УДК 621.371:551.510.535;533.9:530.182;533.951.7

РАССЕЯНИЕ РАДИОВОЛН НА РАСШИРЯЮЩЕМСЯ ТУРБУЛЕНТНОМ ПОТОКЕ СЛАБОИОНИЗОВАННОЙ ПЛАЗМЫ, СОЗДАВАЕМОМ РЕАКТИВНЫМ ДВИГАТЕЛЕМ КОСМИЧЕСКОГО АППАРАТА

В.Г. Спицын

Томский политехнический университет E-mail: spitsyn@ce.cctpu.edu.ru

Представлены аналитические выражения и результаты численных расчетов углового и частотного спектров радиосигнала, рассеянного на внешней поверхности турбулентного плазменного образования, создаваемого реактивным двигателем космического аппарата.

Введение

В работах [1, 2] предложена модель турбулентного плазменного образования, создаваемого реактивным двигателем космического аппарата (КА) в ионосфере. Полагается, что турбулентные плазменные неоднородности сосредоточены вблизи поверхности тел вращения: конуса, параболоида вращения и поверхности, образованной вращением кривой четвертого порядка. Рассеяние плоской радиоволны на внутренней поверхности полого турбулентного плазменного образования в случае радиозондирования вслед факелу ракеты, исследовано в работах [2–9].

Представляет интерес исследование рассеяния радиоволн КВ и УКВ диапазонов на внешней поверхности турбулентного плазменного образования, создаваемого реактивным двигателем КА в ионосфере, результаты которого излагаются ниже. Рассматривается рассеяние плоской радиоволны на турбулентных плазменных неоднородностях, сосредоточенных вблизи поверхности тел вращения: конуса и параболоида [2, 9–14].

Предполагается, что размеры тел вращения намного превосходят длину радиоволны и характерные размеры турбулентных неоднородностей, а частота радиоволны удовлетворяет соотношению $f \leq \sqrt{N_i/N_0} f_p$, где N_i и N_{0i} – возмущенная и невозмущенная концентрации заряженных частиц ионосферной плазмы, f_p – плазменная частота ионосферы на высоте движения КА. При этом, как отмечалось в работах [1–3], коэффициент отражения от турбулентных плазменных неоднородностей близок к 1.

Полагается, что турбулентные неоднородности распределены равномерно по поверхности тел вращения. Они имеют как направленную скорость, ориентированную вдоль образующей тел вращения, так и случайную изотропную скорость, распределенную по нормальному закону. Исследуются три типа диаграмм переизлучения турбулентных неоднородностей: изотропная, ламбертовская и квазизеркальная. Решение задачи проводится на основе применения теории переноса излучения [15].

1. Частотный спектр сигнала, рассеянного на внешней поверхности турбулентного плазменного тела вращения

Для решения задачи применяется сферическая система координат (рис. 1), центр которой расположен в вершине тела вращения, а ось z направлена вдоль его оси, θ – полярный угол, φ – азимутальный угол, отсчитываемый от плоскости, имеющей направление распространения падающей волны \vec{e}_i и ось \vec{z} . Индекс *и* соответствует координатам поверхности тела вращения, *i* – параметрам падающей волны, *s* – рассеянной.

Рис. 1. Система координат, используемая при расчетах рассеяния радиоволн на турбулентном теле вращения

Диаграмма переизлучения турбулентностей, не зависящая от направления распространения падающей волны \vec{e}_i , может быть представлена в виде [2]

$$P(\vec{e}_s) = A_i (\vec{e}_s \vec{n})^j, \tag{1}$$

где \vec{e}_s – единичный вектор в направлении распространения рассеянной волны, \vec{n} – нормаль к поверхности, A_j – коэффициент, который вычисляется из условия нормировки $\int P(\vec{e}_j) d\Omega = 1$, $d\Omega$ – элемент телесного угла, в который происходит рассеяние. Из условия нормировки следует $A_j = (j+1)/2\pi$. Случай j=0 соответствует изотропной диаграмме переизлучения турбулентностей, а j=1 – ламбертовской.

Представляет интерес рассмотрение диаграммы переизлучения турбулентностей квазизеркального типа, учитывающей направление распространения падающей волны \vec{e}_i :

$$P(\vec{e}_s) = A(\Delta e_m^2 - \Delta e^2), \qquad (2)$$

где $\Delta \vec{e} = \vec{e}_s - \vec{e}_{s0}, \vec{e}_{s0} = \vec{e}_i - 2\vec{n}(\vec{n}\vec{e}_i).$

В этом случае диаграмма переизлучения асимметрична, основная часть энергии рассеянного сигнала сосредоточена в окрестности вектора e_{s0} , который соответствует направлению зеркального отражения волны от поверхности. Выражения для Δe^2 , Δe_m^2 и *A* в (2) имеют следующий вид:

$$\Delta e^{2} = 2(1 - \vec{e}_{i}\vec{e}_{s} + 2(\vec{n}\vec{e}_{i})(\vec{n}\vec{e}_{s})), \qquad (3)$$

$$\Delta e_m^2 = 2(1 + (1 - (\vec{n}\vec{e}_i)^2)^{1/2}), \qquad (4)$$

$$A = 1 / [4\pi (\sqrt{1 - (\vec{n}\vec{e}_i)^2} - \vec{n}\vec{e}_i)], \qquad (5)$$

Выражение для спектральной плотности энергии, рассеянной на турбулентном плазменном теле вращения, следуя [14, 15], можно записать в виде

$$dI_s / I_0 = -(\vec{e}_i \vec{n}) P(\vec{e}_s) dS d\Omega / 2\pi, \qquad (6)$$

где dI_s – количество энергии, рассеянной в заданном направлении, I_0 – энергия падающей волны, dS – элемент рассеивающей поверхности.

При рассеянии электромагнитной волны на перемещающихся турбулентностях происходит доплеровский сдвиг частоты Δf . Удобно ввести величину безразмерного доплеровского сдвига частоты рассеянного сигнала, которая определяется выражением

$$f_* = (\Delta f c) / (f_0 V_u) =$$

= $(\vec{e}_s - \vec{e}_i) (\vec{e}_u (1 + \delta V / V_u) - \vec{e}_i V_0 / V_u),$ (7)

где c – скорость распространения электромагнитной волны в плазме, f_0 – частота падающей волны, V_0 – скорость перемещения КА, V_u и δV – направленная скорость и скорость случайного перемещения турбулентностей вдоль образующей тела вращения, \vec{e}_u и \vec{e}_z единичные векторы, направленные вдоль образующей и оси потока соответственно [2].

В сферической системе координат выражение (7) записывается в виде

$$f_* = (\sin\theta_s \cos\varphi_s - \sin\theta_i)\sin\theta_u \cos\varphi_u + + \sin\theta_s \sin\varphi_s \sin\theta_u \sin\varphi_u + + (\cos\theta_s - \cos\theta_i)(\cos\theta_i - V_0 / V_u).$$
(8)

Решая ур. (8) относительно азимутального угла φ_u и подставляя полученную зависимость $\varphi_u(f_*)$ в ур. (6), можно получить выражение для частотного спектра радиоволн, рассеянных на плазменном образовании

$$S_n(f_*) = \frac{dI_s 4\pi}{I_0 z_m^2 d\Omega df_*} = \frac{tg\theta_u}{\cos\theta_u} P(\vec{e}_s) \frac{d\varphi_u(f_*)}{df_*}, \quad (9)$$

где $S_n(f_*)$ – нормированная величина спектральной плотности энергии, рассеянной в единичный элемент телесного угла, z_m – размер тела вращения вдоль оси z.

В случае рассеяния назад ($\vec{e}_s = -\vec{e}_i$) для конического потока из (8) следует

$$f_* = 2((V_0 / V_u) \cos \theta_i - (1 + \delta V / V_u) \times (\cos \theta_i \cos \theta_u + \sin \theta_i \sin \theta_u \cos \varphi_u)), \qquad (10)$$

где θ_u – угол полураскрыва конуса, φ_u – азимутальный угол, определяющий положение турбулентности на поверхности потока, θ_i – угол между направлением распространения падающей волны \vec{e}_i и осью \vec{z} потока.

Если поток имеет форму параболоида вращения $z=a_1\rho^2$, то

$$f_* = 2((V_0 / V_u) \cos \theta_i - (1 + \delta V / V_u) \times (\sin \theta_i \cos \varphi_u + 2a_1 \rho \cos \theta_i) / Q),$$

где $Q = \sqrt{1+4a_1\rho^2}$.

Определяя из (10) зависимость $\varphi_u(f_*)$ и подставляя ее в (9), получаем выражение для частотного спектра рассеянного назад сигнала:

$$S(f_*) = D \frac{\mathrm{tg}\theta_u}{\cos\theta_u} (\vec{e}_i \vec{n}) P(\vec{e}_s) (1 - (f_*D + B)^2)^{-1/2}, (11)$$

rge
$$D = -\frac{1}{2(1 + \delta V / V_u) \sin\theta_i \sin\theta_u},$$

$$B = \frac{V_0}{V_u \sin\theta_i \mathrm{tg}\theta_i (1 + \delta V / V_u)} - \frac{1}{\mathrm{tg}\theta_i \mathrm{tg}\theta_u},$$

$$\vec{e}_i \vec{n} = \sin\theta_i \cos\theta_u (Df_* + B) - \cos\theta_i \sin\theta_u.$$

Выражение (11) определяет текущий частотный спектр рассеянного радиосигнала. Однако при экспериментальных измерениях энергия принимаемого сигнала для заданной частоты f определяется в частотном интервале $\Delta f > 0$, поскольку согласно соотношению неопределенностей $\Delta f \Delta t \approx 1$, а время анализа Δt составляет конечную величину ($\Delta t \approx 10...100$ с).

Для получения частотного спектра необходимо проинтегрировать по f_* выражение (11) в заданном частотном интервале от f_{k^*} до $f_{k^*}+\Delta f_*$ и поделить на величину этого интервала

$$S_d(f_*) = D \frac{\mathrm{tg}\theta_0}{\Delta f_* \cos \theta_0} \int_{f_{k^*}}^{f_{k^*} + \Delta f_*} \frac{(\vec{e}_i \vec{n}) P(\vec{e}_s) df_*}{\left(1 - (f_* D + B)^2\right)^{1/2}}.$$
 (12)

Для диаграмм переизлучения рассеивателей по закону Ламберта и изотропного типа интеграл в правой части (12) вычисляется аналитически, и выражение (12) принимает вид

$$S_{d}(f_{*}) = D \frac{\mathrm{tg}\theta_{0}}{\Delta f_{*} \cos\theta_{0}} [W(f_{k*} + \Delta f_{*}) - W(f_{k*})], \quad (13)$$

где при *j*=0

$$D(f_*) = \sin \theta_i \cos \theta_u (BD_r - Q) - D(B \sin \theta_r \cos \theta_r - \cos \theta_r \sin \theta_r)$$
(14)

$$D_r(B \sin \theta_i \cos \theta_i - \cos \theta_i \sin \theta_u),$$

$$D_r = \arcsin(-Df_* - B), \tag{15}$$

$$Q = \sqrt{1 - (f_*D + B)^2}.$$
 (16)

При *j*=1 величина *W* в (13) имеет вид $W(f_*) = (f_*D - 3B)Q/2 + +2(B^2 + 1)D_r \sin^2 \theta_i \cos^2 \theta_u + (BD_r - Q) \times \times (2B \sin^2 \theta_i \cos^2 \theta_u - \sin 2\theta_i \sin 2\theta_u / 2) + +D_r (B^2 \sin^2 \theta_i \cos^2 \theta_u + + \cos^2 \theta_i \sin^2 \theta_u - B \sin 2\theta_i \sin 2\theta_u / 2).$ (17)

В случае диаграммы переизлучения квазизеркального типа $P(\vec{e}_s)$ определяется выражением (2) и интеграл в правой части (12) аналитически не вычисляется, вследствие чего проводится численное интегрирование методом Монте-Карло.

На рис. 2 приведены расчеты зависимости частотного спектра сигнала, рассеянного на коническом турбулентном потоке, которые проводились для значений параметров $V_0/V_u=2$, $\theta_0=26.6^\circ$, $\delta V/V_u=0$.

Сплошные кривые на рис. 2 рассчитывались по формуле (11) для различных значений угла зондирования потока θ_i . Гистограммы соответствуют частотному спектру, вычисленному по формулам (12–17).

Частотный спектр рассеянного сигнала характеризуется монотонным возрастанием энергии с увеличением безразмерного доплеровского сдвига частоты до значения

$$f_* = 2\left(\frac{V_0}{V_u}\cos\theta_i - (1 + \delta V / V_u)\cos(\theta_i + \theta_u)\right).$$
(18)

Выражение (18) следует из (8) при $\varphi_u = \pi$, а при $\varphi_u = \pi/2$, $3\pi/2$ наблюдается минимальная энергия рассеянного назад сигнала. Соответствующее выражение для f_* имеет вид

$$f_* = 2\left(\frac{V_0}{V_u}\cos\theta_i - (1 + \delta V / V_u)\cos\theta_i\cos\theta_u\right).$$
(19)

Рис. 2. Частотный спектр радиосигнала, рассеянного на внешней поверхности турбулентного плазменного образования

На рис. 3 приведены результаты расчета верхних и нижних частот рассеянного сигнала, формулы (18, 19). По горизонтальной оси отсчитан угол θ_i между осью *z* конического потока и направлением падающей волны, а по вертикальной оси – значение безразмерного доплеровского сдвига частоты *f*.

Сплошные кривые соответствуют отношению скорости перемещения источника к скорости рассеивателей потока $V_0/V_u=2$, штриховые – $V_0V_u=2,5$ и штрихпунктирные $-V_0/V_u=3$. Величина доплеровского сдвига частоты уменьшается с ростом угла зондирования потока θ_i и увеличивается с ростом отношения скоростей V_0/V_u . Расчеты проведены для значений угла полураскрыва конуса $\theta_u=26,6^\circ$.

Рис. 3. Зависимость верхних и нижних частот рассеянного радиосигнала от полярного угла θ_i и отношения скоростей V_u/V_u

Из выражений (18, 19) следует соотношение для ширины полосы частот сигнала, рассеянного на коническом потоке:

$$f_{\delta c} = 2(1 + \delta V / V_u) \sin \theta_i \sin \theta_u.$$
 (20)

Из (20) можно получить соотношение для ширины полосы частот сигнала, рассеянного на потоке, имеющем форму параболоида вращения $z=a_1\rho^2$

$$f_{\delta p} = 2(1 + \delta V / V_u) \sin \theta_i / \sqrt{1 + 4a_1^2 \rho^2}.$$

Отношение $f_{\delta c} / f_{\delta p} = \sin \theta_u \sqrt{1 + 4a_1^2 \rho^2}.$

Так, при малых значениях координаты расположения рассеивателя на поверхности параболоида $\rho < 1/(2a_1 tg \theta_u)$, величина $f_{\delta c} < f_{\delta p}$, а с увеличением ρ выполняются обратные соотношения, и ширина полосы частот сигнала, рассеянного на параболоиде, уменьшается.

2. Сечение рассеяния радиоволн на турбулентном плазменном конусе

Выражение для дифференциального эффективного сечения рассеяния (имеется в виду рассеяние в элемент телесного угла $d\Omega$ в заданном направлении \vec{e}_i) электромагнитной волны на турбулентном плазменном образовании, согласно (6), имеет вид

$$\frac{d\sigma}{d\Omega} = -\int dS(\vec{e}_i \vec{n}) P(\vec{e}_s), \qquad (21)$$

Для конической поверхности (21) преобразуется в выражение

$$\frac{d\sigma}{d\Omega} = -\frac{z_m^2 \operatorname{tg} \theta_u}{2 \cos \theta_u} \int_a^b d\phi_u(\vec{e}_i \vec{n}) P(\vec{e}_s), \qquad (22)$$

где z_m размер конуса вдоль оси z. Пределы интегрирования по φ_u в (22) определяются из совместного решения системы неравенств

$$\vec{e}_i \vec{n} \le 0, \tag{23}$$

$$\vec{e}_s \vec{n} \ge 0, \tag{24}$$

первое из которых является условием облучения данного элемента поверхности падающей волной, а второе – условием облучения данным элементом рассеивающей поверхности приемника.

В результате подстановки (1) в (22) для изотропной по полусфере диаграммы переизлучения турбулентностей (*j*=0) получаем выражение для сечения рассеяния:

$$\frac{d\sigma}{d\Omega} = \frac{z_m^2 t g \theta_u}{4\pi} \times \\ \times [\cos \theta_i t g \theta_u \sum_{k=1,2} \varphi_u \Big|_{a_k}^{b_k} - \sin \theta_u \sum_{k=1,2} \sin \varphi_u \Big|_{a_k}^{b_k}]. \quad (25)$$

В случае j=1 в формуле (1) рассеяние происходит в соответствии с ламбертовской диаграммой переизлучения турбулентностей и выражение для сечения рассеяния принимает вид

$$\frac{d\sigma}{d\Omega} = \frac{z_{m}^{2} \lg \theta_{u}}{4\pi} \left[B \sum_{k=1,2} \sin 2\varphi_{u} \Big|_{a_{k}}^{b_{k}} + C \sum_{k=1,2} \cos 2\varphi_{u} \Big|_{a_{k}}^{b_{k}} + D \sum_{k=1,2} \sin \varphi_{u} \Big|_{a_{k}}^{b_{k}} + E \sum_{k=1,2} \cos \varphi_{u} \Big|_{a_{k}}^{b_{k}} + F \sum_{k=1,2} \varphi_{u} \Big|_{a_{k}}^{b_{k}} \right],$$
(26)

где

 $B = -\cos\theta_{\mu}\sin\theta_{i}\sin\theta_{s}\cos\varphi_{s}/2,$ $C = \cos \theta_{\mu} \sin \theta_{\mu} \sin \theta_{\mu} \sin \varphi_{\mu} / 2,$

 $D = 2\sin\theta_{\mu}(\cos\theta_{i}\sin\theta_{s}\cos\varphi_{s} + \sin\theta_{i}\cos\theta_{s}),$

$$E = -2\sin\theta_u \cos\theta_i \sin\theta_s \sin\varphi_s,$$

$$F = -2\sin\theta_u tg\theta_u \cos\theta_i \sin\theta_s + 2B.$$

При подстановке (2-5) в (22) получаем выражение для сечения рассеяния в случае закона переизлучения турбулентностей квазизеркального типа:

$$\frac{d\sigma}{d\Omega} = -\frac{z_{m}^{2} \mathrm{tg} \theta_{u}}{8\pi \cos \theta_{u}} \int_{\phi'}^{\phi'} d\phi_{u}(\vec{e}_{i}\vec{n}) \frac{2(1+\sqrt{1-(\vec{e}_{i}\vec{n})^{2}})-\Delta e^{2}}{\sqrt{1-(\vec{e}_{i}\vec{n})^{2}}-\vec{n}\vec{e}_{i}}.$$
(27)

Вычисление интеграла в правой части (27) проведено методом Монте-Карло. При вычислении учитывается, что вклад в сечение рассеяния дает лишь область рассеивающей поверхности, облученная падающей волной и облучающая приемник, определяемая из совместного решения системы неравенств (23, 24). Относительная погрешность вычислений составляла величину ≤0,05.

Результаты численных расчетов индикатрисы рассеяния электромагнитных волн на шероховатой поверхности конуса для рассмотренных типов диаграмм переизлучения шероховатой поверхности (25-27) представлены на рис. 4-6 в виде изолиний величины $\frac{d\sigma/d\Omega}{d\sigma}$

$$z_m^2/4\pi$$

Расчеты проведены для значений угла полураскрыва конуса $\theta_{\mu}=20^{\circ}$. Вверху в центре на рис. 4–6 показаны соответствующие диаграммы переизлучения элементов шероховатой поверхности. Результаты расчетов представлены в полярной системе коорди-

нат, ϕ_s – полярный угол, θ_s – длина радиус-вектора. В левом столбце на рис. 4-6 представлен вид спереди $\pi/2 \le \theta \le \pi$, а в правом – вид сзади $0 \le \theta \le \pi/2$.

Рис. 4 получен для изотропной по полусфере диаграммы переизлучения шероховатой поверхности j=0. С ростом θ_i проекция поверхности конуса, облученной падающей волной, на плоскость поперечную \vec{e}_i вначале увеличивается, а затем, начиная с $\theta_i > \theta^*$ (θ^* зависит от угла полураскрыва конуса θ_u), уменьшается, что приводит к аналогичной зависимости величины сечения рассеяния от угла θ_i .

Рис. 4. Индикатриса рассеяния радиоволн на турбулентном конусе в случае изотропной диаграммы переизлучения түрбүлентностей

Рис. 5. Индикатриса рассеяния радиоволн на турбулентном конусе в случае диаграммы переизлучения турбулентностей по закону Ламберта

Область поверхности, облучающая приемник, и, соответственно, величина сечения рассеяния, увеличиваются с ростом угла рассеяния θ_s и достигают максимума при $\theta \ge \pi - \theta_{\mu}$, после чего остаются постоянными до $\theta_s = \pi$. Постоянство сечения рассеяния при $\pi - \theta \le \theta \le \pi$ объясняется тем, что в указанном случае вся поверхность, облученная падающей волной ($\vec{e_i}\vec{n} \leq 0$), облучает приемник ($\vec{e_i}\vec{n} \geq 0$).

В случае ламбертовской диаграммы переизлучения турбулентных неоднородностей (рис. 5) направление максимума индикатрисы определяется направлением нормали к поверхности, в окрестности которой сосредоточена энергия излучения. При этом максимум индикатрисы реализуется при следующих значениях углов: $\theta_i^* = \pi/2 - \theta_u$, $\theta_s = \pi - \theta_i^* = \pi/2 + \theta_u$.

Диаграмма переизлучения турбулентностей квазизеркального типа (рис. 6) обладает максимумом, ориентированным в направлении зеркального отражения волны от поверхности. При этом максимум индикатрисы располагается под углом $\theta_s^* = \theta_i + 2\theta_u$.

Рис. 6. Индикатриса рассеяния радиоволн на турбулентном конусе в случае квазизеркальной диаграммы переизлучения турбулентностей

Для всех рассмотренных диаграмм переизлучения с увеличением угла φ_s от 0 до π величина сечения рассеяния растет и достигает максимума при $\varphi_s = \pi$, так как лишь в этом случае все элементы рассеивающей поверхности, расположение которых удовлетворяет условиям (23, 24), вносят свой вклад в рассеянный сигнал.

Расчеты, проведенные для других значений угла полураскрыва конуса θ_u , показывают, что величина сечения рассеяния возрастает с ростом угла θ_u , что

СПИСОК ЛИТЕРАТУРЫ

- Спицын В.Г. Модели возмущений ионосферной плазмы, создаваемых реактивным двигателем космического аппарата // Известия Томского политехнического университета. – 2004. – Т. 307. – № 1. – С. 23–28.
- Спицын В.Г. Моделирование рассеяния радиоволн на возмущениях ионосферной плазмы, создаваемых космическим аппаратом. — Томск: Изд-во "STT", 2002. — 174 с.
- Спицын В.Г. Моделирование рассеяния радиоволн на турбулентном плазменном образовании, создаваемом реактивным двигателем космического аппарата // Известия Томского политехнического университета. 2004. Т. 307. № 2. С. 20–24.
- Спицын В.Г. Многократное рассеяние электромагнитных волн на внутренней поверхности турбулентных тел вращения // Известия вузов. Радиофизика. – 1995. – Т. 38. – № 9. – С. 906–912.
- Спицын В.Г. Численная модель распространения электромагнитных волн в турбулентных потоках // Электромагнитные волны и электронные системы. – 1997. – Т. 2. – № 2. – С. 45–49.
- Spitsyn V.G. Development of a numerical model concerning electromagnetic wave propagation in turbulent flows // J. of Applied Electromagnetism. 1997. V. 1. № 2. P. 67–78.
- Spitsyn V.G. Numerical method of calculation propagation electromagnetic wave in random discrete media // IEEE Antennas and Propagation Society Intern. Symp. – Montreal, Canada, 1997. – V. 1. – P. 530–532.
- Spitsyn V.G. Method of numerical analysis of interaction electromagnetic wave with random active media // IEEE Antennas and

объясняется увеличением освещенной волной области поверхности, участвующей в формировании рассеянного сигнала.

Заключение

Исследовано рассеяние радиоволн на турбулентных неоднородностях слабоионизованной плазмы, сосредоточенных вблизи поверхности тел вращения: конуса и параболоида. Рассмотрены три типа диаграмм переизлучения турбулентных неоднородностей: изотропная, ламбертовская и квазизеркальная. Получены аналитические выражения и проведены численные расчеты частотного спектра и сечения рассеяния радиоволн на расширяющемся турбулентном потоке. При возвратном зондировании частотный спектр сигнала, рассеянного на коническом потоке, характеризуется монотонным возрастанием энергии с увеличением доплеровского сдвига частоты. Величина доплеровского сдвига частоты уменьшается с ростом угла зондирования и с уменьшением отношения скорости движения КА к направленной скорости перемещения турбулентных неоднородностей. Ширина полосы частот рассеянного сигнала возрастает с увеличением угла зондирования потока и относительной дисперсии скорости перемещения турбулентных неоднородностей.

Propagation Society Intern. Symp. – Atlanta, USA, 1998. – V. 1. – P. 112–115.

- Спицын В.Г. Рассеяние электромагнитных волн на турбулентных плазменных телах вращения // Радиотехника и электроника. – 1996. – Т. 41. – № 6. – С. 730–734.
- Спицын В.Г. Расчет частотного спектра электромагнитной волны, отраженной от осесимметричного потока рассеивателей // Радиотехника. – 1994. – № 12. – С. 70–71.
- Spitsyn V.G. Modeling of radar scattering from turbulent spraying jets // IEEE Antennas and Propagation Society Intern. Symp. – Atlanta, USA, 1998. – V. 4. – P. 2168–2171.
- Spitsyn V.G. Transformation of electromagnetic signal frequency spectrum propagating in axisymmetrical turbulent flow // IEEE Antennas and Propagation Society Intern. Symp. – Orlando, USA, 1999. – V. 4. – P. 2532–2535.
- Spitsyn V.G. Analysis of frequency spectrum and radar cross section of signal scattering on conical turbulent flow // IEEE Antennas and Propagation Society Intern. Symp. – Orlando, USA, 1999. – V. 4. – P. 2862–2865.
- Spitsyn V.G. Radiowave scattering from the plasma disturbances created of space vehicle in the ionosphere // IEEE Antennas and Propagation Society Intern. Symp. – San Antonio, USA, 2002. – V. 2. – P. 750.
- Апресян Л.А., Кравцов Ю.А. Теория переноса излучения. М.: Наука, 1983. – 216 с.
- Исимару А. Распространение и рассеяние волн в случайно-неоднородных средах. – М.: Мир, 1981. – Т. 1. – 280 с., – Т. 2. – 317 с.