

Dr is thermal diffusion coefficient

I are stoichiometric coefficients

S is the reaction coordinate

X is the space coordinate

Om _

IS particle beam density

“ s the chemical reaction rate

X,¥:Z are spatial coordinates of Cartesian coordinate system
V-..=div... : V-..=grad...

First problem programing

program problem_1

implicit none

integer, parameter:: n=1000,m=20

real, parameter:: RR=8.31

real::
real::
real::
real::
real::
real::
real::
real::
real::
real::
real::

real::

YA(0:n),YAN(0:n),YANN(0:n),X(0:n),alp(1:n),bet(1:n)
YC(0:n),YCN(0:n),YBNN(0:n)

YB(0:n),YBN(0:n),YCNN(0:n)
A,B,C,F,znam,YAQO,m0,A0,k0,tA,DA,tB,DB,time,tau,h,time_end,h1,h2
sigl,sig2,sig3,kappa,R,RA,XDA,XDB,tau_print,tt,kC,kA,kB,RB,YBO
SZY(0:n),EXX(0:n),EZY(0:n),Eu(0:n),nyu(0:n),alpB,alpA,alpC
EAEB,EC,nyuA,nyuB,nyuC,mA,mB,mC,pL(0:n),pL0,pLA,pLB,pLC
om(0:n),omA,omB,omC,kappaB,H_spes,H_spesD,kap0,myu0,Ft,Ftt,t_imp
ALP_S,BET_S,GAM_S,N_S,M_S,F 1F 2,CA,CB,CC,CBO

ER,k00, TEMPER,tch,xxx

DA01,DA02,EDA1,EDA2,DBO0,EDB,DK

xdif,ddd,YAS,YBS,YCS,YKR

integer:: i,j,jprint(1:m),j1,m1,m2 k,n0,kdif,kk

character*9 X_Y(m)

character*2 dn(m)
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character*12 rez

data dn/'01','02','03','04','05','06','07','08','09",'10", &
'11''12','13','14','15','16','17','18",'19',"20"/
open(1,file="dann.dat’)

I'Y - diffusant concentration; YN,YNN - the same, from lower layers
IDA,DB - diffusion coefficients

ItAtA - relaxation times

IA-Ti

IB - Ni

Itau, h - time step and spatial step

1k00,ER - reaction parameters

ImO - mass flux density

IEu,EAEB,EC - elastic modulus
Inyu,nyuA,nyuB,nyuC - Puisson's ratio
lalpB,alpA,alpC - concentration expansion coefficients
ImA,mB,mC - molar masses, kg/mol

IH_spes - thickness of spesimen

InA,nB,nC - stoichiometric coefficients
read(1,*)tau,n0

read(1,*)YAO,mO0

read(1,*)A0,k00, Temper,ER

read(1,*)tA,tB

read(1,*)m1l,m2

read(1,*)tau_print,time_end
read(1,*)sigl,sig2,sig3

read(1,*)EA,EB,EC,nyuA,nyuB,nyuC
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read(1,*)mA,mB,H_spes,H_spesD
read(1,*)DA01,DA02,EDA1,EDA2,DB0,EDB,DK
read(1,*)pLA,pLB,pLC
read(1,*)t_imp
read(1,*)rez
read(1,*)jprint
close(1)
PLO=pLB
DA=DA01*exp(-EDAL/RR/TEMPER/DK)+DA02*exp(-EDA2/RR/TEMPER/DK)
DB=DB0*exp(-EDB/RR/TEMPER/DK)
xdif=0.
ddd=0.
write(*,*)'DA,DB=",DA,DB
Ispecific time of chemical reaction
xxx=ALOG(10.)
tch=exp(AIOG(1./k00)+ER/TEMPER/RR)
write(*,*)'tch=",tch
Istop
doi=1,m
I files for space distributions of concentrations for different time moments
X_Y(i)="XY'/[dn(i)//".dat’
end do
write(*,*)(X_Y(i),i=1,m)
write(*,*)(jprint(i),i=1,m)
time=0.

j=0
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j1=1
Imolar volumes
mC=mA+mB
omA=mA/pLA
omB=mB/pLB
omC=mC/pLC
znam=(omA+omB+omC)*3.
Iconcentration expansion coefficients (relative)
alpA=omA/znam
alpB=omB/znam
alpC=omC/znam
write(*,*)"alpA,alpB,alpC=',alpA,alpB,alpC
pL=pLO
IpL,pLO,pLA,pLB,pLC - density, kg/m**3; with indexes - for standart state
I spcific diffusion scales
XDA=sqrt(DA*t_imp*10)
XDB=sqrt(DB*t_imp*10)
write(*,*)’XDA,XDB="XDA,XDB
Ispace step
h=H_spesD/n
do i=0,n

X(i)=h*i

end do
YA=YAO
YAN=YAO

YANN=YAO
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YC=0.

YCN=0.

YCNN-=0.

Idiffusion - kinetic problem is solved in cm, g, sec

Iwhen [PIl]=kg/m3 and [m]=kg/mol, then [YB0]=mol/m3. In mol/cm3 we obtain
YBO=(pLB/mB)*1.e-6

YB=YBO0

YBN=YBO0

YBNN=YBO0

YAS=YAO

YBS=YBO0

YCS=0.

lonly for reaction A+B=C

kO=YBO/tch

kdif=3

1k0=0.

write(*,*)'reaction rate, mol/m3/sec, kO=",k0

Imol concentrations in diffusion problem are measured in mol/cm**3
RA=tau*DA/h**2

RB=tau*DB/h**2

write(*,*)'tau,h =',tau,h

open(2,file=rez)

Ibasic cicle

do while((time.lIt.time_end).or.(j1.le.m))

write(2,fmt=2)time, YA(0),YB(0),YC(0), YA(50), YB(50),YC(50),xdif

=i+l
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time=j*tau

YANN=YAN

YAN=YA

YBNN=YBN

YBN=YB

YCNN=YCN

YCN=YC

Imoles number in the reaction and during implantation is not conserved
Iboundary condition, x=0

lexternal impulse acts during t_imp

if(time.lt.t_imp)then

Ft=1.

Ftt=0.

else

Ft=0.

Ftt=0.

end if

Isubstance A

znam=1.+2.*RA+k0*tau*Y BN(0)+tA*k0*(2.*YBN(0)-YBNN(0))+tA/tau
alp(1)=2.*RA/znam

kappa=(2.*tau*m0/h)*(Ft+tA*Ftt)+YAN(0)*(1.+k0*tA*YBn(0))+tA*(2.*YAN(0)-
YANN(0))/tau

bet(1)=kappa/znam
Idouble-sweep method,; stright marching
doi=1,n-1

A=RA

B=RA

91



C=1.+2.*RA+K0*tau*YBN(i)+tA*(2.*YBN(i)- YBNN(i))*k0+tA/tau
F=tA*(2.*YAN(i)-YANN(i))/tau+YAN(i)*(1.+k0*tA*YBN(i))
znam=C-alp(i)*A
alp(i+1)=B/znam
bet(i+1)=(A*bet(i)+F)/znam
YKR=bet(i+1)/(1.-alp(i+1))
kk=i+1
if((abs(YKR-YAN(i)).le.1.e-20).and.(i.ge.25))then
YA(kk)=YAN(KK)
goto6
end if
end do
Iboundary condition of second type
kappa=(1.+tA*k0*YBN(n))*YAN(n)+tA*(2.*YAN(n)-YANN(n))/tau
znam=1.+2.*RA+tA/tau+k0*tau*(2.*YBN(n)-YBNN(n))+tau*k0*YBN(n)
kap0=2.*RA/znam
myuO=kappa/znam
YA(n)=(kap0*bet(n)+myu0)/(1.-kap0*alp(n))
6 do i=kk,1,-1
YA(i-1)=alp(i)*YA(i)+bet(i)
end do
lend substance A
Isubstance B
Iboundary condition, x=0
znam=1.+2.*RB+k0*tau*YAN(0)+tB*k0*(2.*Y AN(0)-YANN(0))+tB/tau

alp(1)=2.*RB/znam
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kappa=YBN(0)*(L.+k0*tB*YAN(0))+tB*(2.*YBN(0)-YBNN(0))/tau
bet(1)=kappa/znam
Idouble-sweep method,; stright marching
doi=1,n-1
A=RB
B=RB
C=1.+2.*RB+k0*tau*Y AN(i)+tB*(2.*Y AN(i)- Y ANN(i))*k0+tB/tau
F=tB*(2.*YBN(i)-YBNN(i))/tau+YBN(i)*(1.+k0*tB*YAN(i))
znam=C-alp(i)*A
alp(i+1)=B/znam
bet(i+1)=(A*bet(i)+F)/znam
YKR=bet(i+1)/(1.-alp(i+1))
kk=i+1
if((@bs(YKR-YBN(i)).le.1.e-20).and.(i.ge.25))then
YB(kk)=YBN(kK)
goto7
end if
end do
Iboundary condition of second type
kappa=(1.+tB*k0*YAN(n))*YBN(n)+tB*(2.*YBN(n)-YBNN(n))/tau
znam=1.+2.*RB+tB/tau+k0*tau*(2.*YAN(n)-Y ANN(n))+tau*k0*Y AN(n)
kap0=2.*RB/znam
myuO=kappa/znam
YB(n)=(kap0*bet(n)+myu0)/(1.-kap0*alp(n))
Ibechkward marching

7 do i=kk,1,-1
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YB(i-1)=alp(i)*YB(i)+bet(i)
end do
lend substance B
Icalculation of product concentration
do i=0,n
YC(i)=YCN(i)+k0*YA(i)*YB(i)*tau
end do
IProperties and mechanical part of the problem
Idensity and volume expansion
do i=0,n
lkg/m**3
pL(>i)=(yA(i)*mA+yB(i)*mB+yC(i)*mC)*1.e6
Imass concentrations
CA=mA*YA(i)*1.e6/pL (i)
CB=mB*YB(i)*1.e6/pL(i)
CC=mC*YC(i)*1.e6/pL(i)
I CBO=mB*YBO0*1.e6/pL0
om(i)=3.*(alpA*CA+alpB*(CB-1.0)+alpC*CC)
Eu(i)=EA*CA+EB*CB+EC*CC
nyu(i)=nyuA*CA+nyuB*CB+nyuC*CC
end do
Istresses and strains
lIntegrals
ALP_S=(Eu(0)/(1.-nyu(0))+Eu(n)/(1.-nyu(n)))/2.
doi=1,n-1

ALP_S=ALP_S+Eu(i)/(1.-nyu(i))
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end do

ALP_S=ALP_S*h+EB*(H_spes-H_spesD)/(1.-nyuB)
BET_S=(X(0)*Eu(0)/(1.-nyu(0))+X(n)*Eu(n)/(1.-nyu(n)))/2.
doi=1,n-1

BET_S=BET_S+Eu(i)*X(i)/(1.-nyu(i))

end do
BET_S=BET_S*h+EB*(H_spes**2-H_spesD**2)/(1.-nyuB)/2.
GAM_S=(X(0)**2*Eu(0)/(1.-nyu(0))+X(n)**2*Eu(n)/(1.-nyu(n)))/2.
doi=1,n-1

GAM_S=GAM_S+Eu(i)*X(i)**2/(1.-nyu(i))

end do
GAM_S=GAM_S*h+EB*(H_spes*H_spes**2-H_spesD*H_spesD**2)/(1.-nyuB)/3.
N_S=(om(0)*Eu(0)/(1.-nyu(0))+om(n)*Eu(n)/(1.-nyu(n)))/2.
doi=1,n-1

N_S=N_S+Eu(i)*om(i)/(1.-nyu(i))

end do

N_S=N_S*h/3.
M_S=(om(0)*X(0)*Eu(0)/(1.-nyu(0))+om(n)*X(n)*Eu(n)/(1.-nyu(n)))/2.
doi=1,n-1

M_S=M_S+Eu(i)*om(i)*X(i)/(1.-nyu(i))

end do

M_S=M_S*h/3.

I integration constants

znam=bet_S**2-alp_S*gam_S
F_1=(N_S**bet_S-M_S*alp_S)/znam

F_2=-(N_S*gam_S-M_S*bet_S)/znam
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do i=0,n
EZY(i)=F_1*X(i)+F 2
EXX(i)=(1.+nyu(i))*om(i)/3./(1.-nyu(i))-2.*nyu(i)*EZY (i)/(1.-nyu(i))
SZY (i)=-EU(i)*om(i)/3./(1.-nyu(i))+Eu(i)*EZY (i)/(1.-nyu(i))
end do
IDiffusion zone thickness
kdif=1
doi=n,0,-1
ddd=(YB(i)-YB(n))/YB(n)
if(abs(ddd).ge.0.001)then
xdif=x(i)
kdif=i
goto5
end if
end do
IAverage composition in the diffusion zone (it is necessary to change the integral calculation)
5 kk=kdif+2
YAS=(YA(0)+YA(KK))/2.
YBS=(YB(0)+YB(kK))/2.
YCS=(YC(0)+YC(kk))/2.
do i=1,kk
YAS=YAS+YA(i)
YBS=YBS+YB(i)
YCS=YCS+YC(i)
end do

YAS=YAS*h/x(kk)
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YBS=YBS*h/x(kk)
YCS=YCS*h/x(kk)

IRecording of the results in files with names X_Y(j1)
1if((j.eq.jprint(j1)).and.(j1.le.m))then
tt=tau*jprint(j1)

if((time.eq.tt).and.(j1.le.m))then
k=j1+2
open(k,file=X_Y(j1))

write(k,fmt=3)(X(i), YA(i),YB(i), YC(i),pL(i),om(i),Eu(i),nyu(i), EXX(i),SZY (i),EZY (i),i
=0,n)

close(k)
write(*,*)'j1,time,YB(0),YB(n)=", j1,time,YB(0),YB(n)
j1=j1+1
end if
lif(Y(n).ge.1.e-15)then
lwrite(*,*)'it is nesessary to evaluate massives!'
Istop
lend if
end do
2 format(8(E15.9,2X))
3 format(11(E15.9,2X))
close(2)
stop

end
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dann file

l.e-5 20 'tau nO

0.0 2.5e-4 'YO, mO 2.5 mol/ (cm**2 sec)

0.0 2.el6 450.0 1.181e5 'A0,kO0 1.e6 1.e2 1.e3 Temper ER
0.0 0.0 'tA 1.e-4,DA,tB,DB 1l.e-3, Sec,
cm**2/sec

5 20 'ml, m2

l.e-8 l.e-4 'tau print, time end

1.0 1.0 0.0 !'sigl,sig2,sig3

116.0 204.0 200.0 0.32 0.28 0.35 'EA,EB,EC (GPa),nyuA,nyuB,nyuC
48.e-3 59.e-3 0.1 1.e-3 'mA (Ti),mB (Ni), kg/mol (Ti

Ni),H spes H spesD (cm) for
diffusion

1.09 3.58e-4 251200. 130600. 1.9 279700. 3

'DAO1 , DAO2, EDAl.EDA2, DBO.EDB, DK

4.54e3 8.902e3 6.44e3 ! pLA(Ti),pLB(Ni),pLC(TiNi), kg/m**3
2.e- 't imp
rez 3.dat ! <12 symbols

2 10 20 30 40 50 60 70 80 100 120 150 200 250 300 500 750 1000
1250 1500 1750 2000 2250 2500 2750 3000

3500 4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000
20000 !jprint

Second problem programing

program problem_2

implicit none

integer, parameter:: n=1000,m=20

real:: Y1(0:n),Y1IN(0:n),YINN(0:n),X(0:n),Fx(0:n),alpl(1:n),betl(1:n)
real:: Y2(0:n),Y2N(0:n),Y2NN(0:n),alp2(1:n),bet2(1:n),S2(0:n),F(0:n)
real:: Y3(0:n),Y3N(0:n),Y3NN(0:n),G1(0:n),H1(0:n),Y1sum,I3,14

real:: Y4(0:n),Y4N(0:n),Y4NN(0:n),G2(0:n),H2(0:n),S1(0:n)

real:: A1,B1,U1,F1,Y10,m0,t1,D1, time,tau,h,r,time_end,VR1,VR2,DFT
real:: A2,B2,U2,F2,Y20,t2,D2,W1,W2,C1S,C2S,V1,V2,eps,znal,zna2,Z0
real:: kappal,kappa2,myul,myu2,XD1,XD2,XD1R,XD2R,tau_print,tt,k1,k2,k3,k10,k20,k30

real:: SZY(0:n),EXX(0:n),EZY(0:n),Eu(0:n),nyu(0:n),alpB,alpA,alpC,alpD
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real:: E1,E2,E3,E4,nyu0,nyul,nyu2,nyu3d,nyud,pL(0:n),pL0,pL1,pL2,pL3,pL4
real:: om(0:n),om1,0m2,0m3,0m4,H_spes,H_spesD,kap0,myu0,t_imp

real::
ALP SBET _S,GAM SN SM SF 1,F 2,CA(0:n),CB(0:n),CC(0:n),CD(0:n),m1,m2,m3,m4

real:: kO,A0,Ax,Ft,FtN,A,B,C,T,znam,znam1,znam2,znam4,znam6
real:: RR,TEMPER,D10,ED1,D20,ED2,DK

real:: EIA,E2AE3A

integer:: i,j,jprint(1:m),j1,k,n0,n1,n2,n3,n4,iend
character*9 X_Y(m)

character*2 dn(m)

character*12 rez

data dn/'01','02','03','04','05','06",'07",'08",'09','10",&
'11''12','13','14','15','16','17','18",'19',"20"/

Imolar concentrations Y1 - [Al]; Y2 - [Ni]; Y3 - [NiAl]; Y4 - [Ni3Al]
Imass concentrations CA,CB,CC,CD

IAl enters into Ni

open(1,file="dann.dat")

Itime step, point number <n

read(1,*)tau,n0

write(*,*)'tau,n0=",tau,n0

Imass flux density,source parameters
read(1,*)m0,A0,Ax
write(*,*)'m0,A0,Ax="m0,A0,Ax

Itemperature

read(1,*)TEMPER

write(*,*) TEMPER="TEMPER

Irelaxation times
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read(1,*)tl,t2

write(*,*)'t1,t2="t1,t2

Iparameters for calculation of diffusion coefficients
read(1,*)D10,ED1,D20,ED2,DK
write(*,*)'D10,ED1,D20,ED2=",D10,ED1,D20,ED?2
Ipre-exponential factors for reactions

1Z0 serves for normalization of reaction rates
read(1,*)k10,k20,k30,20
write(*,*)'k10,k20,k30,20=",k10,k20,k30,Z0
lactivation energies for reactions
read(1,*)E1A,E2A E3A
write(*,*)'E1A,E2A,E3A="E1A E2A E3A

I Time for calculation (observation time)
read(1,*)time_end
write(*,*)'time_end="time_end

lelastic modules

read(1,*)E1,E2,E3,E4
write(*,*)'E1,E2,E3,E4="E1,E2,E3,E4
Imolar masses

read(1,*)m1,m2

m3=m1+m2 INiAl

m4=3*m2+m1 INi3Al
write(*,*)'m1,m2,m3,m4="m1,m2,m3,m4
Ispecimen size (thickness)
read(1,*)H_spes,H_spesD

write(*,*)'H_spes,H_spesD=",H_spes,H_spesD
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IPoisson coefficients
read(1,*)nyul,nyu2,nyu3,nyus
write(*,*)'nyul,nyu2,nyu3,nyud4="nyul,nyu2,nyu3,nyud
Idensities

read(1,*)pL1,pL2,pL3,pL4
write(*,*)'pL1,pL2,pL3,pL4="pL1,pL2,pL3,pL4
limpulce duration

read(1,*)t_imp

write(*,*)'t_imp="t_imp

read(1,*)rez

read(1,*)jprint

close(1)

IUniversal gas constatnt

RR=8.3144621

linitial molar concentrations

Imol/cm**3

Y10=0.

Y20=pl2/m2

PLO=PL2

write(*,*)'y20=",y20

I Diffusion coeffecients D1 and D2
D1=D10*exp(-ED1/RR/TEMPER/DK)
D2=D20*exp(-ED2/RR/TEMPER/DK)
write(*,*)'D1,D2, cm**2/sec=",D1,D2

Ifiles for space distribution of consentration for different time moments

doi=1,m
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XY (i)="XY'/[dn(i)/I".dat’

end do
write(*,*)(X_Y (i),i=1,m)
write(*,*)(jprint(i),i=1,m)
time=0
j=0
j1=1
I'molar volumes
oml=ml/pL1l
om2=m2/pL2
om3=m3/pL3
om4=m4/pL4
znam=(om1+om2+om3+om4)*3.
I concentration expansion coefficients
alpA=om1/znam
alpB=om2/znam
alpC=0m3/znam
alpD=om4/znam
write(*,*)'alpA,alpB,alpC,alpD=",alpA,alpB,alpC,alpD
I basic material density
pL=pL2
I Specific diffusion scales
XD1=sqrt(D1*t_imp*10.)
XD1R=sqrt(D1*t1)
XD2=sqrt(D2*t_imp*10)

XD2R=sqrt(D2*t2)
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write(*,*)'’XD1,XD1R =',XD1,XD1R
write(*,*)'XD2,XD2R =',XD2,XD2R
I Space step
h=H_spesD/n
write(*,*)'tau,h =',tau,h
eps=0.00001
Ispatial points and space source distribution
do i=0,n
X(i)=h*i
Fx(i)=exp(-Ax*X(i)**2)
end do
write(*,*)'X(i)="
write(*,*)(X(i),i=0,n,100)
write(*,*)'Fx(i)='
write(*,*)(Fx(i),i=0,n,100)
linitial concentrations
do i=0,n
Y1(i)=Y10
Y2(i)=Y20
Y 3(i)=0.
Y4(i)=0.
Y1IN(i)=Y10
Y2N(i)=Y20
Y 3N(i)=0.
Y4N(i)=0.

end do
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Imol concentrations in diffusion problem are measured in mol/cm**3
Idiffusion - kinetic problem is solved in sm, g, sec
13=0.
14=0.
if((t1.gt.1.e-10).and.(t2.gt.1.e-10))then
VR1=sqrt(D1/t1)
VR2=sqrt(D2/t2)
write(*,*)'VR1,VR2="VR1,VR2
end if
Ireactin rates
k1=Z0*k10*exp(-E1A/RR/TEMPER)
k2=70*k20*exp(-E2A/RR/TEMPER)
k3=20*k30*exp(-E3A/RR/TEMPER)
write(*,*)'k1,k2,k3 =',k1,k2,k3
r=tau/h**2
kappal=tl/tau
kappa2=t2/tau
write(*,*)'kappal,kappa2="kappal,kappa2
open(2,file=rez)
Y 1sum=0.
Imoles number in the reaction and during implantation is not conserved
Iboundary condition, x=0
lexternal impulse acts during t_imp
do while(time.lt.time_end)
if(j1.gt.m)then

stop
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end if

Iwrite(*,*)'1'
write(2,fmt=2)time,Y1(0),Y2(0),Y3(0),Y4(0),Y1(n0),Y2(n0),Y3(n0),Y4(n0),Y1sum,I3,14
Iwrite(*,*)'2'

=i+

time=j*tau
YINN=Y1N
YIN=Y1
Y2NN=Y2N
Y2N=Y2
Y3NN=Y3N
Y3N=Y3
Y4NN=Y4N
Y4AN=Y4

FIN=Ft
if(time.lt.t_imp)then
IFt=(-A0*time)
Ft=1.

DFT=0.

else

Ft=0.

DFT=0.
Iwrite(*,*)'Ft=",Ft
end if

lequations coefficients for intermediate calculation

do i=0,n0
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H1(3i)=K1*t1*Y INN(i)+3.*k2*t1*Y INN(i)*Y 2NN (i)**2

GL(i)=K1*t1*Y 2NN(i)+k2*t1*Y2NN(i)* Y 2NN(i)**2+4.%k3*t1*Y INN(i)* Y 4ANN(i)+1.

S1(i)=k1*Y2NN(i)+k2* Y 2NN(i)*Y 2NN(i)**2+2.*k3*YANN(i)* Y INN(i)+2.*k3*k2*t1*Y INN
(i)**2%Y 2NN(i)*Y 2NN (i) **2

H2(i)=k1*t2*Y INN(i)+9.%k2*t2*Y INN(i)* Y 2NN(i)**2+1.
G2(i)=k1*t2*Y2NN(i)+3.*k2*t2*Y2NN(i)* Y2NN(i)**2
S2(i)=k1*Y INN(i)+3.*k2*Y INN(i)*Y 2NN(i)**2
F(>i)=FX(i)*Ft
end do
Ifirst concentration
Iboundary condition on external surface x=0
znam1=G1(0)+2.*D1*r+kappal+tau*S1(0)
alp1(1)=2.*D1*r/znaml

betl(1)=kappal*(2.*Y1N(0)-
Y INN(0))+tau*(mO0*(F(0)+t1*FX(0)*DFT)+2.*k3**2*t1*Y4ANN(0)*YINN(0)**2*Y1NN(0)**
2)

bet1(1)=(bet1(1)+G1(0)*Y1N(0)-H1(0)*(Y2N(0)-Y2NN(0)))/znam1
Iwrite(*,*) '1', alp1(1),bet1(1)
I Double sweep method, Stright marching
doi=1,n-1
Al1=D1*r
B1=D1*r
Ul=kappal+G1(i)+2.*Al+tau*S1(i)

F1=2*tau*k3**2*t1*YANN(i)*Y INN(i)**2*Y INN(i)**2+G1(i)*Y IN(i)-H1(i)* (Y 2N(i)-
Y2NN(i)+ &

mO*tau*(t1*DFT+F(i))-kappal*(YINN(i)-2.*Y1IN(i))

znam=U1-alp1(i)*Al
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alpl(i+1)=Bl/znam
bet1(i+1)=(Al*betl(i)+F1)/znam
iend=i
C1S=bet1(i+1)/(1.-alp1(i+1))
if((@bs(C1S-Y1N(i)).le.YIN(i)*eps).and.(i.ge.25))then
goto4
end if
end do
iend=n
znal=2.*D1*r+kappal+G1(n)+tau*S1(n)
V1=2.*D1*r/znal
V2=kappal*(2.*Y1N(n)-YINN(n))+G1(n)*Y1IN(n)-HL1(n)*(Y2N(n)-Y2NN(n))+&
tau*(mO*F(n)+1*mO*Fx(n)*DFT+2.*k3**2*t1*YANN(n)*Y INN(n)**2*Y INN(n)**2)
V2=V2/znal
Y1(iend)=(V1*betl(iend)+V2)/(1.-V1*alpl(iend))
goto5
4 Y1(iend)=C1S
5 do i=iend-1,0,-1
Iwrite(*,*)'3'
Y1(i)=alpl(i+1)*Y1(i+1)+betl(i+1)
if(Y1(i).le.0)then
Y1(i)=0.
end if
end do
Iwrite(*,*)'2", Y1(1),Y1(N)

Istop
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Y 1sum=(Y1(0)+Y1(n))/2.
doi=1,n-1
Y1lsum=Y1lsum+Y1(i)
end do
Y1sum=Ylsum*h
ISecond concentration
znam4=2.*D2*r+kappa2+H2(0)+tau*S2(0)
alp2(1)=2.*D2*r/znam4
bet2(1)=(kappa2*(2.*Y2N(0)-Y 2NN(0))+H2(0)*Y2N(0)-G2(0)*(Y1N(0)-Y 1NN(0)))/znam4
doi=1,n-1
A2=D2*r
B2=D2*r
U2=kappa2+H2(i)+2.*A2+tau*S2(i)
F2=kappa2*(2.*Y2N(i)-Y2NN(i))+H2(3i)*Y2N(i)-G2(i)* (Y IN(i)- Y INN(i))
znam=U2-alp2(i)*A2
alp2(i+1)=B2/znam
bet2(i+1)=(A2*bet2(i)+F2)/znam
iend=i
C2S=bet2(i+1)/(1.-alp2(i+1))
if((abs(C2S-Y2N(i)).le.Y2N(i)*eps).and.(i.ge.50))then
goto6
end if
end do
iend=n
zna2=2.*D2*r+kappa2+H2(n)+tau*S2(n)

W1=2.*D2*r/zna2
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W2=(kappa2*(2.*Y2N(n)-Y2NN(n))+H2(n)*Y2N(n)-G2(n)*(Y1N(n)-Y1NN(n)))/zna2
Y2(iend)=(W1*bet2(iend)+W2)/(1.-W1*alp2(iend))
goto7
6 Y2(iend)=C2S
7 do i=iend-1,0,-1
Y2(i)=alp2(i+1)*Y2(i+1)+bet2(i+1)
if(Y2(i).le.0)then
Y 2(i)=0.
end if
end do
IKinetic equation
It is necessary to use more rigorous methods for stiff problem!!!
do i=0,n
Y3(i)=Y3N(i)+tau*(K1*Y IN(i)* Y 2N(i)+3.%k3* Y AN (i) *Y IN(i)**2)
if(Y3(i).le.0.)then
Y 3(i)=0.
end if
Y4(i)=Y4AN(i)+tau* (k2*YIN(i)*Y2N(i)*Y2N(i)**2-k3*YAN(i)* Y IN(i)**2)
if(Y4(i).le.0.)then
Y4(i)=0.
end if

end do

IProperties and mechanical part of the problem
do i=0,n

IDensity and mass concentrations g/cm**3
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pL>1)=Y1(i))*m1+Y2(i)*m2+Y3(i)*m3+Y4(i)*m4
IMass consentrations
CA(i)=m1*Y1(i)/pL(i)
CB(i)=m2*Y2(i)/pL(i)
CC(i)=m3*Y3(i)/pL(i)
CD(i)=m4*Y4(i)/pL(i)
IMechanical properties
Ivolume expansion
om(i)=3.*(alpA*CA(i)+alpB*CB(i)+alpC*CC(i)+alpD*CD(i))
lelastic stresses
Eu(i)=E1*CA(i)+E2*CB(i)+E3*CC(i)+E4*CD(i)
IPoisson coefficicent
nyu(i)=nyul*CA(i)+nyu2*CB(i)+nyu3*CC(i)+nyud*CD(i)
end do
ITotal mass consentration CC(i) i.e integral from 0 to L CC(x) dx
I3=(CC(0)+CC(n))/2
doi=1,n-1
13=13+CC(i)
end do
13=13*h/H_spesD
ITotal mass consentration CD(i) i.e integral from 0 to L CD(xX) dx
14=(CD(0)+CD(n0))/2
doi=1,n-1
14=14+CD(i)
end do

14=14*h/H_spesD
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IStresses and strains
lIntegrals
ALP_S=(Eu(0)/(1.-nyu(0))+Eu(n)/(1.-nyu(n)))/2
doi=1,n-1

ALP_S=ALP_S+Eu(i)/(L.-nyu(i))

end do

ALP_S=ALP_S*h+E2*(H_spes-H_spesD)/(1.-nyu2)
BET_S=(X(0)*Eu(0)/(1-nyu(0))+x(n)*Eu(n)/(1.-nyu(n)))/2.
doi=1,n-1

BET_S=BET_S+Eu(i)*X(i)/(1.-nyu(i))

end do

BET_S=BET_S*h+E2*(H_spes**2-H_spesD**2)/(1.-nyu2)/2.
GAM_S=(X(0)**2*Eu(0)/(1-nyu(0))+x(n)**2*Eu(n)/(1.-nyu(n)))/2.
doi=1,n-1
GAM_S=GAM_S+Eu(i)*X(i)**2/(1.-nyu(i))
end do
GAM_S=GAM_S*h+E2*(H_spes*H_spes**2-H_spesD*H_spesD**2)/(1.-nyu2)/3.
N_S=(om(0)*Eu(0)/(1.-nyu(0))+om(n)*Eu(n)/(1.-nyu(n)))/2.
doi=1,n-1
N_S=N_S+Eu(i)*om(i)/(1.-nyu(i))
end do
N_S=N_S*h/3.
M_S=(om(0)*X(0)*Eu(0)/(1.-nyu(0))+om(n)*x(n)*Eu(n)/(1.-nyu(n)))/2.
doi=1,n-1
M_S=M_S+EU(i)*X(i)*om(i)/(1.-nyu(i))

end do
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M_S=M_S*h/3.
lIntegration constants
znam6=bet_S**2-alp_S*gam_S
F_1=(N_S*bet_S-M_S*alp_S)/znam6
F_2=-(N_S*gam_S-M_S*bet_S)/znam6
doi=0,n
EZY(i)=F_1*X(i)+F 2
EXX(i)=(1.+nyu(i))*om(i)/(1.-nyu(i))/3.-2.*nyu(i)*EZY (i)/(1.-nyu(i))
SZY (i)=-Eu(i)*om(i)/(1.-nyu(i))/3.+Eu(i)*EZY (i)/(1.-nyu(i))
end do
IAccording to the results in files with names X_Y(j1)
T ((j1.eq,jprint(j1)) and (j1,le.m) then
tt=tau™jprint(j1)
if((time.eq.tt).and.(j1.le.m))then
k=j1+2
open(k,file=X_Y(j1))
write(k,fmt=3)(X(i),Y1(i),Y2(i),Y3(i),Y4(i),pL(i),CA(i),CB(i),CC(i),CD(i),om(i),&
Eu(i),nyu(i),EXX(i),SZY (i),EZY (i),i=0,n)
close(k)
write(*,*)'j1,time,Y1(0),Y 1sum="j1,time,Y1(0),Y1sum
j1=j1+1
end if
end do
2 format(12(E15.9,2X))
3 format(16(E15.9,2X))

close(2)
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end

dann file
0.00001 1000 'tau 2.0 n0O<n
1.5e5 0.0 1.e9 'm0 2.5 (e3) mol/(cm**2 sec), A0, Axl.5eb5
1000.0 ! TEMPER
l.e-3 1.5e-3 'tl 1.e-4,t2,1.e-3, Sec,

4.36 2.69509e5 1.9 2.797e5 2.0

'D10,ED1 (Al),D20,ED2 (Ni) cm**2/sec, J/mol !Ni c Al???
8.994el16 1.517e21 0.853el14 1.e-8

'k10,k20,k30,Z0 - transition to measurement unit 1l.e-12 1l.e-4

86128.0 169149.0 48715.0 'E1A, E2A,E3A

1l.e7 'time end

200 70 270 670 'El, E2,E3,E4 GPa

26.98 58.69 'ml (Al), m2 (Ni)Molar masses, g/mol
0.1 1.e-3 'H spes cm H spes H spesD (cm)

0.31 0.35 0.27 0.28 'nyul,nyu2,nyu3,nyud Poisson Coefficient
2.7 8.9 11.6 29.4 'pL1 (Al),pL2 (Ni),pL3,pL4 Density g/cm**3
2.e-3 't imp 2.0

rez.dat ! <12 symbols

4 10 30 50 60 80 100 120 140 160 200 220 240 260 280 300 320 340
360 400 15000 20000 25000 30000 35000 40000 45000 50000

20 50 100 200 300 400 500 600 700 800 1000 1100 1200 1300 1400
1500 1600 1700 2500 3000 5000 7500 'Jprint tau=0.1

8 20 40 80 120 160 200 240 280 320 400 440 480 520 560 600 640
680 720 800 1000 1250 1500 1750 2000 2250 2500 2750 3000 3500
4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000
20000 'jprint tau=0.25

4 10 20 40 60 80 100 120 140 160 200 220 240 260 280 300 320 340
360 400 600 1000 1250 1500 1750 2000 2250 2500 2750 3000 3500
4000 5000 €000 7000 8000 9000 10000 12000 14000 16000 18000
20000 'jprint tau=0.5

2 5 10 20 30 40 50 60 70 80 100 110 120 130 140 150 160 170 180
300 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3500
4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000
20000 'Jprint tau=1

When tl1=t2=0, this problem is interested only for slow
processes, when reaction rates are limited by slow diffusion.

2 50 75 150 300 500 750 1000 1250 1500 1750 2000 2250 2500 2750
3000 3500 4000 5000 6000 7000 8000 9000 10000 12000 14000 16000

18000 20000 'Jprint
0.1 400 'tau 2.0 nO<n
0.35 0.0 50.0 'm0 2.5 (e3) mol/ (mkm**2 sec), AQO, Axl.5eb
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1000.0 !TEMPER

0.0 0.0 'tl 1l.e-4,t2,1.e-3, Sec,

1.09 2.512e5 3.58e-4 1.306e5 1.9 2.797e5

'D101 ,ED11,D102,ED12,D20,ED2 cm**2/sec, J/mol

8.994el16 1.517e21 0.853el14 1.e-12

'k10, k20, k30, Z0 - transition to measurement unit 1l.e-12 1l.e-4

86128.0 169149.0 48715.0 'E1A ,E2A,E3A

1l.e7 'time end

200 70 270 670 'E1 ,E2,E3,E4 GPa

26.98 58.69 !ml,m2 Molar masses

1.0 'H spes mkm

0.31 0.35 0.27 0.28 !nyul, nyu2, nyu3, nyud Poisson Coefficient
2.7 8.9 11.6 29.4 'pLl, pL2, pL3, pL4 Density g/cm**3

4.e2 't imp 2.0

0.0 1.8 'Y10,Y20 - initial molar concentration, mol/mkm**3
rez.dat ! <12 symbols

20 50 200 400 800 1600 2400 3200 4000 4800 5600 7200 8000 9000
10000 12000 15000 20000 25000 30000 35000 40000 45000 50000

20 50 100 200 300 400 500 600 700 800 1000 1100 1200 1300 1400
1500 1600 1700 2500 3000 5000 7500 'Jprint tau=0.1

8 20 40 80 120 160 200 240 280 320 400 440 480 520 560 600 640
680 720 800 1000 1250 1500 1750 2000 2250 2500 2750 3000 3500
4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000
20000 'Jprint tau=0.25

4 10 20 40 60 80 100 120 140 160 200 220 240 260 280 300 320 340
360 400 600 1000 1250 1500 1750 2000 2250 2500 2750 3000 3500
4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000
20000 'Jprint tau=0.5

2 5 10 20 30 40 50 60 70 80 100 110 120 130 140 150 160 170 180
300 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3500
4000 5000 6000 7000 8000 9000 10000 12000 14000 16000 18000
20000 'Jprint tau=1

When tl1=t2=0, this problem is interested only for slow
processes, when reaction rates are limited by slow diffusion.

2 50 75 150 300 500 750 1000 1250 1500 1750 2000 2250 2500 2750
3000 3500 4000 5000 6000 7000 8000 9000 10000 12000 14000 16000
18000 20000 'Jprint

% %k %k k %k
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