добной форме с возможным переходом в кристобалит, волластонит CaO·SiO₂, ортосиликат кальция 2CaO·SiO₂ и двухкальциевый фосфат 2CaO·P₂O₅.

СПИСОК ЛИТЕРАТУРЫ

- Путляев В.И. Современные биокерамические материалы // Соросовский образовательный журнал. – 2004. – Т. 8. – С. 44–50.
- Баринов С.М. Керамические и композиционные материалы на основе фосфатов кальция для медицины // Успехи химии. – 2010. – № 79. – С. 15–31.
- Петровский Г.Т., Шашкин В.С., Яхкинд А.К. Основные направления золь-гель синтеза стеклообразных материалов для оптики из коллоидных форм кремнезема // Физика и химия стекла. 1997. Т. 23. № 1. С. 43–53.
- Цветкова И.Н., Шилова О.А., Воронков М.Г., Гомза Ю.П. Золь-гель синтез и исследование гибридного протонпроводящего материала // Физика и химия стекла. – 2008. – Т. 34. – № 1. – С. 88–98.
- Петровская Т.С., Борило Л.П., Верещагин В.И., Козик В.В. Структура и свойства нанопродуктов системы SiO₂−P₂O₅ // Стекло и керамика. – 2008. – № 11. – С. 29–33.

Изучены структура и физико-химические свойства полученных пленок. Показатель преломления пленок изменяется в пределах от 1,41 до 1,45.

- Борило Л.П. Тонкопленочные неорганические наносистемы / под ред. д-ра техн. наук проф. В.В. Козика. – Томск: Изд-во ТГУ, 2003. – 134 с.
- Петровская Т.С., Борило Л.П., Козик В.В. Физико-химические процессы при формировании тонких пленок в системе SiO₂−P₂O₅ // Известия вузов. Химия и химическая технология. – 2010. – Т. 53. – Вып. 8. – С. 120–124.
- Белецкий Б.И., Свентская Н.В. Кремний в живых организмах и биокомпозиционных материалах нового поколения // Стекло и керамика. – 2009. – № 3. – С. 26–30.
- Наканиси К. Инфракрасные спектры и строение органических молекул. – М.: Мир, 1965. – 219 с.
- Фиалко М.Б. Неизотермическая кинетика в термическом анализе. – Томск: Изд-во ТГУ, 1981. – 110 с.

Поступила 08.09.2011 г.

УДК 666.973.6.572

ПРОЦЕССЫ ФАЗООБРАЗОВАНИЯ И ФОРМИРОВАНИЯ ПОРИСТОЙ СТРУКТУРЫ ГАЗОБЕТОНА НА ОСНОВЕ ПОРТЛАНДЦЕМЕНТА С ИСПОЛЬЗОВАНИЕМ ПОЛЕВОШПАТОВО-КВАРЦЕВОГО ПЕСКА И ВОЛОКОН АСБЕСТА

Р.Г. Долотова, В.И. Верещагин, В.Н. Смиренская

Томский политехнический университет E-mail: dolot63@mail.ru

Изучены процессы фазообразования, структура порового пространства и межпоровых перегородок неавтоклавного газобетона плотностью 500 кг/м³ на основе портландцемента с использованием кремнеземистого заполнителя полевошпатово-кварцевого песка в сочетании с волокнами асбеста. Рассмотрены условия формирования равномерной пористой структуры газобетона и образования низкоосновных гидросиликатов кальция в мелкодисперсном состоянии с формой кристаллов в виде игл и волокон.

Ключевые слова:

Ячеистый бетон, структура, фазовый состав, волокна, макроструктура, микроструктура, пора, пористая перегородка. *Кеу words:*

Cellular concrete, structure, phase structure, fibres, macrostructure, microstructure, porous, porous partition.

Введение

Решение вопроса организации производства энергосберегающего неавтоклавного ячеистого бетона связано, прежде всего, с наличием сырьевых материалов – кремнеземистых заполнителей. В современной строительной практике, использующей более 1000 видов различных по природе, свойствам и назначению сырьевых материалов, исключительно важное место принадлежит как природным, так и техногенным материалам, позволяющим организовать производство эффективных строительных изделий с заданным набором эксплуатационных свойств и востребованных на рынке местных строительных материалов. Традиционно в составах ячеистых бетонов в качестве кремнеземистого компонента применяется хорошо изученный кварцевый песок, содержащий не менее 90 % SiO₂ [1, 2]. Использование природных заполнителей другой минерализации в технологии ячеистого бетона рассмотрено в работах авторов [3–5].

Доступными источниками местного кремнеземистого сырья, как потенциального резерва минерально-сырьевой базы промышленности строительных материалов, являются полевошпатовокварцевые пески, использование которых в производстве ячеистых бетонов предусматривается минимумом требований соответствующих стандартов. Ранее проведенные комплексные исследования [6] позволили оценивать качество и пригодность полевошпатово-кварцевых песков в качестве заполнителей неавтоклавного ячеистого бетона.

Ячеистый бетон можно рассматривать как строительный композит: материал с требуемыми свойствами можно получить путем изменения структуры матрицы (для ячеистых бетонов это межпоровые перегородки) композита путем введения волокнистых добавок различной природы в формовочные смеси, что приводит к эффективному улучшению свойств готовых изделий за счет их армирования [7–9].

Целью данной работы является исследование структуры и минерального состава газобетона неавтоклавного твердения на основе портландцемента с использованием полевошпатово-кварцевого песка и асбестовых волокон. В соответствии с поставленной целью решались задачи о влиянии данных компонентов на формирование прочностных структур ячеистого бетона.

Экспериментальная часть

Масса для изготовления ячеистого бетона готовилась по общепринятой методике [2] путем смешения сырьевых компонентов и технологических добавок в последовательности: полевошпатовокварцевый песок \rightarrow известковое молоко \rightarrow технологические добавки (жидкое натриевое стекло и микрокремнезем) \rightarrow вода (50 мас. % от общего количества воды затворения) \rightarrow асбестовое волокно \rightarrow портландцемент \rightarrow полуводный гипс \rightarrow вода (оставшееся количество) \rightarrow суспензия порошка алюминия (газообразователь).

Для получения ячеистого бетона на первом этапе готовили шлам, состоящий из гашеной извести, полевошпатово-кварцевого песка и 50 мас. % воды (от общего количества воды затворения) с температурой 70...80 °C, активное перемешивание осуществляли в бетономешалке НО-1510 (БП-33) в течение 5...7 мин. На втором этапе без остановки мешалки в полученный шлам добавляли асбестовые волокна длиной 0,05...2 мм, технологические добавки, портландцемент марки М400 и оставшееся количество воды. На заключительном этапе в приготовленную смесь вводили предварительно подготовленную суспензию порошка алюминия, при непрерывном перемешивании массы в течение 3...5 мин. Температура бетонной смеси составляла 30...35 °С. Полученную смесь разливали в разъемные, предварительно смазанные и подогретые металлические формы. После достижения необходимой прочности изделия извлекали из форм и направляли в пропарочную камеру на тепловлажностную обработку при атмосферном давлении и температуре 90 °C по режиму 1,5 - (6...8) - (1,5...2) ч для завершения процессов твердения. По результатам проведенных исследований, были получены ячеисто-бетонные образцы, прочностные характеристики которых при средней плотности 500...550 кг/м³ составляли: 2,65...2,75 МПа, что на 15...20 % выше показателей установленных стандартом [1].

Методами сканирующей электронной микроскопии, рентгенофазового и дифференциальнотермического анализа были изучены процессы фазообразования, структура порового пространства и межпоровых перегородок неавтоклавного газобетона плотностью 500 кг/м³ на основе портландцемента с использованием кремнеземистого заполнителя полевошпатово-кварцевого песка в сочетании с волокнами асбеста после тепловлажностной обработки пропариванием.

Определение макро- и микроструктурных характеристик исследуемого объекта производилось с помощью стереоскопического микроскопа с увеличением ×80 ScienOP SP-30A, установки микроскопа Intel(r)Play[™] Q×3[™] Computer Microscope (с увеличением до ×200) и сканирующего (растрового) электронного микроскопа JSM-840 фирмы «Jeоl» (Япония), снабженного рентгеновским микроанализатором фирмы «LINK».

Для определения минералогического состава готовых изделий проводили качественный рентгенофазовый анализ с использованием дифрактометра ДРОН-3М в диапазоне $2\theta=10...90^\circ$, скорость вращения гониометра составляла 4 град/мин, напряжение на аноде 30...40 кВ, анодный ток 15...25 мА.

Дифференциально-термический и термогравиметрический анализы выполняли на дериватографе системы Paulik-Paulik-Erdey марки Q-1500 D. Нагрев материалов проводили до 1000 °C со скоростью нагрева исследуемых образцов 10 °C/мин.

Результаты и их обсуждение

Макроструктура газобетона с плотностью 500 кг/м³ представлена равномерной пористой структурой с выдержанными размерами пор от 0,3 до 1 мм, которые формируют ячеистую структуру, представленную порами овальной или округлой формы (рис. 1) и ровную без раковин и трещин поверхность межпоровых перегородок. Полидисперсный характер распределения пор обеспечивается равномерным распределением пор меньших размеров между порами больших размеров.

Рис. 1. Макроструктура неавтоклавного газобетона на основе портландцемента с использованием полевошпатово-кварцевого песка и волокон асбеста

Рис. 2. Микрофотографии порового пространства и межпоровой перегородки неавтоклавного газобетона на основе портландцемента с использованием полевошпатово-кварцевого песка и волокон асбеста: а) внутренняя поверхность поры; б, в) межпоровые перегородки при разном увеличении

Неавтоклавный ячеистый бетон изготавливают в основном при использовании портландцемента, и именно процессы схватывания и твердения цемента в присутствии компонентов ячеистой массы определяют минеральный состав новообразований и свойства изделий [10]. Использование электронной микроскопии при сверхвысокой разрешающей способности позволило описать морфологические особенности гидратных фаз и исследовать поровый раствор гидратированного цемента.

На микрофотографиях (рис. 2) ячеистого бетона отчетливо видны кристаллические образования из сферолитов, мельчайших игольчатых и нитевидных кристаллов новообразований, скрепленных гелеобразной фазой. Дендритоподобные сростки кристаллов размерами 15...25 мкм из хорошо закристаллизованных длинноволокнистых (игольчатых) гидросиликатов кальция, которые образовались на границе раздела фаз межпоровой перегородки и пространства поры (рис. 2, а). Часть игольчатых кристаллов «прошивают» поровое пространство газобетона (рис. 2, б), что способствует упрочнению и повышению прочностных характеристик (предела прочности при сжатии на 9...10 %, а при изгибе на 15...18 %) ячеистого бетона. Волокна асбеста более четко формируют границу раздела межпоровых перегородок и порового пространства, приближенную по форме к сферической (рис. 2, в).

Микроструктура межпоровых перегородок (рис. 3, *a*) неавтоклавного ячеистого бетона представлена продуктами гидратации вяжущего, частицами кремнеземистого компонента и порами капиллярного типа. Гидратные новообразования располагаются мозаично и переплетены между собой волокнами асбеста, просматриваются вытянутые призматические пластинки и лепестки, волокна гидроосиликата кальция, которые рентгеновским анализом идентифицируются фазами низкоосновного гидросиликата кальция (CSH) и тоберморита ($C_{5}S_{6}H_{5}$).

Формирование (рис. 3, δ) однородных микросетчатых структур (с пространственным каркасом межпоровых перегородок) на поверхности асбестовых волокон обусловлено процессами адгезии гидратационных новообразований, образующих слои на поверхности волокон асбеста. В результате этого формируется каркас из волокон асбеста, покрытых плотной гелеобразной массой и кристаллическими формами низкоосновных гидросиликатов, что способствует повышению плотности и прочности межпоровых перегородок.

Фазовый состав дисперсно-армированного неавтоклавного газобетона на основе портландцемента с использованием полевошпатово-кварцевого песка и волокон асбеста исследовали с помощью комплексного дифференциально-термического (рис. 4) и рентгенофазового (рис. 5) методов.

На термограмме (рис. 4) образца неавтоклавного газобетона после тепловлажностной обработки пропариванием эндотермический эффект при температурах 50...180 °С отвечает удалению адсорбционной воды и начальной стадией дегидратации хризотил-асбеста [11]. Наличие эндотермических эффектов в интервале температур 440...470 °С обусловлено дегидратацией α-гидрата двухкальциевого силиката (2CaO·SiO₂·H₂O), определяющего

Рис. 3. Микрофотографии межпоровых перегородок неавтоклавного газобетона на основе портландцемента с использованием полевошпатово-кварцевого песка и волокон асбеста

Рис. 4. Термограмма неавтоклавного газобетона на основе портландцемента с использованием полевошпатово-кварцевого песка и волокон асбеста

повышенные значения морозостойкости газобетонных изделий, образование которого протекает при гидратации трехкальциевого силиката портландцементного клинкера по схеме [10]:

 $3CaO \cdot SiO_2 + H_2O \rightarrow 2CaO \cdot SiO_2 \cdot 2H_2O + Ca(OH)_2$

При температурах 632...710 °С наблюдается суммарный эффект (рис. 4) дегидратации гидросиликатов кальция тоберморитовой группы, которые обеспечивают прочность межпоровых перегородок и готового материала. По данным рентгенофазового анализа (рис. 5) установлено, что фазовый состав образцов газобетона представлен в основном α -гидратом двухкальциевого силиката (2CaO·SiO₂·H₂O), тоберморитом (5CaO·6SiO₂·5H₂O), низкоосновными гидросиликатами кальция типа CSH(I), CSH(II), образование которых протекает по схемам [10]:

 $2\text{CaO}\cdot\text{SiO}_{2}\cdot\text{2H}_{2}\text{O}\rightarrow(0,8...1,5)\text{CaO}\cdot\text{SiO}_{2}\cdot\text{H}_{2}\text{O}+\text{Ca}(\text{OH})_{2}$ $(0,8...1,5)\text{CaO}\cdot\text{SiO}_{2}\cdot\text{H}_{2}\text{O}+\text{Ca}(\text{OH})_{2}\rightarrow$ $\rightarrow(1,5...2,0)\text{CaO}\cdot\text{SiO}_{2}\cdot\text{H}_{2}\text{O}$

Рис. 5. Рентгенограмма неавтоклавного газобетона на основе портландцемента с использованием полевошпатово-кварцевого песка и волокон асбеста. Условные обозначения: $A_1 - анортит (CaO·Al_2O_3·2SiO_2); Ал - альбит (Na_2O·Al_2O_3·6SiO_2); O$ $ортоклаз (<math>K_2O·Al_2O_3·6SiO_2$); $K - \beta$ -кварц SiO₂; $T - тоберморит C_5S_6H_5$; $\Gamma - \alpha$ -гидрат C_2S ; $H_1 - CSH (I); H_1 - CSH (II); A_5 - ги$ $дросульфоалюминат кальция 3CaO·Al_2O_3·3CaSO_4·32H_2O$

Таблица.	Эндотермические эффекты в неавтоклавном га-
	зобетоне на основе портландцемента с использо-
	ванием полевошпатово-кварцевого песка и воло-
	кон асбеста

Диапазон температур, °С	Процессы удаления воды	Дифракционные максимумы кри- сталлических фаз, нм, рис. 5
50180	50100 °С — свободной; 100180 °С — адсорбционной; 100120 °С из хризотил-асбе- ста 3MgO·2SiO ₂ ·2H ₂ O	_
400470	Из α-гидрата двухкальцие- вого силиката 2CaO-SiO ₂ ·H ₂ O, α-гидрата C ₂ S	0,422; 0,270; 0,260; 0,192; 0,178
632710	600700 °С – из низкооснов- ного гидросиликата кальция типа CSH(I), (0,81,5)CaO·SiO ₂ ·H ₂ O; 600700 °С – из низкооснов- ного гидросиликата кальция типа CSH(II); (1,52,0)CaO·SiO ₂ ·(14)H ₂ O; 632710 °С – из тоберморита C ₅ S ₆ H ₅ , 5CaO·6SiO ₂ ·5H ₂ O	0,307; 0,280; 0,240; 0,183 0,307; 0,285; 0,240; 0,220; 0,210; 0,183 0,307; 0,280; 0,270; 0,252; 0,215; 0,183

Присутствие гипса в ячеистобетонной системе приводит к образованию гидросульфоалюмината кальция $3CaO \cdot Al_2O_3 \cdot 3CaSO_4 \cdot 32H_2O$, который повышает структурную прочность:

 $3CaO \cdot Al_2O_3 + 3CaSO_4 + 32H_2O \rightarrow$

 \rightarrow 3CaO·Al₂O₃·3CaSO₄·32H₂O

На рентгенограмме (рис. 5) неавтоклавного газобетона на основе портландцемента с использованием полевошпатово-кварцевого песка и волокон асбеста после тепловлажностной обработки изделий пропариванием установлено наличие основных дифракционных отражений 0,307; 0,280;

СПИСОК ЛИТЕРАТУРЫ

- ГОСТ 25485-89. Бетоны ячеистые. Технические условия. М.: Изд-во стандартов, 1989. – 26 с.
- Инструкция по изготовлению изделий из ячеистого бетона (СН 277-80). – М.: Стройиздат, 1981. – 44 с.
- Эскуссон К.К. Использование зол и шлаков в производстве ячеистых бетонов за рубежом // Строительные материалы. – 1993. – № 8. – С. 18.
- Кузнецов В.Д., Кузнецова И.А. Мелкозернистые и ячеистые бетоны на отходах дробления скальных пород // Строительные материалы. – 1994. – № 4. – С. 15–16.
- Завадский В.Ф., Фомичева Г.Н., Камбалина И.В. Новый вид наполнителя для ячеистого бетона // Строительные материалы. – 2004. – № 7. – С. 60–61.
- Долотова Р.Г., Смиренская В.Н., Верещагин В.И. Оценка активности низкокремнеземистого сырья и его пригодности в качестве заполнителя ячеистого бетона // Строительные материалы. – 2008. – № 1. – С. 40–42.

0,270; 0,252; 0,215; 0,183 нм, принадлежащих соединениям тоберморитовой группы — тобермориту, низкоосновным гидросиликатам кальция типа CSH(I), CSH(II); значения 0,422; 0,270; 0,260; 0,192; 0,178 нм принадлежат α -гидрату C₂S и незначительные дифракционные отражения, отвечающие гидросульфоалюминату кальция (0,388; 0,256; 0,209 нм). Фазовый состав неавтоклавного газобетона, определенный дифференциально-термическим и рентгенофазовым методами, представлен в таблице.

Выводы

При использовании полевошпатово-кварцевого песка в составе газобетона формируются плотные и прочные межпоровые перегородоки и равномерная мелкопористая структура материала. Полученные неавтоклавные ячеистые бетоны имеют повышенную прочность, при средней плотности 500...550 кг/м³ составляющую 2,65...2,75 МПа, что на 15...20 % выше показателей, установленных стандартом.

Минералы полевых шпатов песка в составах исходной шихты проявляют алюминатную активность к растворам гипса и извести. Присутствие их в смеси приводит к образованию гидросульфоалюминатных соединений, обеспечивающих повышенную растворимость исходных компонентов и продуктов гидратации портландцемента.

Волокна асбеста, введенные в составы бетонных масс, участвуют в армировании газобетона, способствуют формированию границ раздела межпоровых перегородок и порового пространства, приближенных по форме к сфере. Асбест, обладая высокой адсорбционной способностью к продуктам гидратации портландцемента, активизирует химические процессы взаимодействия между компонентами бетонных масс.

- Моргун Л.В. Влияние дисперсного армирования на агрегативную устойчивость пенобетонных смесей // Строительные материалы. – 2003. – № 1. – С. 33–35.
- Сицина М.С., Лаукайтис А.А. Исследование влияния армирования на свойства пенобетона // Строительные материалы. – 2003. – № 2. – С. 8–9.
- Моргун Л.В. Теоретическое обоснование и экспериментальная разработка технологии высокопрочных фибробетонов // Строительные материалы. – 2005. – № 6. – С. 59–63.
- Бутт Ю.М. Химическая технология вяжущих материалов. М.: Высшая школа, 1980. – 472 с.
- Горшков В.С. Методы физико-химического анализа вяжущих веществ. – М.: Высшая школа, 1981. – 334 с.

Поступила 16.03.2011 г.