Таким образом, в работе предложена конструкция трёхфазного трансформатора с короткозамкнутой вторичной обмоткой, работающего в качестве электроводонагревателя. Описаны особенности электромагнитного и теплового расчётов учитывающие конструкцию и режим работы таких устройств. Приведены результаты исследований для трансформатора мощностью 25 кВт

СПИСОК ЛИТЕРАТУРЫ

- Кузьмин В.М. Электронагревательные устройства трансформаторного типа. – Владивосток: Дальнаука, 2001. – 144 с.
- Тихомиров П.М. Расчёт трансформаторов. 5-е изд., перераб. и доп. – М.: Энергоатомиздат, 1986. – 528 с., ил.
- Сипайлов Г.А., Санников Д.И., Жадан В.А. Тепловые, гидравлические и аэродинамические расчеты в электрических машинах. – М.: Высшая школа, 1989. – 239 с.
- Крейт Ф., Блэк У. Основы теплопередачи. М.: Мир, 1983. 512 с., ил.
- Ивоботенко Б.А., Ильинский Н.Ф., Копылов И.П. Планирование эксперимента в электромеханике. – М.: Энергия, 1975. – 184 с.

с вторичной обмоткой из алюминиевого сплава. Предложены рекомендации по выбору числа витков в первичной обмотке w_1 и геометрического коэффициента β для проектирования трансформаторов минимальной стоимости мощностью от 10 до 160 кВт с использованием математического аппарата метода планирования эксперимента.

- Прайс-лист на обмоточные провода ООО «Кабельпласт». 2010. URL: http://www.cabelplast.ru/obmotka (дата обращения: 25.10.2010).
- Прайс-лист на цветной металл компании «МПР-Групп». 2010. URL: http://www.metalport.ru/prices/id_1621_page_6 (дата обращения: 25.10.2010).
- Прайс-лист оптовой металлоторговой компании «ABEPC-Спецсталь». 2010. URL: http://www.avers-steel.ru/prices/AI-SI304.pdf (дата обращения: 25.10.2010).

Поступила 29.03.2011 г.

УДК 537.876.4

РАСЧЕТ ОСВЕТИТЕЛЬНЫХ СЕТЕЙ ПО ПОТЕРЕ НАПРЯЖЕНИЯ ПРИ НЕРАВНОМЕРНОЙ НАГРУЗКЕ ФАЗ МЕТОДОМ ПРИВЕДЕННОЙ МОЩНОСТИ

В.Б. Вайнштейн*, В.Д. Никитин, К.П. Толкачева

*ООО «Томский нефтехим» Томский политехнический университет E-mail: geltir@sibmail.com; tkp@tpu.ru

Анализируются существующие и предлагаются новые усовершенствованные инженерные методы расчета потерь напряжения в электрических, в первую очередь – осветительных сетях, учитывающие степень неравномерности распределения нагрузки по фазам.

Ключевые слова:

Потеря напряжения, неравномерная нагрузка фаз, нулевой провод, электроэнергия.

Key words:

Voltage loss, uneven load of stage, neutral wire, electric power.

Введение

Расчет по потере напряжения (ПН) является определяющим (критическим) для протяженных сетей [1]; как базовый рассматривается случай равномерной нагрузки фаз (РНФ). Однако даже если при проектировании сеть была нагружена равномерно, и монтаж выполнен правильно, то при эксплуатации и в ходе реконструкций РНФ часто нарушается. Несимметрия напряжения может носить систематический (постоянная перегрузка одной из фаз) или вероятностный характер (непостоянство нагрузок в зависимости от случайных факторов). Для жилых зданий характерна неустранимая асимметрия нагрузок; ток в нулевом проводе домов с электроплитами и в сетях с разрядными лампами нередко составляет 40...50 % тока в фазном проводе. Обычно расчетчик, с целью упрощения, неравномерностью пренебрегает, а в крайнем случае прибегает к формуле Цейтлина [2]. Как положительный пример – отметим решение [3. С. 170].

Любопытно различие в подходах к не-РНФ: у электроснабженцев — «увеличение потерь мощности и энергии»; у светотехников — «существенное изменение светового потока, срока службы источников света (ИС) и других параметров».

В работе поставлена задача: проанализировав литературу по расчету сетей с несимметрией напряжения и оценив возможности для совершенствования расчетов ПН, создать методику, позволяющую ускорить расчеты в сетях с не-РНФ.

1. Пример расчета сети с несимметрией напряжения

Результаты изучения справочной [4-6] и монографической [7] литературы по теме представлены в [8] и в данной работе не приводятся. Анализ показывает, что реально есть две причины не-РНФ: из-за длин плеч l_i или разных нагрузок фаз P_i .

<i>P_i</i> =const при <i>I_i</i> =var	<i>P_i</i> =var при <i>I_i</i> =const
К не-РНФ приводит (услов- ное, из-за особенностей рас- чета по формуле Цейтлина) несовпадение длин плеч – ко- торые материально могут быть равны. Частный, по сути, случай с <i>N</i> =6, где <i>N</i> – число световых приборов, получил	В массе ситуаций приводит к не-РНФ. В проектной практике удается (формально) выровнять нагрузку по фазам, однако «эк- сплуатационная» не-РНФ – ча- стая неизбежность: в [3] – при равных плечах – реально на- грузки по фазам оказываются
(неоправдываемое практи-	разными; несовпадение мощно-
тельство» в [4-6]. Отметим:	$\Sigma M_{\rm A} \neq \Sigma M_{\rm B} \neq \Sigma M_{\rm C}$, где $M_{\rm A}$, $M_{\rm B}$, $M_{\rm C}$
формула цеитлина справед- лива для сетей с чисто актив- ной нагрузкой	 моменты, из-за неравномер- ного распределения нагрузок в щитках вдоль линии

В качестве примера решений в ситуации с не-РНФ проанализируем [3]; в табл. 1 предельно сжато даны узловые моменты расчета по ПН сети жилого дома (освещение + электроплиты) при фазных нагрузках 21 < 25 < 32 кВт и приведенной длине L=60 м; сеть выполнена проводом АПВ $3(1\times70)+1\times35$; коэффициент c=7,7 [2. Табл. 12.46] – для однофазной сети, алюминий, но в формуле Цейтлина используется значение $2c=2\cdot7,7\approx15,5$; ищется полная ПН как алгебраическая сумма составляющих.

Для сравнения: в случае РНФ (используем коэффициент *C*=46 [3]) $\varepsilon = (\Sigma P)L(Cs)^{-1} = (21+25+32) \times \times 60 \cdot (46 \cdot 70)^{-1} = 1,46 \%$ (<2,77 % (!)), и неучтенная асимметрия нагрузки может привести к выбору в фазе 3 заниженного сечения провода и, следовательно, к росту ПН из-за уменьшения питающего напряжения; в результате:

- поток ламп будет ниже номинального, поскольку Ф_U=Ф_n(U/U_n)^{3,6} (для ламп накаливания) [6]; для РЛ зависимость иная;
- температура конфорок снизится, а время работы увеличится ввиду $Q_u = Q_u (U/U_u)^2$ (по закону Джоуля—Ленца).

2. Характеристика формулы Цейтлина и расчет на основе коэффициента *К*_п

В отношении самой формулы Цейтлина [2] (давно ставшей классикой) нет возражений, но приводимый в табл. 2 анализ побуждает к совершенствованию расчетных методик.

Единственная известная нам альтернатива методике Цейтлина – способ расчета сетей при не-РНФ, изложенный в [1. С. 66–69]. Основу способа составляют (табл. 3) коэффициенты 1–4, из них важнейший – K_n , зависящий от предыдущих трех; расчетные значения параметров 5–8 выражаются (через аналоги ε , M, P, L при РНФ) умножением именно на коэффициент влияния $K_n = K_n(M_A, \Sigma M, S_{\phi}, S_0)$; не путать с одинаковым по начертанию коэффициентом пульсации потока источников света, регламентируемым действующим СП 52.1330.2011.

Таблица 1. Расчет ПΗ ε в сети с не-РНФ (фазы 1, 2, 3 = А, В, С при любом их порядке); потери в нулевом проводе тонированы

Частичная потеря напряжения (ЧПН)	Значения є, %, при фазной нагрузке, равной						
в проводе и полные потери	<i>Р</i> 1=21 кВт	<i>P</i> ₂ =25 кВт	<i>Р</i> ₃ =32 кВт				
Фазном <i>ε</i> (<i>α</i>), <i>α</i> =60(15,5•70)⁻1=0,0553	21 <i>a</i> =1,16	25 <i>α</i> =1,38	32 <i>α</i> =1,77				
Нулевом ε(β), β=60(15,5•35) ⁻¹ =0,111	21 <i>β</i> =2,32	25 <i>β</i> =2,76	32 <i>β</i> =3,54				
Нулевом двух других фаз: среднее значение ЧПН $arepsilon(-0,5eta)$	$-0,5\beta(25+32)=-3,15$	$-0,5\beta(21+32)=-2,93$	$-0,5\beta(21+25)=-2,54$				
Полные ПН в данной фазе $\Sigma \varepsilon = \varepsilon(\alpha) + \varepsilon(\beta) + \varepsilon(-0,5\beta)$	1,16+2,32-3,15=0,33	1,38+2,76-2,93=1,21	1,77+3,54-2,54= 2,77				

Таблица 2. Характеристика ф	ормулы для расчета	ПН в сети с не-РНФ
------------------------------------	--------------------	--------------------

Формула Д. Г. Цейтлина $\varepsilon = \varepsilon (M_{A}, M_{B}, M_{C}, S_{\phi}, S_{0})$ требует:								
Операций с моментами <i>М=P-L</i> нагрузок фа <i>как</i> достаточно выполнять расчеты с мощно ком <i>I</i>) нагрузок. Но расчёт мощностей по фа равно необходим для выявления степени за зы; в некоторых случаях он позволяет умень чение фазной жилы (в примере – <i>A</i> , 50 мм ²) ключить к <i>P</i> =21 кВт дополнительную мощног	з, тогда стью <i>Р</i> (то- зам всё грузки фа- шить се-), или под- сть	Операций с тремя векторами (мо- менты <i>M</i> ₁ , <i>M</i> ₂ , <i>M</i> ₃); переход к двум векторам – мощностям <i>P</i> _Σ и <i>P</i> _A , как показано далее, – упрощает расче- ты и даёт возможность вместо трехмерных (крайне редких) ис- пользовать 2D (плоские) графики	Применения таблиц для каждой из фаз, тогда как в принципе достаточно табли- цы для одной фазы, и «вязких» (доволь- но трудоемких) расчетов, тогда как воз- можны упрощения, если на одном гра- фике учитывать отношение S _ф /S ₀ одно- временно с получением значения S _{усп.}					
Трудоемк	ость метод	Цейтлина, оцениваемая числом операций						
Расчет в сети одно\трехфазной		Примечания						
Моментов <i>M</i> = <i>P_iL_i</i> Усредненного значения 0,5(<i>M_B</i> + <i>M_C</i>) Потерь в фазном проводе Потерь в нулевом проводе Суммы потерь	3\3 1\3 1\3 2\6 1\3	 Предполагается, что мощности нагрузки по фазам и их сумма известны проектировщику из предыдущих вычислений. В предлагаемом (раздел 3) методе число операций заметно меньше: для трех фаз – 9 или 6 (в зависи- мости от S_ф/S₀); расчеты ускоряются при использовании сетчатой номограм- мы 						
Итого	8\18							

Расчетные коэффициенты	Расчетные параметры
1. Отношение сечений фазы и нуля <i>σ</i> = <i>S</i> _φ / <i>S</i> ₀	5. Потери напряжения $\varepsilon_{p} = \varepsilon K_{n}$
2. Функционал Y=3σ+2=(3S _ф +2S ₀)S ₀ ⁻¹	6. Момент нагрузки <i>М</i> _р = <i>МК</i> _п
3. «Перекос» фаз $\delta = (3M_A - M)M^{-1}$	7. Мощность нагрузки <i>P</i> _p = <i>PK</i> _п
4. Коэффициент влияния <i>K</i> _n =1+0,5 <i>Y</i> δ	8. Длина участка <i>L</i> p= <i>LK</i> n

Таблица 3. Расчетные коэффициенты и параметры, фигурирующие в [1]

3. Расчет сетей с не-РНФ методом приведенной мощности

Теоретическое обоснование метода.

Заменим **три** момента нагрузки по фазам на д**ва**: суммарный и данной (расчетной) фазы, а сечение нулевой жилы S_0 – на сечение фазной жилы S_{ϕ} с поправочным коэффициентом $\sigma = S_{\phi}/S_0$; преобразования формулы Цейтлина даны в табл. 4, а соотношение сечений и Δ_{max}/ε – в табл. 5.

Данные для построения номограммы и пример расчета даны в табл. 5. Для практических расчётов удобнее, чтобы шкала P_{ε} графика была построена в логарифмическом масштабе (рисунок); нанесено более 90 линий из них 49 — кривых.

На рисунке изображены кривые приведенной мощности фазы A и суммарной мощности Σ в поле расчетной мощности фазы P_p и показателя перекоса Δ . Приведенная мощность определяется на пересечении мощности выбранной фазы и суммарной мощности, а поправка K_{ε} (σ , Δ) – на врезке по горизонтали от точки пересечения линии со шкалы Δ к выбранному (существующему) соотношению сечений фазного и нулевого проводников σ ; $k_{\varepsilon}=1$ при $\sigma=1$.

При совмещении графика (рис. 1) с номограммой $P-L-S-\varepsilon$ [9] решение – (величина ПН или сечение сети) – можно прочитать непосредственно на графике.

Трудоёмкость метода с использованием графика: прочтение по графику P_{n} и $K_{\varepsilon} - 1$ операция; для трёх фаз — 3; расчёт потерь по таблицам [2] $M = K_{\varepsilon} \cdot P_{n} \cdot L - 2$ операции; для трёх фаз — 6. Итого — 3 операции (при $\sigma = 1 - 2$); для трёх фаз — 9 (6) операций.

Таблица 4. Преобразование формулы для ε (1) и характеристика формулы (2)

Формула Цейтлина и ее параметры (коэффициент « <i>с</i> » — для однофазных линий)	ε =0,5 $c^{-1}(M_A/S_{\phi}+M_A/S_0-0,5(M_B+M_C)/S_0)$ где M_A, M_B, M_C – моменты нагрузки соответствующих фаз, S_{ϕ} и S_0 – сечения фазного и нулевого проводников	(1)
Преобразование формулы (1) (<i>L</i> — длина участка)	ε=LC ⁻¹ (0,5A/S _φ +0,75A/S ₀ =0,25Σ/S ₀)=LC ⁻¹ P _p K _ε /S _Φ , где Σ и A ⁻ нагрузки суммарная и расчетной фазы	(2)
Приведенная нагрузка фазы\ <i>М_{пр}</i>	$P_{np}=1,25A=0,25\Sigma \setminus M_{np}=P_{np}L$	(З, а, б)
Приведенное значение ПН в фазе	$\varepsilon_{np} = M_{np} (CS_{\Phi})^{-1}$	(4)
Показатель перекоса фаз	Δ=(3 <i>А</i> −ΣР)/ <i>А</i> (близок к ∇ из [1])	(5)
Поправка $K_{\varepsilon}(\sigma, \Delta); \sigma$ – в табл. 5	$K_{\varepsilon}(\sigma,\Delta) = (2+\sigma\Delta)/(2+\Delta) = [2+\sigma(3-A^{-1}\Sigma)][5-A^{-1}\Sigma]^{-1}$	(6)
Потеря напряжения в фазе	$\varepsilon = \varepsilon_{np} \cdot K_{\varepsilon}$, где ε_{np} – по (4), K_{ε} – по (6)	(7)

Таблица 5. Соотношение сечений и сравнение двух методов расчета ПН
Соотношение сечений фазных и нулевой жил проводников (значения с

Соотношение сечений фазных и нулевой жил проводников (значения $\sigma_{ m cp}$ и σ по ГОСТ тонированы)															
<i>S</i> _φ , м	IM ²		2,5	4	6	10	16	25	35	50	70	95	σ_{cp}	$\Delta_{\max}/\varepsilon$	
		1	1,67	1,6	1,5	1,67	1,6	1,56	1,4	1,4	1,4	1,36	1,58 0,035		
Значение σ	5	2	2,5	2,67	2,4 2,5	2,5	2,67 -	2,5	- 2 10	-	-	-	2,53	0,039	
при числе	J	2	-	-	-	-		-	2,19	2	2	1,9	2	0,06	
ступенеи, равн	нои	3	-	4	4	4	4	4,16	-	-	-	-	4 ?		
		5	-	-	-	-	-		3,5	3,125	2,8	2,71	Рекол	Рекомендуется	
FOCT 16442	42 S	S ₀	1,5/2,5	2,5	4	6	10	16	16	25	25	35	расчет по факти-		
100110442	-	σ	1,67/1	1,6	1,5	1,5 1,67 1,6 1,56		1,56	2,19	2	2,8	2,71	ческим сечениям		
Расче	ет ПН	<i>є</i> по фа	зам предла	агаемы	и и «обыч	ным», т	г. е. «как ,	для случ	ая РНФ»	(в рамк	е, тониро	овано), м	иетодам	И	
Фаза		<i>Р</i> , кВт	P _n , k	$P_{n}, \text{ KBT}$ $M = P_{n} \cdot L, \text{ KBT} \cdot M$ $\varepsilon_{p} = M/c$					Δ K_{ε}				$\varepsilon = \varepsilon_{\rho} \cdot K_{\varepsilon}$		
A		21	6,7	′5	405	405			-0,714		0,68		0,75.0,68=0,51		
В		25	11,7	75	705		1,31	-0,12		0,963			1,31.0,963=1,29		
С		32	20	,5	1230)	2,28		0,562	1,13		2,28.1,13=2,57			
При расчёте сети «как для случая РНФ» Σ <i>Р</i> =78 кВт, <i>L</i> =60 м, (<i>σ</i> =1,58), Σ <i>М</i> =4680 кВт·м, <i>S</i> =70 мм ² , <i>ε</i> = <i>M</i> (<i>cS</i>) ^{¬1} ; такой расчет много проще, но дает указанные справа ошибочные (для фазы <i>C</i> − на 70\60 %) значения								е- с=45 оші	Прі ,4\44 <i>є</i> = ибка для	л =1,47\1,52 — всех фаз					

Рисунок. Линии равных значений P_n , P_{Σ} (наклонные) в поле $P_{\mathbb{P}}$ (абсцисса) и Δ (ордината); на врезке – поправка $K_{\varepsilon}(\sigma, \Delta)$ в функции Δ

Заключение

Особо следует рассмотреть вопрос о необходимости расчёта по потери напряжения. В силовых электроустановках мощности, как правило, выбираются с некоторым запасом, который перекрывает возможные колебания или потери напряжения в сети; поэтому такие потери сказываются только на общем расходе электроэнергии. Иная ситуация в осветительных электроэнергии. Иная ситуация в осветительных электроустановках: понижение напряжения уменьшает световой поток всех источников и затрудняет включение разрядных ламп; повышение напряжения (для ламп накаливания) и <u>любые</u> отклонения напряжения от номинала (для разрядных ламп) могут значительно снизить

СПИСОК ЛИТЕРАТУРЫ

- Вайнштейн В.Б., Никитин В.Д. Электрическая часть осветительных установок. – Томск: Изд-во ТПИ, 1984. – 92 с.
- Кнорринг Г.М., Фадин И.М., Сидоров В.Н. Справочная книга для проектирования электрического освещения. – Л.: Энергоатомиздат, 1992. – 384 с.
- Мирер Г.В. и др. Электрические сети жилых зданий. М.: Энергия, 1974. – 264 с.
- Райцельский Л. А. Справочник по осветительным сетям. М.: Энергия, 1977. – 288с.
- Альбом вспомогательных таблиц для проектирования осветительных установок. Ч. 2. Электротехническая. – М.: ТПЭП, 1967. – 72 с.
- Справочная книга по светотехнике / под ред. Ю.Б. Айзенберга. – М.: Знак, 2006. – 972 с.

срок службы ламп. Поэтому учет потерь напряжения в каждой фазе, а иногда и возле каждого светильника является важной электротехнической задачей; без упрощений ее решение может остаться недоступным для практики проектирования.

Предлагаемый метод:

- хорошо сочетается с номограммой в [9], дающей величину потерь напряжения или сечения проводника;
- иллюстрируется примером расчета (в отдельной статье), который показывает необходимость учета потерь напряжения как важной электротехнической задачи.
- Основы современной энергетики / под ред. А.П. Бурмана, В.А. Строева. – М.: Дом МЭИ, 2008. – С. 117–119.
- Вайнштейн В.Б., Никитин В.Д., Пашник (Толкачева) К.П. Расчет осветительных сетей по потере напряжения при неравномерной нагрузке фаз // Энергетика: экология, надежность, безопасность: Матер. Х Всерос. научно-техн. конфер. – Красноярск, 2009. – С. 199–203.
- Вайнштейн В.Б., Никитин В.Д., Пашник (Толкачева) К.П. Методика комплексного решения задач по выбору сечения осветительной сети. 2009. URL: http://nsk2009.svetotech.com/?p=99 (дата обращения: 21.03.2011).

Поступила 21.03.2011 г.