УДК 519.688:552.578.2.061.4

АДАПТИВНАЯ ИДЕНТИФИКАЦИЯ И ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ НЕСТАЦИОНАРНЫХ ГИДРОДИНАМИЧЕСКИХ ИССЛЕДОВАНИЙ С УЧЕТОМ ПРИТОКА ПРОДУКЦИИ В СКВАЖИНЕ

А.С. Аниканов, П.А. Кемерова, В.Л. Сергеев

Томский политехнический университет E-mail: SergeevVL@ignd.tpu.ru

Рассматриваются модели и алгоритмы адаптивной интерпретации результатов нестационарных гидродинамических исследований скважин по кривой восстановления давления в процессе их проведения с учетом притока продукции в стволе скважины и дополнительной априорной информации о параметрах нефтяных пластов. Приводятся примеры интерпретации результатов исследований скважины однородно пористого нефтяного пласта по кривой восстановления давления.

Ключевые слова:

Идентификация, гидродинамические исследования скважин, априорная информация, нефтяные пласты.

Key words:

Identification, hydrodynamic analysis of oil wells, a-priori information, oil pools.

Введение

Нестационарные гидродинамические исследования скважин (ГДИС) на неустановившихся режимах фильтрации по кривой восстановления давления, кривой восстановления уровня, кривой падения давления, являются одним из наиболее информативных методов определения коллекторских и геометрических параметров пластов нефтяных и газовых месторождений и обеспечивают получение важнейших параметров залежей, на основании которых осуществляются процессы добычи нефти, составляются технологические проекты разработки месторождений, создаются геолого-технологические модели процессов нефтегазодобычи.

Однако традиционные технологии идентификации и интерпретации нестационарных ГДИС, в том числе и реализованные в ряде отечественных и зарубежных пакетов прикладных программ, затратные, поскольку требуют проведение интерпретации результатов гидродинамических исследований после их завершения, что часто приводит к продолжительным простоям скважин, значительной потере добычи углеводородов [1, 2].

Следует отметить, что в настоящее время в связи с возможностью получения информации в режиме реального времени, требуется иная технология идентификации и интерпретации ГДИС, позволяющая определять фильтрационные параметры и энергетическое состояние залежей в процессе гидродинамических исследований, не планируя заранее время их завершения [3]. Такая технология адаптивной идентификации и интерпретации нестационарных ГДИС с учетом априорной информации о фильтрационных параметрах пласта предложена в [4].

В данной работе на основе метода интегрированных моделей кривой восстановления давления (КВД) [5] и работы [4] предлагается и исследуется метод адаптивной идентификации параметров нефтяных пластов и скважин с учетом притока продукции в стволе скважины после ее остановки и экспертных оценок о фильтрационных параметрах и энергетическом состоянии пласта.

Отметим, что необходимость учета притока продукции в скважине для повышения достоверности оценок параметров пласта указывалась рядом авторов [5]. В традиционной постановке, в том числе и без учета экспертных оценок параметров пласта, методы интерпретации ГДИС по КВД рассматривались в [1, 2].

Модели и алгоритмы адаптивной идентификации и интерпретации

В основе алгоритмов адаптивной идентификации и интерпретации нестационарных ГДИС использована стохастическая система моделей КВД с учетом притока продукции в стволе скважины с дебитом q_n [4]:

$$\begin{cases}
P_{3,n}^* = f_3(\boldsymbol{\alpha}_n, q_n) + \boldsymbol{\xi}_n, \\
\bar{\boldsymbol{z}}_n = \boldsymbol{f}_a(\boldsymbol{\alpha}_n, q_n) + \boldsymbol{\eta}_n, n = \overline{1, n_k},
\end{cases} (1)$$

где $P_{3,n}^*, f_3(\boldsymbol{\alpha}_n, q_n)$ — векторы фактических значений забойных давлений в текущий момент времени t_n и вычисленные на основе модели $KB \coprod f_3$, заданной с точностью до параметров $\alpha_n = (\alpha_{1n}, \alpha_{2n}, ..., \alpha_{mn});$ $\bar{\mathbf{z}}_n = (\bar{z}_{1n}, \bar{z}_{2n}, ..., \bar{z}_{pn}), \mathbf{f}_a(\boldsymbol{\alpha}_n, q_n)$ — векторы известных к текущему моменту времени дополнительных априорных данных и экспертных оценок параметров пласта (фильтрационные параметры, пластовое давление, накопленная продукция в стволе скважины после ее остановки и т. п.) и вычисленные на основе моделей $\mathbf{f}_a = (f_{a1}, f_{a2}, ..., f_{ap}); n_k$ — объем измерений забойного давления, необходимых для обеспечения требуемой точности оценок параметров α_n ; $\boldsymbol{\xi}_{\!\scriptscriptstyle n} \!\! = \!\! (\xi_{1n}, \! \xi_{2n}, \! ..., \! \xi_{nn}), \; \boldsymbol{\eta}_{\!\scriptscriptstyle n} \!\! = \!\! (\eta_{1n}, \! \eta_{2n}, \! ..., \! \eta_{pn}) \; - \; \text{векторы слу-}$ чайных величин, представляющих погрешности измерений либо расчета дебита притока продукции в скважине, забойных давлений, ошибки дополнительных данных и экспертных оценок, неточность моделей и т. п.

Проектирование алгоритмов адаптивной идентификации и интерпретации ГДИС по КВД с позиций системного подхода представим как процесс принятия решений, содержащий этапы:

1) формирование исходных данных, дополнительных априорных сведений, экспертных оценок, выбор модели КВД, моделей дополнительных априорных данных и экспертных оценок $\mathbf{f}_a(\boldsymbol{\alpha}_n,q_n)$ в рамках системы (1)

$$\{P_{3,n}^*, \mathbf{z}_n, f_3(\boldsymbol{\alpha}_n, q_n), \mathbf{f}_a(\boldsymbol{\alpha}_n, q_n), n = \overline{1, n}_k\};$$
 (2)

2) выбор показателя качества системы моделей (1) и решение оптимизационных задач вида

$$\boldsymbol{\alpha}_{n}^{*}(\boldsymbol{\beta}_{n}) = \arg\min_{\boldsymbol{\alpha}_{n}} \Phi(\boldsymbol{\alpha}_{n}, \boldsymbol{\beta}_{n}), n = \overline{1, n_{k}},$$
 (3)

$$\boldsymbol{\beta}_{n}^{*} = \arg\min_{\boldsymbol{\beta}_{n}} J_{0}(\boldsymbol{\alpha}_{n}^{*}(\boldsymbol{\beta}_{n})), \tag{4}$$

где запись arg minf(x) означает точку минимума x^* функции $f(x)(f(x^*) = \min_{x} f(x))$; $\Phi(\alpha_n, \beta_n) = \Phi(J_0(\alpha_n), \beta_k J_k(\alpha_n), k = \overline{1,p})$ — комбинированный показатель качества системы моделей КВД (1), представляющий заданную функцию (функционал) Φ от частного показателя качества $J_0(\alpha_n)$ модели КВД и взвешенных весами β_n частных показателей качества $J_k(\alpha_n)$ моделей дополнительных априорных данных и экспертных оценок;

3) анализ точности полученных приближений и принятии решения о прекращении либо о продолжении исследований с возвратом к этапу (2) либо (1).

Решение о прекращении исследований может быть принято на основе визуального анализа графика зависимости оценок параметров пласта и скважины (3) от времени либо по критерию стабилизации полученных приближений, где, например, за момент их завершения n_{κ} принимается то значение n_{κ} при котором выполняется неравенство

$$\left| \left(\alpha_{j,(n-i)}^* - \alpha_{jn}^* \right) / \alpha_{nj}^* \right| \le \varepsilon_j, j = \overline{1,m}, i = 1, 2, 3, \dots$$

$$(\varepsilon_i - 3a_j + 1) + \varepsilon_j + \overline{1,m}, i = 1, 2, 3, \dots$$
(5)

Предлагаемая технология (2)—(5) позволяет синтезировать широкий спектр алгоритмов адаптивной идентификации и интерпретации ГДИС для линейных, нелинейных и непараметрических моделей КВД и моделей объектов аналогов.

Рассмотрим решение задачи (2)—(5) на примере идентификации и интерпретации ГДИС на неустановившихся режимах фильтрации по КВД однородно-пористого нефтяного пласта с учетом продолжающегося притока продукции в скважине, где в качестве модели забойного давления скважины используется зависимость [6]:

$$\frac{\Delta P_{s}(t)}{q_{0} - q(t)} = \frac{1}{4\pi\sigma} \left[\ln\left(\frac{2,25\,\chi}{r_{np}^{2}}\right) + \varphi(t) \right],\tag{6}$$

$$\Delta P_{3}(t) = P_{3}(t) - P(t_{0}), \ \varphi(t) = \frac{q_{0} \ln t - \omega(t)}{q_{0} - q(t)}, \ \omega(t) = \int_{t_{0}}^{t} \frac{q(\tau)}{t - \tau} d\tau;$$

 q_0 — дебит скважины до ее остановки; $P_3(t)$, q(t) — забойное давление и приток продукции в скважину после ее остановки, $P_3(t_0)$ — забойное давление в момент остановки скважины t_0 ; σ , χ — гидропроводность и пьезопроводность нефтяного пласта; r_{np} — приведенный радиус скважины. В данном слу-

чае система моделей КВД (1) с учетом дополнительной информации о гидропроводности, пьезопроводности и пластовом давлении примет вид:

$$\begin{cases} y_{n}^{*} = \alpha_{1n} + \alpha_{2n} \varphi(n) + \xi_{n}, n = \overline{1, n_{k}}, \\ \overline{\alpha}_{1n} = \alpha_{1n} + \eta_{1}, \overline{\alpha}_{2n}, = \alpha_{1n} + \eta_{2}, \overline{P}_{n_{7}, n} = \\ = \alpha_{1n} + \alpha_{2n} \ln(T) + \eta_{3}, \end{cases}$$
(7)

где $y_n^* = (P_n^* - P(t_0))/(q_0 - q_n^*)$; P_n^* , q_n^* , $n = \overline{1, n_k}$ — измеренные в моменты времени t_n значения забойного давления скважины и рассчитанные значения де-

бита притока продукции; $\overline{\alpha}_{1n} = \frac{1}{4\pi \overline{\sigma}_n} \ln(2, 25 \overline{k_p}),$

$$\overline{\alpha}_{2n} = \frac{1}{4\pi \overline{\sigma}_n}; \ \overline{\sigma}_n, \overline{k}_p = 2,25 \overline{\chi} / \overline{r}_{np}^2, \ \overline{P}_{nn,n} -$$
 дополнитель-

ные априорные данные гидропроводности, комплексного параметра и пластового давления, известные к текущему моменту времени t_n ;

Отметим, что при выборе комбинированного показателя качества Φ (α_n , β_n) для системы моделей (7) в виде суммы частных квадратичных показателей качества модели КВД и моделей дополнительных априорных данных

$$\Phi(\boldsymbol{\alpha}_{n},\boldsymbol{\beta}_{n}) = J_{0}(\boldsymbol{\alpha}_{n}) + \sum_{k=1}^{3} \beta_{k} J_{k}(\boldsymbol{\alpha}_{n}) =$$

$$= \left\| \mathbf{y}_{n}^{*} - F \boldsymbol{\alpha}_{n} \right\|_{W_{n}}^{2} + \left\| \mathbf{z}_{n} - F_{a} \boldsymbol{\alpha}_{n} \right\|_{W_{n}}^{2}, \tag{8}$$

оптимизационная задача (3) имеет точное аналитическое решение, а именно сводится к решению системы линейных алгебраических уравнений (СЛУ)

$$(F^{T}W_{1}F + F_{a}^{T}W_{2}F_{a}^{T}) \cdot \boldsymbol{\alpha}_{n}(\boldsymbol{\beta}_{n}) = (F^{T}W_{1}\mathbf{y}_{n}^{*} + F_{a}^{T}W_{2}\mathbf{z}_{n}) \tag{9}$$

где запись $\|X\|_W^2$ означает квадратичную форму $X^TWX^T;$ $F=(1,\varphi(n),n=1,n_k)$ — матрица размерности

$$(n_k \times 2);$$
 $F_a^T = \begin{bmatrix} 1,0,&1\\0,1,\varphi(T) \end{bmatrix}$ — матрица размерности

 $(2\times3); \overline{\mathbf{z}}_n = (\overline{\alpha}_{1n}, \overline{\alpha}_{2n}, \overline{P}_{nn}, n)$ — вектор экспертных оценок; $\mathbf{y}_n^* = (y_n^*, n = \overline{1}, n_k)$ — вектор; $W_1 = \operatorname{diag}(w(n), n = 1, n_k)$ — диагональная матрица весовой функции w(t), определяющая вес y_n^* в текущий момент времени t_n ; $W_2 = \operatorname{diag}(\beta_{1n}, \beta_{2n}, \beta_{3n})$ — диагональная матрица управляющих параметров $\boldsymbol{\beta}_n = (\beta_{1n}, \beta_{2n}, \beta_{3n})$, определяющих значимость (вес) дополнительных данных $\overline{\mathbf{z}}_n$.

Для получения СЛУ (9) достаточно взять частные производные по параметрам α_n от комбинированного функционала (8) и приравнять их к нулю.

Следует также отметить, что задача (4) по определению оптимальных значений вектора управляющих параметров $\boldsymbol{\beta}_n^*$ не имеет аналитического решения и решается методами последовательных приближений.

Результаты идентификации и интерпретации

Результаты идентификации и интерпретации ГДИС скважины № 361 нефтяного месторождения Тюменской области на неустановившихся режимах фильтрации по КВД приведены на рис. 1—3 и в та-

блице. На рис. 1 приведены значения забойного давления $P_{3,n}^* - P(t_0)$, ат и дебита притока продукции в скважине q_n^* , см³/с, где начальное давление в момент остановки скважины $P(t_0)$ =82 аТ. Первое значение забойного давления и дебита притока получены через 6 ч. после остановки скважины, последнее измерение через 189 ч.

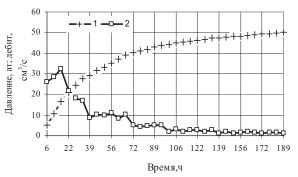


Рис. 1. Значения забойного давления (1) и дебита притока (2)

Обработка результатов ГДИС проводилась с использованием зарубежного программного комплекса «PanSystem», метода адаптивной идентификации (АИ) (1)—(5) для модели КВД с учетом притока (7), метода наилучшего совмещения (НС), который, по аналогии с (9), сводится к решению системы линейных уравнений

$$(F^{T}W_{1}F) \cdot \boldsymbol{\alpha}_{n}^{*}(0) = F^{T}W_{1}y_{n}^{*}$$
(10)

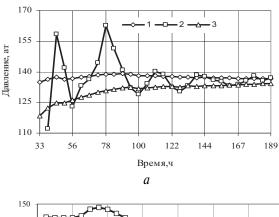
и метода наилучшего совмещения с регуляризацией (НСР) по А.Н. Тихонову [7]

$$(F^T W_1 F + W_2) \cdot \boldsymbol{\alpha}_n^* (\boldsymbol{\beta}_n) = F^T W_1 \boldsymbol{\gamma}_n^*, \tag{11}$$

который следует из (9) при $\overline{\mathbf{z}}_n = 0$.

Оценки пластового давления $P_{n,i}^*(n)$, гидропроводности σ_n^* и комплексного параметра $k_n^*(n)$

$$P_{nn}^{*}(n) = P_{3}(t_{0}) + \alpha_{1n}^{*}(\boldsymbol{\beta}_{n}^{*}) + \alpha_{2n}^{*}(\boldsymbol{\beta}_{n}^{*})\varphi(T),$$


$$\sigma_{n}^{*} = q_{0} / 4\pi\alpha_{2n}^{*}(\boldsymbol{\beta}_{n}^{*}),$$

$$k_{n}^{*} = \exp(\alpha_{1n}^{*}(\boldsymbol{\beta}_{n}^{*}) / \alpha_{2n}^{*}(\boldsymbol{\beta}_{n}^{*})) / 2,25$$
(12)

получены с использованием стратегии «скользящего интервала», где в обработке участвуют данные из интервала $[n_n + \Delta n + i]$, $1 \le i \le n_k - \Delta n$, $n_n = 0$, $\Delta n = 5$, что достигается соответствую<u>щим</u> выбором значений весовых функций w(n), n = 1, n_k в матрице $W_1(9) - (11)$. Здесь i — номер текущего интервала обработки, n_n , Δn — количество измерений забойного давления в начальном участке КВД $[t_0, t_n]$ и, соответственно, в интервале обработки; $\alpha_{1n}^*(\boldsymbol{\beta}_n^*)$, $\alpha_{2n}^*(\boldsymbol{\beta}_n^*)$ — текущие оценки параметров модели КВД (7), полученные к моменту времени t_n ; T = 400 ч — время восстановления забойного давления до пластового; $f_a = (1, \ln(T))$ — вектор; $\boldsymbol{\beta}_n^*$ — оценки вектора управляющих параметров в матрице $W_2(9)$ полученные путем решения оптимизационной задачи

$$\boldsymbol{\beta}_{n}^{*} = \arg\min_{\boldsymbol{\beta}_{n}} \left\| \mathbf{y}_{n}^{*} - F\boldsymbol{\alpha}_{n}(\boldsymbol{\beta}_{n}) \right\|^{2}$$

методом деформированного многогранника [8].

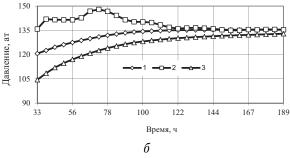
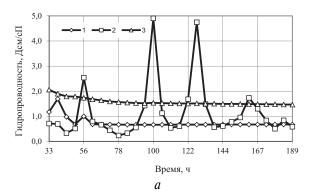
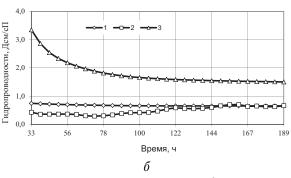




Рис. 2. Оценки пластового давления: a) с учетом притока; б) без учета притока. Метод: 1) AИ; 2) HC; 3) HCP

Рис. 3. Оценки гидропроводности пласта a) с учетом притока; б) без учета притока. Метод: 1) АИ; 2) НС; 3) НСР

В качестве дополнительных априорных сведений использовались данные о гидропроводности $\overline{\sigma}_1$ =1,2 Дсм/сП, комплексном параметре \overline{k}_p =1,5·10⁻⁴ с⁻¹ и пластовом давлении $\overline{P}_{n,1}$ =250 ат, с последующей их корректировкой в процессе получения оценок параметров модели (7) по схеме

$$\overline{\boldsymbol{\alpha}}_{n} = \boldsymbol{\alpha}_{n-1}^{*}(\boldsymbol{\beta}_{n-1}^{*}), \overline{P}_{nn,n} = P_{s}(t_{0}) + f_{a}(\boldsymbol{\alpha}_{n-1}^{*}(\boldsymbol{\beta}_{n-1}^{*})),$$

$$n = 2, 3, ..., n_{b}.$$

На рис. 1-3 и в таблице приведены оценки пластового давления и гидропроводности, полученные методами АИ (12), НС (10) и НСР (11) за разные периоды исследований.

Таблица. Результаты обработки КВД скважины № 361 нефтяного месторождения с учетом/без учета притока продукции

Метод	Время, ч	Пластовое давление, ат	Гидропро- водность, Дсм/сП	Комплекс- ный пара- метр, с ⁻¹ ,10 ⁻⁴
«PanSystem»	189	135,0/135,0	0,71/0,71	2,75/2,75
Адаптивной идентифика- ции	33	134,8/120,6	0,65/0,75	2,36/0,83
	61	137,3/128,9	0,64/0,69	2,81/1,15
	89	139,0/133,4	0,63/0,66	3,15/2,21
	117	137,9/135,0	0,64/0,66	2,93/2,44
	189	136,7/135,4	0,65/0,65	2,71/2,56
Наилучшего совмещения	33	158,3/135,8	0,33/0,43	0,42/0,29
	61	144,3/142,7	0,44/0,45	0,66/0,21
	89	129,0/141,2	4,90/0,38	0,66/0,28
	117	130,4/136,9	4,75/0,54	0,57/0,95
	189	134,9/135,3	1,15/0,66	0,27/2,70
Наилучшего совмещения с регуляриза- цией	33	118,6/104,0	2,06/3,35	3,94/3,71
	61	127,5/119,1	1,68/2,06	4,77/4,73
	89	132,1/126,5	1,53/1,72	4,82/4,78
	117	132,7/129,8	1,51/1,60	4,80/4,79
	189	134,2/133,6	1,47/1,65	4,79/4,82

Из рис. 1—3 и таблицы видно, что оценки параметров нефтяного пласта, полученные методом

СПИСОК ЛИТЕРАТУРЫ

- Шагиев Р.Г. Исследование скважин по КВД. М.: Наука, 1998. – 304 с
- Кульпин Л.Г., Мясников Ю.А. Гидродинамические методы исследований нефтегазовых пластов. – М.: Недра, 1974. – 200 с.
- 3. Ипатов А.И., Кременецкий М.И., Гуляев Д.Н. Современные технологии гидродинамических исследований скважин и их возрастающая роль в разработке углеводородов // Нефтяное хозяйство. 2009. № 1. С. 52—55.
- Сергеев В.Л., Аниканов А.С. Метод адаптивной идентификации гидродинамических исследований скважин с учетом априорной информации // Известия Томского политехнического университета. 2010. Т. 317. № 5. С. 50–52.

адаптивной идентификации, устойчивые и более точные по сравнению с оценками, полученными методами наилучшего совмещения (10) и наилучшего совмещения с регуляризацией (11).

Учет притока продукции в методе адаптивной идентификации позволяет значительно сократить время исследований (см. таблицу и рис. 2, 3). Так для получения оценок параметров методом адаптивной идентификации с заданной по критерию (5) точностью (ε_j =0,02, j=1,2) достаточно 60 ч, что позволяет в три раза сократить время простоя скважины по сравнению с технологией обработки данных, реализованной в программе «PanSystem».

Выводы

- 1. Предложены модели и алгоритмы адаптивной идентификации и интерпретации нестационарных гидродинамических исследований скважин с учетом продолжающегося притока продукции в скважине после ее остановки и дополнительной априорной информации о фильтрационных параметрах и энергетическом состоянии нефтяных пластов.
- 2. На примере гидродинамических исследований скважины нефтяного месторождения Тюменской области показано, что метод адаптивной идентификации дает более устойчивые и точные оценки параметров однородно пористого нефтяного пласта, сокращает время простоя скважины по сравнению с методом наилучшего совмещения, регуляризированного метода наилучшего совмещения и технологией реализованной в программном комплексе «PanSystem».
- 3. Учет продолжающегося притока продукции в методе адаптивной идентификации позволяет в три раза сократить время простоя скважины.
- Сергеев В.Л. Интегрированные системы идентификации. Томск: Изд-во НТЛ, 2004. – 240 с.
- Иктисанов В.А. Определение фильтрационных параметров пластов и реологических свойств дисперсных систем при разработке нефтяных месторождений. – М.: ОАО «ВНИИОЭНГ», 2001. – 212 с.
- Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. – М.: Наука, 1979. – 288 с.
- 8. Пантелеев А.В., Летова Т.А. Методы оптимизации в примерах и задачах. М.: Высшая школа, 2002. 544 с.

Поступила 25.04.2011 г.