

Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт- Институт природных ресурсов

Направление- Нефтегазовое дело

Кафедра бурения скважин

БАКАЛАВРСКАЯ РАБОТА

Тема работы

ТЕХНОЛОГИЧЕСКИЕ РЕШЕНИЯ ДЛЯ СТРОИТЕЛЬСТВА ЭКСПЛУАТАЦИОННОЙ НАКЛОННО-НАПРАВЛЕННОЙ СКВАЖИНЫ ГЛУБИНОЙ 2757 МЕТРОВ НА СРЕДНЕ-НЮРОЛЬСКОМ НЕФТЯНОМ МЕСТОРОЖДЕНИИ (ТОМСКАЯ ОБЛАСТЬ)

УДК 622.323:622.243.23(24:181 m 2757)(571.16)

Студент

Группа	ФИО	Подпись	Дата
3-2Б22	Зверков О.В.		

Руководитель

Должность	ФИО	Ученая	Подпись	Дата
		степень,		
		звание		
доцент	Минаев К.М.	к. х. н.		

КОНСУЛЬТАНТЫ:

По разделу «Финансовый менеджмент, ресурсоэффективность и

ресурсосбережение»

Должность	ФИО	Ученая	Подпись	Дата
		степень,		
		звание		
Ст. преподаватель	Глызина Т.С.	к. х. н.		

По разделу «Социальная ответственность»

Должность	ФИО	Ученая	Подпись	Дата
		степень,		
		звание		
Доцент	Гуляев М.В.	К. Т. Н		

ДОПУСТИТЬ К ЗАЩИТЕ:

Должность	ФИО	Ученая	Подпись	Дата
		степень,		
		звание		
И.о. зав.кафедрой БС	Ковалев А.В	к. т. н.		

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт природных ресурсов

Направление подготовки (специальность): «Нефтегазовое дело» («Бурение нефтяных и газовых скважин»)

Кафедра бурения скважин

УТВЕРЖДАЮ: И.о.зав. кафедрой БС _____ Ковалёв А.В. (Подпись) (Дата) (Ф.И.О.)

ЗАЛАНИЕ

на выполнение выпускной квалификационной работы

в форме бакалаврской работы

Студенту:

Группа	Фамилия Имя Отчество
3-2Б22	Зверков Олег Владимирович

Тема работы:

ТЕХНОЛОГИЧЕСКИЕ РЕШЕНИЯ ДЛЯ СТРОИТЕЛЬСТВА ЭКСПЛУАТАЦИОННОЙ НАКЛОННО-НАПРАВЛЕННОЙ СКВАЖИНЫ ГЛУБИНОЙ 2757 МЕТРОВ НА СРЕДНЕ-НЮРОЛЬСКОМ НЕФТЯНОМ МЕСТОРОЖДЕНИИ (ТОМСКАЯ ОБЛАСТЬ)

Утверждена приказом директора (дата, номер)

Срок сдачи студентом выполненной работы:

ТЕХНИЧЕСКОЕ ЗАДАНИЕ:

Исходные данные к работе
(наименование объекта исследования или
проектирования; производительность или
нагрузка; режим работы (непрерывный,
периодический, циклический и т. д.); вид сырья
или материал изделия; требования к продукту,
изделию или процессу; особые требования к
особенностям функционирования
(эксплуатации) объекта или изделия в плане
безопасности эксплуатации, влияния на
окружающую среду, энергозатратам;
экономический анализ и т. д.).

Материалы с производства, специальная литература и периодическая литература, электронные источники

Перечень подлежащих исследованию, проектированию и разработке вопросов

(аналитический обзор по литературным источникам с целью выяснения достижений мировой науки техники в рассматриваемой области; постановка задачи исследования, проектирования, конструирования; содержание процедуры исследования, проектирования, конструирования;

Выбор способа бурения. Проектирование профиля и конструкции скважины. Проектирование процесса углубления скважины. Проектирование процессов заканчивания скважины. Выбор буровой установки. Проектирование бурового технологического комплекса. Экономическая часть. Безопасность в рабочей зоне. Чрезвычайные ситуации. Охрана окружающей среды.

обсуждение результатов выполненной р	работы;	
наименование дополнительных разделов,		
подлежащих разработке; заключение по		
работе).		
Перечень графического материала	a	Геолого-технический наряд (ГТН);
(с точным указанием обязательных чер	тежей)	
		Компоновка низа бурильной колонны (КНБК)
Консультанты по разделам выпус	кной ква	алификационной работы
(с указанием разделов)		
Раздел		Консультант
Финансовый менеджмент,	Глызин	па Татьяна Святославовна
ресурсоэффективность и		
ресурсосбережение		
Социальная ответственность	Гуляев	Милий Всеволодович
Названия разделов, которые долж	ны быть	ь написаны на иностранном языках:
·		
Дата выдачи задания на выполнен	ие выпу	скной
квалификационной работы по лин	ейному	графику

Задание выдал руководитель:

эадание выдан руковод	(III COID)			
Должность	ФИО	Ученая	Подпись	Дата
		степень,		
		звание		
Доцент	Минаев К.М.	к. х. н.		

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
3-2Б22	Зверков Олег Владимирович		

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ»

Студенту:

Группа	ФИО
3-2Б22	Зверков О.В.

Институт	Природных ресурсов	Кафедра	Бурения скважин
Уровень образования	Бакалавр	Направление	23.03.01 «Нефтегазовое дело»

Исходные данные к разделу «Социальная ответс	твенность»:			
1. Характеристика объекта исследования (вещество, материал, прибор, алгоритм, методика, рабочая зона) и области его применения	Технологические решения на строительство наклонно-направленной скважины глубиной 2757 метров на Средне-Нюрольском нефтяном месторождении (Томская область)			
Перечень вопросов, подлежащих исследованию, пр	оектированию и разработке:			
1. Производственная безопасность 1.1. Анализ выявленных вредных факторов при строительстве скважины на Средне-Нюрольском нефтяном месторождении (Томская область) 1.2. Анализ выявленных опасных факторов при строительстве скважины на Средне-Нюрольском нефтяном месторождении (Томская область)	Вредные факторы 1. Неудовлетворительные погодные условия 2. Неудовлетворительная освещённость 3. Повышенный шум и вибрации, 4. Насекомые, животные. Опасные факторы 1. Механический травматизм 2. Ядовитые вещества. 3. Электрический травматизм. 4. Пожаро-взрывоопасность.			
2. Экологическая безопасность:	Бурении скважины сопровождается: -загрязнением атмосферного воздуха; -нарушением гидрогеологического режима; -загрязнением поверхностных водных источников и подземных вод; -повреждением почвенно-растительного покрова.			
3. Безопасность в чрезвычайных ситуациях:	-Мероприятия по устранению ЧС ГНВП, пожары -Анализ возможных чрезвычайных ситуаций			
4. Правовые и организационные вопросы обеспечения безопасности:	-Специальные (характерные при эксплуатации объекта исследования, проектируемой рабочей зоны) правовые нормы трудового законодательства; -Организационные мероприятия при компоновке рабочей зонынормативно-правовые акты в области обеспечения охраны труда и промышленной безопасности			

π ι	
Дата выдачи задания для раздела по линейному графику	
i /lala ddi/lahi sa/lanin /liin uas/iciia iiu jiinciinumiy luawiiky	

Задание выдал консультант:

	Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ī	Доцент	Гуляев М.В.	к. т. н.		

Задание принял к исполнению студент:

Suguino irpinini	in the state of th		
Группа	ФИО	Подпись	Дата
3-2Б22	Зверков О.В.		

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ»

Студенту:

Группа	ФИО
3-2Б22	Зверков Олег Владимирович

Институт	Природных ресурсов	Кафедра	Бурение скважин
Уровень образования	Бакалавр	Направление/специальность	«Нефтегазовое дело»

1. Данные по строительству скважин на Средне- Нюрольском месторождении	Расчет техник-экономических показателей
Перечень вопросов, подлежащих исследованию,	проектированию и разработке:
 Структура и организационные формы работы бурового предприятия. Расчет нормативной продолжительности строительства скважин. Нормативная карта. Составление линейно-календарного графика. Расчет сметной стоимости сооружения скважины. 	Расчет нормативной продолжительност, строительства скважин. Нормативная карта. Составление линейного-календарного графика. Расчет сметной стоимости сооружени, скважины

Дата выдачи задания для раздела по линейному графику

Задание выдал консультант:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Ст. преподаватель	Глызина Татьяна	к. х. н.		
	Святославовна			

Задание принял к исполнению студент:

		· · ·			
Группа		ФИО		Подпись	Дата
3-2Б22	Звер	ков Олег Владимирович	I		

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт природных ресурсов

Направление подготовки (специальность): «Нефтегазовое дело» («Бурение нефтяных и газовых скважин»)

Уровень образования: бакалавриат

Кафедра бурения скважин

Период выполнения: осенний / весенний семестр 2016/2017 учебного года

Форма представления работы: бакалаврская работа

КАЛЕНДАРНЫЙ РЕЙТИНГ-ПЛАН выполнения выпускной квалификационной работы

Срок сдачи студентом выполненной работы:	

Дата контроля	Название раздела (модуля) / вид работы (исследования)	Максимальный балл раздела (модуля)
	Общая и геологическая часть	
	Технологическая часть	
	Специальная часть	

Составил преподаватель:

Должность	ФИО	Ученая	Подпись	Дата
		степень,		
		звание		
Доцент	Минаев К.М.	К. Х. Н		

СОГЛАСОВАНО:

Должность	ФИО	Ученая	Подпись	Дата
		степень,		
		звание		
И. о. зав. кафедрой БС	Ковалёв А.В.	к. т. н.		

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

ВЗД	винтовой забойный двигатель
ЦГ	цементировочная головка
ЦА	цементировочный агрегат
СПО	спускоподъемные операции
КНБК	компоновка низа бурильной колонны
ЦКОД	цементировочный клапан обратный дроссельный
ГИС	геофизические исследования
ГРП	гидравлический разрыв пласта
ПАВ	поверхностно-активное вещество
ПВО	противовыбросовое оборудование
CHC	статическое напряжение сдвига
ДНС	динамическое напряжение сдвига
ПЦН	пробка цементировочная нижняя
ГТН	геолого-технический наряд
СКЦ	станция контроля цементирования
ОЗЦ	ожидание затвердевания цемента
БУ	буровая установка
ВУК	виброударный механизм
НКТ	насосно-компрессорные трубы
ГУМ	Гидравлический ударный механизм
УБТ	утяжелённая буровая труба

РЕФЕРАТ

Выпускная квалификационная работа содержит 81 с., ? рис., ? табл., ? литературных источников, ? прил.

Ключевые слова: буровая установка, бурение, буровой раствор, заканчивание скважин, охрана окружающей среды, скважина, нефть.

Объектом исследования является технологический проект на строительство эксплуатационной наклонно-направленной скважины.

Цель работы — проектирование строительства эксплуатационной скважины глубиной 2757 м на Средне-Нюрольском месторождении.

В процессе исследования проводились расчёты и обоснование пятиинтервального профиля скважины, конструкции, углубления и заканчивания скважины.

Работа выполнена по геологическим материалам Средне- Нюрольского месторождения.

В результате исследования получен технический проект на сооружение скважины глубиной 2757 метров.

Основные конструктивные, технологические и технико- эксплуатационные характеристики: эксплуатационная наклонно- направленная скважина с глубиной по вертикали 2446 м (2757 м по стволу).

Экономическая эффективность/значимость работы заключается в расчете стоимости строительства эксплуатационной наклонно-направленной скважины.

В будущем планируется реализовать строительство запроектированной скважины на добычу нефти с сопоставлением реальных и заложенных в данном проекте затрат.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	11
1. ОБЩАЯ И ГЕОЛОГИЧЕСКАЯ ЧАСТЬ	12
1.1.Краткая географо-экономическая характеристика района проектируемых работ	13
1.2. Геологические условия бурения	13
1.3. Характеристика газонефтеводоносности месторождения (площади)	17
1.4.Зоны возможных осложнений	18
2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ	21
2.1.Обоснование и расчет профиля (траектории) скважины	21
2.2.Обоснование конструкции скважины	23
2.2.1.Обоснование конструкции эксплуатационного забоя	23
2.2.2.Построение совмещенного графика давлений	23
2.2.3.Определение числа обсадных колонн и глубины их спуска	25
2.2.4.Выбор интервалов цементирования	25
2.2.5. Расчет диаметров скважины и обсадных колонн	26
2.2.6. Разработка схем обвязки устья скважины	28
2.3.Углубление скважины	29
2.3.1.Выбор способа бурения	29
2.3.2.Выбор породоразрушающего инструмента	30
2.3.3. Расчет осевой нагрузки на долото по интервалам горных пород	31
2.3.4.Расчет частоты вращения долота	32
2.3.5.Выбор и обоснование типа забойного двигателя	34
2.3.6.Выбор гидравлической программы промывки скважины	35
2.3.7.Выбор компоновки и бурильной колонны	37
2.3.8.Обоснование типов и компонентного состава буровых растворов	39
2.3.9.Выбор гидравлической программы промывки скважины	41
2.4. Проектирование процессов заканчивания скважин	41
2.4.1.Расчет обсадных колонн	41
2.4.1.1.Расчет наружных избыточных давлений	41
2.4.1.2.Расчет внутренних избыточных давлений	43
2.4.2. Конструирование обсадной колонны по длине	44
2.4.3. Расчет процессов цементирования скважины	45
2.4.3.1.Выбор способа цементирования обсадных колонн	45
2.4.3.2. Расчёт объёма тампонажной смеси и количества составных компонентов	46
2.4.3.3. Обоснование типа и расчёт объема буферной, продавочной жидкостей	47
2.4.3.4. Гидравлический расчет цементирования скважины	49
2.4.3.4.1.Выбор типа и расчёт необходимого количества цементировочного оборудования	49
2.4.3.4.2. Расчёт режима закачки и продавки тампонажной смеси	50
2.4.4.Проектирование процессов испытания и освоения скважин	53
2.5.Выбор буровой установки	54

3.СПЕЦИАЛЬНАЯ ЧАСТЬ	55
4.ФИНАНСОВЫЙ МЕНЕЖМЕНТ, РЕСУРСОЭФФЕКТВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ	
4.1. Структура и организационные формы работы бурового предприятия	59
4.2. Нормативная карта	61
4.3. Составление линейно-календарного графика	63
4.4. Расчет сметной стоимости сооружения скважины	64
5. СОЦИАЛЬНАЯ ОТВЕТВЕННОСТЬ	
5.1.1. Анализ вредных производственных факторов и обоснование мероприятий по их устранению	81
5.1.2. Анализ опасных производственных факторов и обоснование мероприятий по их устранению	82
5.2. Экологическая безопасность	86
5.3.Безопасность в чрезвычайных ситуациях	88
5.4. Правовые и организационные вопросы обеспечения безопасности	89
ЗАКЛЮЧЕНИЕ	91
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	92
Приложение А	
Приложение Б	
Приложение В	
Приложение Г	
Приложение Д	
Приложение Е	
Приложение Ж	
Приложение 3	

ВВЕДЕНИЕ

Российская экономика во многом продолжает зависеть от экспорта углеводородного сырья на мировой рынок. Следовательно, развитие нефтяной промышленности в России имеет очень важное, стратегическое значение.

На данный момент в результате большого спроса на нефть и нефтепродукты цены на углеводородсодержащее сырье высоки, что позволяет нефтегазодобывающим компаниям получать огромную прибыль. Но не стоит забывать, что себестоимость российской нефти была и остается довольно высокой. Одной из главных задач перед нефтяниками является внедрение технологий и проведение мероприятий, позволяющих снижать себестоимость продукции.

Одним из подходов для решения этой задачи считаю необходимым развитие технологий, связанных с бурением и заканчиванием скважин. Обосную тем, что бурение — самая дорогостоящая отрасль нефтяной промышленности, поэтому именно здесь внедрение новых более совершенных и модернизированных технологий позволит повысить качество работ, снизить трудоемкость и сократить затраты. Важным направлением в этой сфере является минимизация времени бурения за счет использования долот повышенной производительности.

В специальной части данного проекта рассмотрена проблема заколонных перетоков и методы борьбы с ними.

1. ОБЩАЯ И ГЕОЛОГИЧЕСКАЯ ЧАСТЬ

1.1. Краткая географо-экономическая характеристика района проектируемых работ

Территория работ в административном отношении расположена в Каргасокском районе Томской области. По географическому положению Средне-Нюрольское месторождение находится в Западносибирской низменности. Ближайшим населенным пунктом к району работ является поселок Новый Васюган расположенный в 120 км к северо-востоку от месторождения. Расстояние до областного центра 600км.

Рельеф в районе работ представлен равниной с сильно заболоченной местностью. Лес представлен сосной, березой, осиной.

Климат резко континентальный, с холодной продолжительной зимой (продолжительность зимнего периода в среднем составляет 252 суток). Продолжительность отопительного периода составляет 264 суток. Среднегодовая температура составляет -2° C. Наименьшая зимняя температура -55° C, максимальная летняя температура достигает 35° C. По количеству осадков (450 мм) район относится к зоне избыточного увлажнения. Преобладающее направление ветров юго-западное, наибольшая скорость ветра достигает 25 м/с. Снеговой покров устанавливается в среднем на 200 суток. Мощность снегового покрова 60 см на открытых местах и 1-1.5 м в залесенных участках. Промерзаемость грунта 1,5 м на открытых местах и 0,8-1 м на заболоченных и залесенных участках. Толщина льда на озерах и болотах достигает 0,5-1 м. Весенняя распутица начинается в конце апреля.

В районе развито: нефтедобывающая, рыболовная, лесная промышленность, животноводство, пушной промысел. Основные материальные базы снабжения находятся в городе Стрежевой.

В г. Стрежевом имеется пристань, аэропорт, телеграф, предприятия социально - культурного назначения.

Средне-Нюрольское месторождение было введено в бурение в 2000 году и уже эксплуатируется. На месторождении имеется нефтепровод.

Для обустройства буровых и оборудования под их основание могут быть использованы местные строительные материалы: песок, глина, лес - которые имеются в районе в необходимом количестве.

Для снабжения питьевой водой и технологических нужд при строительстве скважины используются воды палеогено-четвертичного водоносного комплекса, получаемые из пробуренных водозаборных скважин. Минерализация вод не превышает $1 \Gamma / \pi$, водоносность песчаных пластов от средней до высокой.

Транспортировку оборудования и материалов в зимнее время осуществляют по зимнику автомобильным и тракторным транспортом в летний период необходимое оборудование доставляют вертолетным транспортом. Для перевозки рабочего персонала используют вертолеты и автобусы. Из поселка Пионерный регулярно вылетают вахтовые рейсы самолетом Ан-24, перевозящие работников, проживающих в Томске.

Обзорная карта района работ представлена на рис. 1.

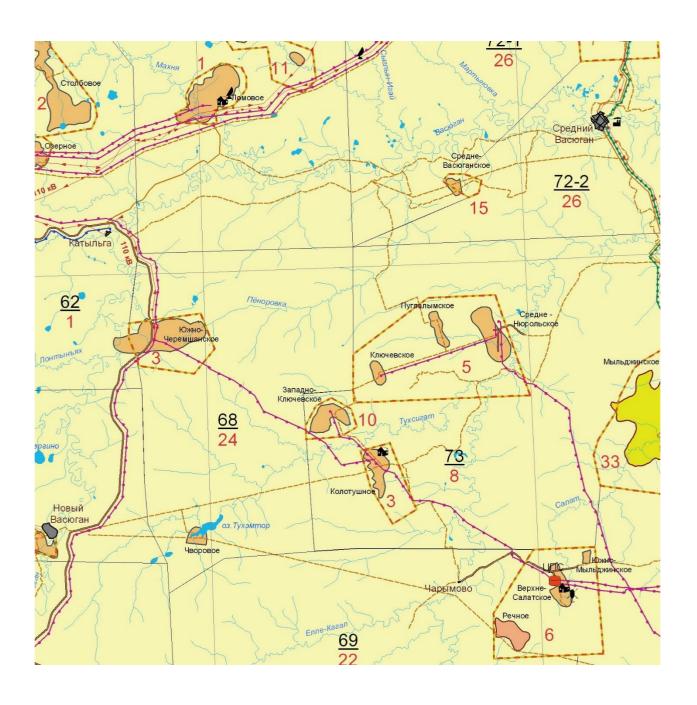


Рис. 1. Обзорная карта района работ.

1.2. Горно-геологические условия бурения.

Литолого-стратиграфический разрез Средне-Нюрольского месторождения представлен в табл. 1.2.1.

Геологическая характеристика разреза скважины.

Глубина залегания, м		Стратиграфическое под	разделение	зале (падения	иенты гания) пластов цошве	Коэффициент кавернозности	
от (верх)	до (низ)	Название	Индекс	угол, град	азимут, град	в интервале	
0	30	Четвертичные отложения	Q	0.0	-	1.4	
30	180	Некрасовская свита	P3/NK	0.0	-	1.4	
180	270	Чеганская свита	P3/CG	0-1.5	-	1.3	
270	410	Люлинворская свита	P2/LLV	0-1.5	1	1.3	
410	460	Талицкая свита	P1/TL	0-1.5	-	1.3	
460	550	Ганькинская свита	K2/GN	0-1.5	-	1.2	
550	620	Славгородская свита	K2/SL	0-1.5	-	1.2	
620	690	Ипатовская свита	K2/IP	0-1.5	-	1.2	
690	710	Кузнецовская свита	K2/KZ	0-1.5	-	1.2	
710	1500	Покурская свита	K1+K2/PKR	0-1.5	-	1.2	
1500	1540	Алымская свита	K1/ALM	0-1.5	-	1.2	
1540	1970	Киялинская свита	K1/KLN	0-1.5	-	1.2	
1970	2060	Тарскакя свита	K1/TR	0-1.5	-	1.2	
2060	2390	Куломзинская свита	K1/KLM	0-1.5	-	1.2	
2390	2400	Баженовская свита	J3/BG	2.0-3.0	-	1.2	
2400	2446	Васюганская свита	J3+J2/VS	2.0-3.0	-	1.2	

Стратиграфический разрез типичен для региона Западной Сибири. По всему разрезу довольно высокий коэффициент кавернозности.

Литологическая характеристика разреза приведена в табл. 1.2.2.

Таблица 1.2.2.

Литологическая характеристика разреза скважины.

Индекс	Интервал по вертикали		Стандартное описание горной породы:
стратиграфическо го подразделения	ОТ	до	полное название, характерные признаки (структура, текстура, минеральный состав и т.п.)
Q	0	30	Пески серые, темно-серые и среднезернистые, суглинки буровато-серые и глины с прослоями лигнита
P3/NK	30	180	Переслаивание песков серых и желтовато-серых, мелкозернистых, глин серых, песчано-алевритистых и алевритов
P3/CG	180	270	Глины голубовато-зеленые с многочисленными прослоями и линзами песков серых, светло-серых, буровато-серых кварцевых, кварцполевошпатовых и алевритов
P2/LLV 270 410 T		410	Глины зеленовато-серые, желто-зеленые, жирные на ощупь, в нижней части свиты опоковидные, с прослоями серых слюдистых алевролитов и разнозернистых кварцево-глауконитовых песков и слабых песчаников

Индекс	Интервал по		Стандартное описание горной породы:
стратиграфичес	верт	икали	полное название, характерные признаки (структура, текстура,
кого	OT	до	минеральный состав и т.п.)
подразделения			Miniepasiblibin coctab ii 1.ii.)
			Глины темно-серые до черных, жирные, вязкие плотные иногда
P1/TL	410	460	алевритистые с прослоями алевритов и песков мелкозернистых,
			кварц-полевошпато-глауконитовых, с включениями пирита
			Глины серые, темно-серые, известковистые, иногда алевритистые в
K2/GN	460	550	верхней части - мергели серые, зеленовато-серые, толща содержит
			тонкие прослои алевритов и песков
K2/SL	550	620	Глины серые, зеленовато-серые, комковатые, участками
K2/SL	330	020	опоковидные, с редкими прослойками песчаников и алевролитов
			Переслаивание песчаников, алевролитов серых, разнозернистых,
K2/IP	620	690	иногда глауконитовых и глин серых, темно-серых и зеленовато-
			серых алевритистых
K2/KZ	690	710	Глины, серые, темносерые, тонкополосчатые листоватые,
KZ/KZ	090	/10	плитчатые, иногда известковистые
			Неравномерное переслаивание песчаников серых, светло-серых
			мелкозернистых, кварц-полевошпатовых, иногда известковистых с
K1+K2/PKR	710	1500	пологой и косой слоистостью, алевролитов серых, слюдистых,
			плотных и глин серых, буровато-серых, комковатых,иногда
			уплотненных
K1/ALM	1500	1540	Неравномерное переслаивание глин, песчаников и алевролитов
K1/KLN	1540	1970	Глины серые, буровато-серые, зеленовато-серые, коричневые,
K1/KLN	1540	1970	пятнистые, комковатые, часто алевритистые, песчаники серые
L/TD	1970	2060	Песчаники серые, светлосерые, средне-зернистые, кварц-
K1/TR	1970	2000	полевошпатовые, слабо- и среднесцементированные
			Аргиллиты темно-серые, плотные, иногда тонкослоистые,
K1/KLM	2060	2390	алевритистые, с редкими тонкими прослойками известковистых
			песчаников и алевролитов
J3/BG	2390	2400	морские, различной степени битуминозности аргиллиты черные и
J3/DG	2390	2400	буровато черные с массивной текстурой, плитчатые
			Горизонт Ю1 - песчаники светло-серые, с подчиненными
J3+J2/VS	2400	2446	прослоями аргиллитов и алевролитов, ниже аргиллиты
J3+J2/V3	2400	2446	темносерые, участками алевритистые, часто углистые, хрупкие,
			иногда идеритезированные.

Продолжение таблицы 1.2.2.

Данные о физико – механических свойствах горных пород приведены в табл. 1.2.3.

Таблица 1.2.3.

Физико-механические свойства горных пород по разрезу скважины.

Индекс стратигра- фического подразделе-ния	Интервал,м		Краткое название горной породы	Плот- ность, г/см ³	Порис- тость, процент	Проница- емость, мдарси	Твер- дость, кгс/мм2	Абразив- ность	Категория породы по промысловой классифика-ции (мягкая, средняя и т.п.)
	от	до							
Q	0	30	пески	1.9	35	20	-	10	мягкая
			глины	1.85			10		
P3/NK	30 180		супес	2.0	20	1	10	4	мягкая
2 271 112		- 30	суглинки	2.0		•	-		

Продолжение таблицы 1.2.3.

Индекс стратигра- фического подразделе-ния	Интер от	овал,м до	Краткое название горной породы	Плот- ность, г/см ³	Порис- тость, процент	Проница- емость, мдарси	Твер- дость, кгс/мм2	Абразив- ность	Категория породы по промысловой классифика-ции (мягкая, средняя и т.п.)
P2/CC	180	270	пески	1.95	25	1	10	4	
P3/CG	180	270	глины	1.9	25	1	-	4	мягкая
			глины	1.9			15		
P2/LL2	270	410	пески	2.0	15	1	0	4	мягкая
			песчаник	2.5			-		
			опоки	1.75			60		
P1/TL	410	460	алевролиты	2.05	15	1	10	4	мягкая
K2/GN	460	550	глины	2.3	10	0	10	3	мягкая
T/O/GI	550	620	песчаник	2.0	10	0.5	15	4	
K2/SL	550	620	опоки	2.4	10	0,5	10	4	мягкая
140/10	000	200	песчаник,	2.45	20	0.65	12	10	
K2/IP	620	690	глины	2.05	30	0.65	13	10	мягкая
K2/KZ	690	710	глины	2.15	31.5	0.6	25	4	мягкая
1/4 - 1/0/DICD	740	4500	песчаник	2.5	20	1.5	35	4	мс
K1+K2/PKR	710	1500	алевролиты	2.05	38	1.5	100	4	
			глины	2.3			90		
K1/ALM	1500	1540	алевролиты	2.5	15.5	0.6	30	10	мс
			песчаник	2.6			150		
K1/KLN	1540	1970	алевролиты	2.0	32	0.05	95	4	средняя
			аргиллиты	2.5			60		1 ~
			песчаник	2.6			100		
K1/TR	1970	2060	глины	2.0	16	0.05	140	10	средняя
,			алевролиты	2.5			95		-F-W
			песчаник	2.6			100		
K1/KLM	1/KLM 2060		глины	2.0	25	0.05	35	4	средняя
		2390	алевролиты	2.5			140		100
J3/BG	2390	2400	аргиллиты	2.6	25	0.006	100	6	средняя
J3+J2/VS	2400	2446	аргиллиты	2.6	18	0.028	100	10	средняя
			песчаник	2.6			140		I

Из анализа табл. 1.2.3 следует, что породы имеют стандартные физикомеханические свойства для данного региона: максимальная плотность пород не превышает $2,6\,$ г/см 3 ; максимальная абразивность -10; по промысловой классификации породы в основном мягкие и средне мягкие; пористость от $10\,$ до $38\,$

%. Проницаемость песчаника продуктивного пласта высокая составляет 0.028 мкдарси = 0.28 мкм 2 .

Градиенты давлений (пластового, порового, горного и гидроразрыва), а также температура в конце интервала представлены в табл. 1.2.4.

Таблица 1.2.4.

Давление и температура по разрезу скважины

Индекс	Инте	рвал, и				-	<i>ризрезу</i> ент давло				T
страти- графи-	страти-		пласт	ового	поро	ового	гидроразрыва пород		горного		Темп-
ческого подраз-	ОТ	До	кгс/сі			/см ² а м	кгс/см	г ² на м	кгс/см	и ² на м	конце интер -вала
деления			от	до	ОТ	до	ОТ	до	ОТ	до	
1	2	3	4	5	6	7	8	9	10	11	12
Q	0	30	0	0,1	0	0,1	0,164	0,165	0	0,21	2
Pg ₃ -N nk	30	180	0,1	0,1	0,1	0,1	0,165	0,165	0,21	0,21	6
Pg ₂ -Pg ₃ cg	180	270	0,1	0,1	0,1	0,1	0,165	0,166	0,21	0,22	8
Pg ₂ ll	270	410	0,1	0,1	0,1	0,1	0,166	0,167	0,22	0,22	12
Pg ₁ tl	410	460	0,1	0,1	0,1	0,1	0,167	0,168	0,22	0,23	14
K ₂ gn	460	550	0,1	0,1	0,1	0,1	0,168	0,169	0,23	0,23	18
K ₂ sl+ip	550	620	0,1	0,1	0,1	0,1	0,169	0,169	0,23	0,23	21
K ₂ kz	620	690	0,1	0,1	0,1	0,1	0,169	0,17	0,23	0,23	22
K ₁₋₂ pk	690	710	0,1	0,1	0,1	0,1	0,17	0,171	0,23	0,23	24
K ₁ al	710	1500	0,1	0,1	0,1	0,1	0,171	0,172	0,23	0,23	47
K ₁ kls	1500	1540	0,1	0,1	0,1	0,1	0,172	0,172	0,23	0,23	52
K ₁ tr	1540	1970	0,1	0,1	0,1	0,1	0,172	0,175	0,23	0,24	63
K ₁ klm	1970	2060	0,1	0,1	0,1	0,1	0,175	0,176	0,24	0,24	65
J ₃ bg	2060	2390	0,1	0,1	0,1	0,1	0,176	0,178	0,24	0,23	76
J ₃ vs	2390	2400	0,1	0,1	0,1	0,1	0,178	0,179	0,23	0,23	78
J_{2-3} tm	2400	2446	0,1	0,1	0,1	0,1	0,179	0,18	0,23	0,23	89

Анализ градиентов показывает, что зон с аномально высокими пластовыми давлениями по разрезу не предвидится, пластовые давления близки к гидростатическим. Температура низа разреза $89~^{0}$ C.

1.3. Характеристика газонефтеводоносности месторождения

Нефтеносность представлена в табл. 1.3.1.

Таблица 1.3.1.

Нефтеносность

	(глуб	ервал бина), м		Плотн г/ с				Параме	етры раство газа	рренного
Индек с пласта	ОТ	до	Тип коллек -тора	в пласто -вых усло- виях	после дегаз -ации	Содер- жание парафи -на,%	Свобод -ный дебит, м ³ /сут	Газовы й фактор, м ³ /м ³	Относит . плотн. газа по возд. кг/м ³	Давл. насыщ. в пласто- вых условиях , МПа
1	2	3	4	5	6	7	8	9	10	11
J3/VS	240 0	242 0	поров.	0.752	0.826	3-4.42	150	40.9- 57.8	62.5	8

Данные о водоносности представлены в табл. 1.3.2.

Таблица 1.3.2.

Водоносность

Индекс стратиг-	Интер	вал, м	Тип		Свобод-	Фазовая	Степень	Относится к	
рафичес- кого под- разделе- ния	ОТ	до	кол- лек- тора	Ность,	ный дебит м3/сут	проница е-мость, мкдарси	минерали -зации М, г/л	источнику питьевого водоснабжения	
1	2	3	4	5	6	7	8	9	
Q	0	30	поров	1.000	<30		0.23-0.33	Нет	
P3/NK	30	180	поров	1	43-125		0.23-0.33	Да	
K2/IP	620	690	поров	1	130-160	0.25	5.7-6.6	Нет	
K1-2/PKR	710	1500	поров	1,006	180-960	0.4	7-17	Нет	
K1/KLM	2060	2390	поров	1,017	<37.3	0.07	12.8-19.6	Нет	

Интервал 620-1500 м, представлен водообильными пластами. Поступление воды из этих пластов в скважину может привести к разжижению бурового раствора, поэтому на данном интервале необходимо предусмотреть загустители. В связи с тем, что расстояние между нефтеносными и водоносными пластами мало, то для их более качественного разобщения и цементирования скважины необходимо предусмотреть установку скребков.

1.4. Возможные осложнения по разрезу скважины

Ожидаемые осложнения приведены в табл. 1.4.1, 1.4.2, 1.4.3, 1.4.4.

Таблица 1.4.1.

Поглощения бурового раствора

				<i>J</i> 1			
					Гради	ент	
	Интервал,		Макси-		давления		
Индекс	N	М	мальная	Имеется	поглощ		
стратиграфичес-			интенсив-	ЛИ	кгс/см ²	на м	Условия
кого подраз-	от	до	ность поглоще- ния,	потеря циркуля- ции	при вскрытии	после изоля- цион-	возникновения
			м ³ /час		Бекрытии	ных работ	
1	2	3	4	5	6	7	8
Q,P3/NK	0	180		нет	0.12	0,165	Превыш. плотн.,
K1-2/PKR	710	1500		нет	0,122	0,172	вязк. и СНС, плохая очистка
K1/KLM	2060	2390	Частичное	нет	0,128	0,178	раствора., высок. скор. СПО

Таблица 1.4.2.

Прогноз возможных осыпей и обвалов стенок скважины

Индекс	Интер	рвал, м	Буровые	е растворі	ы, применявшиеся ранее	
страти- графиче- ского подраз- деления	ОТ	до	тип раствора	плот- ность, г/см ³	Дополнительные данные по раствору, влияющие на устойчивость пород	Мероприятия по ликвидации последствий
Q,P3/NK	0	180	Глинис- тый	< 1,12	Снижение плотности бурового раствора на	Соблюдение технологии
K1-2/PKR	710	1500	Глинис- тый	< 1,06	стенки скважины, повышенная водоотдача, пониженная вязкость,	скорости бурения и СПО, проработка
K1/TR	1500	1540	Естеств. полимер -глинист	< 1,06	недолив скважины при подъеме бурильного инструмента, недостаточная	ствола скважины, увеличение плотности
K1/KLM	2390	2400	Естеств. полимер -глин.	<1,08	ингибирующая способность бурового раствора	бурового раствора и снижение водоотдачи

Нефтегазоводопроявления

Индекс страти- графи-	Интер	рвал, м	Вид проявляе-	Плотность смеси при проявлении, г/см ³		при проявлении,		Условия	Характер
ческого подраз- деления	ОТ	до	мого флюида	внут- реннего	наруж- ного	возникновения	проявления		
K1- 2/PKR	710	1500	вода	1,008	1,008	Снижение противодавления на пласт ниже гидро-	Увеличение водоотдачи пром. жидкости, перелив пром. жидкости.		
K1/KLM	2060	2390	вода	1,017	1,017	статического. Не соблюдение проектных	Появление пузырьков газа и пленки нефти в		
J3/VS	2400	2446	нефть	0,8	0,8	параметров бурового раствора и скорости СПО.	растворе при нефтепроявлении, перелив бур. раствора.		

Таблица 1.4.4.

Прихватоопасные зоны

Инд.с страт	Инте	рвал, м		Раствор, при применении которого произошел прихват				
под- раз- дел.	ОТ	до	Вид прихвата	тип	плот- ность г/см ³	водо- отда- ча, см3/м ин	смазы- ваю- щие доб.	Условия возникновения
K1, J3	1540	2446	Сальнико- образования, дифференци- альный прихват	Глинис- тый	<1,10	>10,0	Отсут-	Несоответствие параметров бурового раствора, отсутствие смазывающих добавок, оставление инструмента без движение >5 мин

Осложнения, описанные в табл. 1.4.1-1.4.4, являются типичными для данных горных пород. На борьбу с ними уходит достаточно большое количество

2. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

2.1. Обоснование и расчет профиля проектной скважины

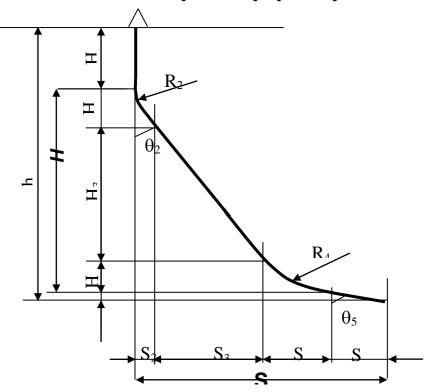


Рис. 2. Пятиинтервальный

Все расчетные параметры представлены в табл. 2.2.1.

Таблица 2.2.1.

Программа на проводку наклонно-направленной скважины.

I.I.			<i>T</i>	Try Truncion				
интер	вал по					Горизонтальное		а по
верти	икали		Зенитный	угол, град	отклон	ение	ство	олу
		Длина по	в начале	в конце	за		Интер-	
ОТ	до	вертикали	интервала	интервала	интервал	общее	вала	общая
0	100	100	00.00	00.00	0	0	100	100
100	270	170	00.00	26.00	39	39	174	274
270	2225	1955	26.00	26.00	954	993	2176	2450
2225	2351	126	26.00	50.00	98	1091	160	2610
2351	2446	95	50.00	50.00	113	1204	147	2757

2.2. Обоснование конструкции скважины 2.2.1. Обоснование конструкции эксплуатационного забоя

Под конструкцией эксплуатационного забоя понимается конструкция низа обсадной эксплуатационной колонны в районе продуктивного пласта. Конструкция должна отвечать определенным требованиям:

- 1. Устройствость ствола в процессе всего периода эксплуатации.
- 2. Проведение технологических операций по повышению нефтеотдачи.
- 3. Возможность проведения ремонтно-изоляционных работ.
- 4. Максимальная производительность скважины.

2.2.2. Построение совмещенного графика давлений

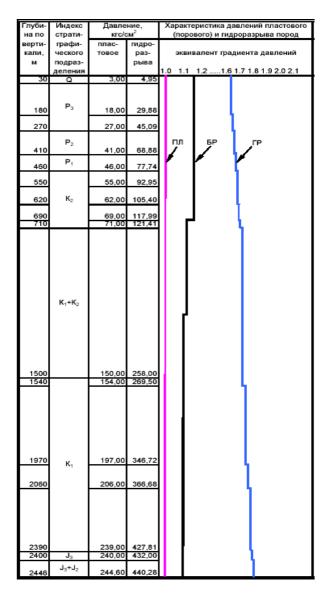


Рис. 3. Совмещенный график давлений

Из графика следует, что интервалы, несовместимые по условиям бурения в разрезе отсутствуют. Необходимое условие Рпл <Рбр <Ргр выполняется рис.3

2.2.3.Определение числа обсадных колонн и глубины их спуска

Проектируемое число и глубины спуска обсадных колонн должны обеспечить:

- 1. Долговечность скважины.
- 2. Герметичное разобщение всех проницаемых пород.
- 3. Сохранность запасов полезных ископаемых.
- 4. Минимальную вероятность осложнений.
- 5. Минимальную металлоемкость.
- 6. Минимум затрат на единицу добываемой продукции.

Практически обязательными обсадными колоннами являются кондуктор и эксплуатационная колонна, дабы исключить размыв устья, на глубину 40 м необходимо спустить направление.

Направление предотвращает размыв неустойчивого верхнего слоя четвертичных отложений. Также оно служит для организации циркуляции бурового раствора.

Наличие кондуктора позволит обеспечить выполнение следующих условий:

- перекрытие всей толщи рыхлого неустойчивого интервала разреза;
- разобщение водоносных горизонтов, залегающих в интервале спуска кондуктора;
- установку на устье противовыбросового оборудования.

Эксплуатационная колонна служит для крепления скважины и транспортировки углеводородного сырья на поверхность.

Для перекрытия неустойчивых горных пород и с учетом предыдущего опыта бурения выбирается глубина спуска направления 40 м, глубина спуска кондуктора равна 753 м, с установкой башмака в кузнецовскую свиту, эксплуатационная колонна спускается на глубину 2757 м.

2.2.4. Выбор интервалов цементирования

В соответствии с требованием вышеперечисленных правил кондуктор цементируется на всю длину, а эксплуатационная колонна цементируется с учетом перекрытия башмака кондуктора на 300 м. Интервалы цементирования приведёны в табл. 2.2.3.

Интервалы цементирования обсадных колонн.

Наименование	И	нтервалы	установ	ки	Интервалы цементирования			
колонны	По в	верт.	По ст	гволу	По н	верт.	По ст	гволу
	От	до	ОТ	до	ОТ	до	ОТ	до
Направление	0	40	0	40	0	40	0	40
Кондуктор	0	700	0	753	0	700	0	753
Эксплуатационная колонна	0	2446	0	2757	400	2446	435	2757

2.2.5. Расчет диаметров скважины и обсадных колонн

Ожидаемый дебит проектируемой скважины равен 150 тонн/сутки. Для данного дебита рекомендуемый диаметр эксплуатационной колонны составляет 0,146 м.

$$d_{\pi}^{9}=0,166+0,02=0,213 \text{ M}.$$

Принимается диаметр долота равный 0,2159 м.

$$d_{B}^{K}=d_{\pi}^{9}+(0.010...0.014) \text{ M},$$

 $d_{B}^{K}=0.2159+(0.010...0.014)=0.2259...0.2299 \text{ M}.$

$$d_{\pi}^{\kappa} = 0.270 + (0.02...0,025) = 0.29...0,295 \text{ M}.$$

Выбирается долото диаметром 0,2953 м.

$$d_{B}^{H}=0,2953+(0,010...0,014)=0,3053..0,3093.$$

Принимаются обсадные трубы диаметром 0,324 м.

$$d_{\pi}^{H} = 0.351 + (0.025...0.03) = 0.376..0.381.$$

Диаметр долот и обсадных колонн

Выбирается долото диаметром 0,3937 м.

Диаметры долот и обсадных колонн приведены в табл. 2.2.2.

Таблица 2.2.2.

Название обсадной	Диаметр обсадной	Диаметр долот под	
колонны	колонны, м	обсадную колонну, м	
Направление	0,324	0,3937	
Кондуктор	0,245	0,2953	
Эксплуатационная	0,146	0,2159	

2.2.6. Разработка схем обвязки устья скважины

Определяется необходимость использования противовыбросового оборудования (ПВО) и колонных головок (КГ) для нормальной проводки скважины при вскрытии продуктивного пласта.

Выбирается колонная головка по диаметру обсадных колонн и наибольшему давлению на устье. После цементирования кондуктора на устье скважины устанавливается противовыбросовое оборудование (ПВО) ОП5-230/80x35. Перед установкой ПВО на устье скважины устанавливается колонная головка ОКК1A-21-146x245.

2.3. Углубление скважины 2.3.1. Выбор способа бурения

В качестве исходной информации для принятия решения о способе бурения следует использовать следующие данные: глубину бурения и забойную температуру, профиль ствола скважины и диаметры долот, тип породоразрушающего инструмента и бурового раствора. Исходные данные для расчетов приведены в табл. 2.1.1.

Таблица 2.1.1. Исходные данные для выбора способа бурения

 Исхооные одиные оди выоори спосоой бурения

 Исходные данные:
 2757

 Забойная температура, град.
 89

 Диаметр долота, мм
 215,9

 Профиль ствола скважины
 наклонно – направленный

 Удельный вес бурового раствора, г/см³
 < 1,7 - 1,8</td>

На основании этой информации и рекомендаций, представленных в табл. 2.1.2 [11], может быть выбран способ бурения скважины по интервалам бурения и скважины в целом.

Таблица 2.1.2. Рекомендации для выбора способа бурения

Геолого – технические	Спос	Способ бурения				
условия бурения	ротор	ГЗД	эл.бур.			
Глубина бурения, м:						
<3500	+	+	+			
3500-4200	+	-	+			
>4200	+	-	-			
Забойная температура, С	·:					
>140	+	+	+			
<140	+	-	-			
Диаметр долота, мм:			•			
<190	+	_	-			
>190	+	+	+			

	Спос		рония	
Геолого – технические			рения	
условия бурения	ротор	ГЗД	эл.бур.	
Профиль ствола скважины	! :			
Вертикальный	+	+	+	
Наклонно-направленный	-	+	+	
Породоразрушающий инст	румент	n:		
двух и трех лопастной	+	1	-	
Шарошечные долота типа M, M3, MC, MC3, C, C3, CT, T, TK, TK3, K,OK	+	+	+	
Гидромониторные	+	-	-	
Многолопастные истирающего действия	-	+	+	
Алмазный	-	+	+	
Тип циркулирующего агент	a:			
газы, пены	+	-	+	
Буровые растворы со степе:	нью аэ	рации	ı:	
высокой	+	-	+	
низкой	+	+	+	
Буровые растворы плотностью, г/см ³				
< 1.7 – 1.8	+	+	+	
> 1.7 – 1.8	+	-	-	

На основании исходных данных и рекомендаций, приведенных в таблице 2.1.2, для проводки проектируемой скважины, наиболее подходящим является бурение гидравлическим забойным двигателем, которое широко развито и в данной области накоплен не малый опыт.

2.3.2. Выбор породоразрушающего инструмента

При бурении направления 0-40 м производиться разбуривание лежневки и четвертичных отложений. Для данного интервала применяется трехшарошечное долото с центральной промывкой типа III 393.7 - СЦB.

При бурении под кондуктор в интервале 40-753 м геологический разрез представлен глинами, песками, супесями с твердостью по штампу 100 МПа (см. табл. 1.2.3), категорией пород по промысловой классификации M, абразивностью IV-X категории.

Исходя из многолетнего опыта работ на месторождениях Западной Сибири для бурения под кондуктор применяется долото III 295,3 СЗ-ГВ.

На интервале 753-1732 м геологический разрез представлен глинами, песками, супесями, песчаниками, аргиллитами с твердостью по штампу 100-200 МПа, категорией пород по промысловой классификации М, МС и абразивностью

IV - X категории. Выбирается высокооборотное долото с типом опор «В» — опоры шарошек на подшипниках качения с боковой промывкой, диаметром 215,9 мм..

На интервале 1732 - 2757 м геологический разрез представлен песчаниками, аргиллитами, алевролитами с твердостью по штампу 100 - 200 МПа, категорией пород по промысловой классификации МС, С и абразивностью VI — X категории. Используем долото типа БИТ 215.9 М5, фирмы «БУРИНТЕХ» (см. п.7).

Применяемые долота по интервалам бурения представлены в табл.2.3.1.

Таблица 2.3.1.

Типоразмеры долот по интервалам бурения

	1 /1
Интервал, метр	Типоразмер долота
0 - 40	III 393,7 – СЦВ
0 - 753	III 295,3 СЗ-ГВ
753 – 1732	III 215,9 M3-ГВ
1732 – 2757	БИТ 215,9 М5

2.3.3. Расчет осевой нагрузки на долото по интервалам горных пород

2.3.4.

Поинтервально рассчитанные нагрузки на породоразрушающий инструмент сведены в табл. 2.3.2.

Таблица 2.3.2. Осевые нагрузки на долото по интервалам бурения

Интервалы, м	Осевые нагрузки, кН.
0-40	Вес инструмента
40-753	60
753-1540	90
1540-1732	175
1732-2757	60

2.3.4. Расчет частоты вращения долота.

Эффективное разрушение горной породы при бурении происходит при условии, что время контакта рабочих элементов долота с породой было не меньше времени, которое необходимо для того, чтобы нагрузка достигла такой величины, которая необходима для разрушения породы.

Полученные значения частот вращения представлены в табл. 2.3.3.

Таблица 2.3.3. Оптимальная частота вращения долот на интервалах бурения

Интервал, м	Частота вращения, об/мин
0 - 40	165-295
40 - 753	220-295
753 - 1540	248-271
1540–1732	159-271
1732–2450	120
2450-2610	80
2610-2757	120

2.3.5. Выбор и обоснование типа забойного двигателя

Техническая характеристика выбранных ГЗД приведена в табл. 2.3.4.

Таблица 2.3.4.

Техническая характеристика забойных двигателей.

телническия лириктеристики зиобиных овигителей.						
Характеристики	2ТСШ-	TO-	3ТСШ1-	УД-195	Д5-195	
120p akt opilotikat	240	240K	195	PC	70 100	
Наружный диаметр корпуса, м	0,24	0,24	0,195	0,195	0,195	
Длина в сборе, м	15,486	10,2	25,7	8,1	7,265	
Угол перекоса, град	-	1,5	-	0,5-2	-	
Расход бурового раствора, м ³ /сек	0,04	0,045	0,03	0,025	0,025	
Момент силы на выходном валу, H·м	2700	1489	2000	3100	7500	
Момент силы на выходном валу двигателя в тормозном режиме, Н	5400	2978	4000	6200	15000	
Частота вращения вала в рабочем режиме, об/мин	470	400	380	80	120	
Перепад давления в рабочем режиме, МПа	4,9	3,4	3,9	3,9	6,1	
КПД,% не менее	69	32	51	48	40	
Наработка на отказ турбинной секции, ч	1200	400	1200	200	200	
Масса, кг	3983	2700	4788	1420	1200	

2.3.6. Выбор компоновки и расчет бурильной колонны

Бурильная колонна (БК) является связующим звеном между долотом, находящимся на забое скважины, и буровым оборудованием, расположенным на поверхности. БК состоит из компоновки низа бурильной колонны (КНБК) и колонны бурильных труб (КБТ).

Рассчитанные значения колонны бурильных труб приведены в табл. 2.3.5.

Конструкция бурильной колонны.

Название секции	Шифр труб	Длина, м	Вес, кг
I секция УБТ	УБТ – 178 х 90 Д	147	21373,8
II секция УБТ	УБТ – 146 х 74 Д	8	781
I секция КБТ	ПК – 127 х 9 Д	250	6532,8
II секция КБТ	2344	23650,8	
Итог	2749	52338,4	

Для бурения скважины на различных интервалах на Средне-Нюрольском месторождении проектируются следующие компоновки БК, табл. 2.3.6.

Таблица 2.3.6.

Компоновки низа бурильной колонны

	Инте	прап				
	ИНТЕ	-		Элементы КНБ	OK T	
№ п/п КНБК	верти	кали,	№ п/п	Типоразмер, шифр	ГОСТ, ОСТ, ТУ на изготовление	Назначение
	ОТ	до				
1	2	3	4	5	6	7
			1	Ш-393,7 СЦВ	ΓΟCT 20692 – 75	Г
			2	8KC-295,3 M3	ТУ 51-643-74	Бурение
			3	2ТСШ-240	ГОСТ 26673-90	вертикаль- ного
1	0	40	4	П 147/171	ГОСТ 7360-82	участка под
			5	КОБ 178 x 3-147	ТУ 3665-3010014 7001-2004	направле-
			6	ТБД16Т 147х11 ост	ГОСТ 23786-79	TIME
			1	III-295,3 СЗ-ГВ	ΓΟCT 20692 – 75	
			2	8KC-295,3 M3	ТУ 51-643-74	Г
			3	2ТСШ – 240	ГОСТ 26673 – 90	Бурение
2	40	100	4	П 147/171	ГОСТ 7360-82	вертикаль- ного
2	40	100	5	КОБ 178 x 3-147	ТУ 3665-3010014 7001-2004	участка под кондуктор
			6	УБТ – 178х90 Д (12 м)	ТУ 14-3-385-79	кондуктор
			7	ТБД16Т 147х11 ост	ГОСТ 23786-79	
			1	III-295,3 СЗ-ГВ	ΓΟCT 20692 – 75	
			2	8KC-295,3 M3	ТУ 51-643-74	Набор
			3	ТО– 240К	ГОСТ 26673-90	паоор зенитного
			4	П 147/171	ГОСТ 7360-82	угла при
3	100	274	5	КОБ 178 x 3-147	ТУ 3665-3010014 7001-2004	бурении под
			6	Удлинитель диамагнитный	изг. «ТИТРАН»,	нод кондуктор
			7	Телесистема "ЗИС - 4М"	г. Томск	кондуктор
			8	ТБД16Т 147х11 ост	ГОСТ 23786-79	
4	274	753	1	III-295,3 СЗ-ГВ	ΓOCT 20692 – 75	Бурение

	2	8KC-295,3 M3	ТУ 51-643-74	под
	3	2ТСШ – 240	ГОСТ 26673-90	кондуктор
	4	П 147/171	ГОСТ 7360-82	на участке
	5	КОБ 178 х 3-147	ТУ 3665-3010014	стабилиза-
	3	KOB 1/8 x 3-14/	7001-2004	ции
	6	УБТ – 178х90 Д (12 м)	ТУ 14-3-385-79	
	7	П 121/147	ГОСТ 7360-82	
	8	УБТ - 146х74 Д (8 м)	ТУ 14-3-385-79	
	9	П 133/121	ГОСТ 7360-82	
	10	ПК - 127х9 Д (250 м)	ГОСТ Р 50278-92	
	11	П 147/133	ГОСТ 7360-82	
	12	ТБД16Т 147х11 ост	ГОСТ 23786-79	

Продолжение таблицы 2.3.6.

1	2	3	4	5	6	7
			1	III-215,9 M3-ГВ	ГОСТ 20692 – 75	
			2	9 KC-215,9 MC	ТУ 51-643-74	
			3	3ТСШ1-195	ГОСТ 26673 – 90	Стабилиза-
			4	Π 147/171	ГОСТ 7360-82	ция
			5	КОБ 178 x 3-147	ТУ 3665-3010014 7001- 2004	зенитного угла при
5	753	1732	6	УБТ – 178х90 Д	ТУ 14-3-385-79	бурении
			7	П 121/147	ГОСТ 7360-82	под
			8	УБТ - 146х74 Д	ТУ 14-3-385-79	эксплуата-
			9	П 133/147	ГОСТ 7360-82	ционную
			10	ПК - 127х9 Д (250 м)	ГОСТ Р 50278-92	колонну
			11	П 147/133	ГОСТ 7360-82	
			12	ТБД16Т 147х11 ост	ГОСТ 23786-79	
			1	БИТ 215,9 М5	Пр-во «БУРИНТЕХ»	
			2	9 KC-215,9 MC	ТУ 51-643-74	
			3	Д5-195	ΓOCT P№ POCC RUH 005 B00002	
			4	Π 147/171	ГОСТ 7360-82	Стабилиза-
			5	ПК-195 РС	ΓΟСТ Р №РОСС RU H005 В 00002	ция зенитного
6	1732 2610	2450 2757	6	КОБ 178 x 3-147	ТУ 3665-3010014 7001- 2004	угла при бурении
			7	УБТ – 178х90 Д	ТУ 14-3-385-79	ПОД
			8	П 121/147	ГОСТ 7360-82	эксплуата- ционную
			9	УБТ - 146х74 Д	ТУ 14-3-385-79	колонну
			10	П 133/121	ГОСТ 7360-82	Rosioiniy
			11	ПК - 127х9 Д (250 м)	ГОСТ Р 50278-92	
			12	П 147/133	ГОСТ 7360-82	
			13	ТБД16Т 147х11 ост	ГОСТ 23786-79	
7	2450	2610	1	БИТ 215,9 М5	«БУРИНТЕХ»	Набор
′	2 4 30	2010	2	9 KC-215,9 MC	ТУ 51-643-74	параметров

3	УД-195РС	ΓΟCT P№ POCC RUH 005 B00002	кривизны при
4	П 147/171	ГОСТ 7360-82	бурении
5	ПК-195 РС	ΓΟСТ Р №РОСС RU H005 В 00002	под эксплуата-
6	КОБ 178 x 3-147	ТУ 3665-3010014 7001- 2004	ционную колонну
7	Удлинитель диамагнитный	изг. «ТИТРАН»,	
8	Телесистема "ЗИС-4М"	г. Томск	
9	ТБД16Т 147х11 ост	ГОСТ 23786-79	

2.3.7. Обоснование типов и компонентного состава буровых растворов

Для приготовления бурового раствора используются: глина бентонитовая марки ΠEMA , техническая вода и необходимый комплексный набор химических реагентов.

Проектируемые параметры бурового раствора представлены в табл. 2.3.7.

Таблица 2.3.7.

Параметры бурового раствора на интервалах бурения.

	ервал	Плотность, г/см ³	СНС ₁₀ дПа	СНС ₁ дПа	Условная вязкость,	Показатель фильтрации,	рН	П,%
ОТ	до	17011	дна дна		сек см ³ /30 мин		pii	
0	753	1,16	40	20	25	8	8	2
753	1320	1,12	30	15	25	6-8	8	1
1320	2610	1,12	20	10	25	6	8	1
2610	2757	1,08	20	10	24	5	8	1

2.3.8. Выбор гидравлической программы промывки скважины

Цель составления гидравлической программы бурения – определение обеспечивающего скважины, наиболее рационального режима промывки эффективную отработку долот, при соблюдении требований и ограничений, обусловленных геологическими особенностями вскрываемого интервала, энергетическими, эксплуатационными характеристиками техническими применяемого инструмента.

Исходные данные для расчета

Глубина бурения скваж	2757					
Удельный вес разбурив	$2,3\cdot10^4$					
Механическая скорость				0,005		
Момент ГЗД, необходи		•	ды, Мр Н∙м	3885		
Реологические свойство	а жидкости:					
динамическое напря	жение сдви	ига τ _О , Па		20		
пластическая вязкос	ть η, Па∙с			0,027		
Удельный вес буров	ого раствој	ра q _{ГП} , Н/м	3	$1,08\cdot10^4$		
Тип бурового насоса	ı			УНБ 600		
Число буровых насо	сов			1		
Номинальный расхо	д насоса Q	н ,м ³ /сек		0,033		
Номинальное рабоче	ее давление	е Рн, МПа		21,6		
Элементы наземной обе	зязки			·		
Условный диаметр с	тояка, м			0,140		
Диаметр проходного се	чения, м:			_		
бурового рукава		0,100				
вертлюга	0,075					
ведущей трубы				0,085		
3	лементы бур	рильной колог	нны			
Параметр	УБТ 178х90	УБТ 146х74	ПК 127х9	ТБД16Т 147x11		
длина l _{1,2,3,4} ,м	147	8	250	2344		
наружный диаметр	0,147					
dн _{1,2,3,4} , м	0,147					
внутренний	0,125					
диаметр dв _{1,2,3,4} , м	0,09	0,074	0,109	0,120		
наружный диаметр						
замкового	-	-	0,162	0,172		
соединения дз _{3,4} , м						

Применяются три насадки с внутренним диаметром 12 мм.

Таким образом, из вышеприведенных расчетов видно, что суммарные потери давления в трубном и затрубном пространствах меньше давления развиваемого буровым насосом типа УНБ — 600 при диаметре цилиндровых втулок 170 мм, следовательно технологический режим промывки скважины выбран верно.

2.3.9. Режимы бурения при вскрытии продуктивных горизонтов

На качественное вскрытие пласта влияет скорость бурения. Чем быстрее проходится продуктивный горизонт, тем меньше оказывается воздействие на него. При вскрытии продуктивного горизонта нужно увеличить механическую скорость бурения, применение ПАВ, несомненно, приводит к увеличению скорости.

Для минимизации времени сообщения продуктивных пластов с промывочной жидкостью, вскрываем их одним долблением, используя винтовой забойный двигатель. Применение малолитражного винтового забойного двигателя при вскрытии дает меньшее негативное воздействие на продуктивные горизонты, а применение лопастного долота, имеющего большую проходку, позволяет вскрыть пласт одним долблением.

2.4. Проектирование процессов заканчивания скважин 2.4.1 Расчет обсадных колонн

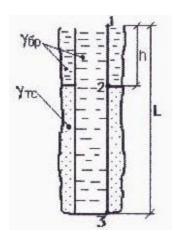

Исходные данные для расчета обсадной колонны приведены в табл. 2.4.1.

Таблица 2.4.1. Исходные данные для расчета обсадных колонн.

Глубина скважины по вертикали (по стволу), м	2446 (2757)
Удельный вес:	
-цементного раствора q ц, Н/м ³	1,83·10 ⁴ ;
-жидкости в колонне $q_B, H/m^3$:	
А)при освоении	$1,0.10^4$
Б)в период ввода в эксплуатацию	$0.76 \cdot 10^4$
В)при окончании эксплуатации	$0.95 \cdot 10^4$
-продавочной жидкости жидкости q $_{\mathrm{ ilde{K}}}$, $\mathrm{H/m}^3$	1,0 ·10 ⁴
-бурового раствора q $_{ m P}$, ${ m H/m^3}$	1,08 ·104
-пластовой воды q $_{\Gamma C}$, $H/{\tt M}^3$	1,1·10 ⁴
Расстояние от устья скважины:	
-до башмака предыдущей колонны, м	700 (753)
-до уровня цементного раствора, м	400 (440)
-до уровня жидкости в колонне, м	1100 (1205)
-при окончании эксплуатации	1631 (1762)
Коэффициент запаса прочности:	
-на наружное избыточное давление	1,15
-на внутреннее избыточное давление	1,15
-на растяжение	1,15

2.4.1.1. Расчет наружных избыточных давлений

1. Случай при цементировании обсадной колонны в конце продавки при снятом давлении на устье (см. рис. 4).

1) устье скважины:

 $P_{HIJ} = P_H - P_B$;

 $P_H = 0$;

 $P_B = 0;$

 $P_{HII} = 0$.

2) уровень ТС за колонной:

 $P_{HH} = P_H - P_B$;

 $P_H = \rho_{BP} g h$;

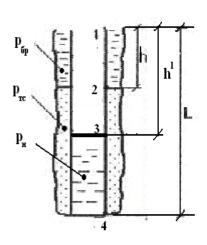
 $P_B = \rho_{\Pi X} g h;$

 P_{HU} =($\rho_{\text{БР}}$ - $\rho_{\Pi \text{Ж}}$)gh=80*9,81*400=313920

Па=0,31392МПа.

Puc.4.

3) забой скважины:


 $P_{HIJ} = P_H - P_B;$

 $P_H = g (\rho_{BP} \cdot h + \rho_{TP} (L - h)); P_B = \rho_{\Pi \mathcal{M}} gL;$

 $P_{HIJ}=g$ [$\rho_{\text{БP}}$ h + $\rho_{\text{ТР}}$ (L - h) - $\rho_{\Pi \text{Ж}}$ L] = 9,81*(1080*400 + 1830 * (2446 - 400)-1000*2446)=15249125 Па = 15,249125 МПа.

- 2. Случай соответствующий концу эксплуатации скважины (см. рис. 5) . h1=2/3*L=2446*2/3=1631~m снижение уровня нефти в конце эксплуатации скважины.
 - 1) устье скважины:

 $P_{HIJ} = P_H - P_B;$

$$P_{\rm H}=0$$
;

$$P_B = 0;$$

$$P_{HIJ} = 0$$
.

2) уровень ТС за колонной:

$$P_{HIJ} = P_H - P_B;$$

$$P_H = \rho_{BP} g h;$$

$$P_B = 0;$$

 $P_{HIJ} = \rho_{BP} g h=1080*9,81*400=4,19868 M\Pi a.$

3) Уровень башмак кондуктора:

$$P_{HIJ} = P_H - P_B;$$

$$P_{H} = \rho_{BP} g h + \rho_{\Pi J B} g (h_{K} - h);$$

$$P_B = 0;$$
 Puc.5.

 $P_{HIJ} = \rho_{BI} \int_{C}^{T} uc. J.$ $g (h_K-h) = 1080*9,81*400+$

 $+1100*9,81*(700-400)=7,43598 \text{ M}\Pi a.$

4) Уровень снижения жидкости:

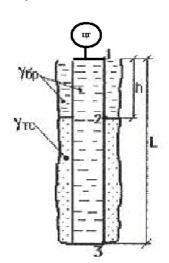
$$P_{HII} = P_H - P_B;$$

$$P_{H} = g (\rho_{BP} \cdot h + \rho_{TP} (h1 - h_{K})(1-k) + \rho_{\Pi J I B}(h_{K}-h));$$

$$P_B = 0$$
;

$$\begin{split} P_{\text{H}\text{\tiny{H}}} = & g(\rho_{\text{\tiny{BP}}} \cdot h + \rho_{\text{\tiny{TP}}}(h1 - h_{\text{\tiny{K}}})(1 - k) + \rho_{\text{\tiny{П}}\text{\tiny{J}}\text{\tiny{IB}}}(h_{\text{\tiny{K}}} - h)) = 9,81*(1080*400 + 1100*(700 - 400) + 1830*\\ *(1631 - 700)(1 - 0,25)) = 19,971 \ \text{M}\Pi a. \end{split}$$

5) забой скважины:


 $P_{HH} = P_H - P_B$;

 $P_H = g \left(\rho_{\text{БP}} \cdot h + \rho_{\Pi \text{ЛВ}} \left(L - h 1 \right) \right);$

 $P_{\rm B} = \rho_{\rm H} g \, (\text{L-h1});$

2.4.1.2. Расчет внутренних избыточных давлений

1. Цементирование колонны без выхода тампонажного раствора на устье (см. рис. 6).

$$\begin{split} P_{\Pi\Gamma} &= \Delta P_{\Gamma C} + P_{\Gamma \Pi} + P_{CT} = 7,114 + 16,973 + 3 = 27,087 \text{ M}\Pi a; \\ P_{\Gamma\Pi} &= 0,002 \text{ L} + 1,6, \text{ M}\Pi a = 0,002 * 2757 + 1,6 = =7,114 \text{ M}\Pi a; \\ \Delta P_{\Gamma C} &= (\rho_{TP} - \rho_{\pi\text{m}}) \text{ g (L-h)} + (\rho_{BP} - \rho_{\pi\text{m}}) \text{gh } = 16973065,8 \\ \Pi a &= 16,973065 \text{ M}\Pi a; \end{split}$$

 $P_{CT}=3$ M Π a.

1) устье скважины:

 $\mathbf{P}_{\mathrm{BH}} = \mathbf{P}_{\mathrm{B}} - \mathbf{P}_{\mathrm{H}};$

 $P_H = 0$;

 $P_B = P_{II\Gamma}$;

 $P_{BH} = P_{II\Gamma} = 27,087$ M Π a.

2) уровень TC за колонной: $P_{BH} = P_B - P_H$;

 P_{H} Puc.6. 1; $P_{B} - \mathbf{1}_{H}$ $\rho_{\pi x}$ g h;

 $P_{BH} = P_{HF} - (\rho_{BP} - \rho_{HX})gh = 26,465 - 80*9,81*400 = 26,19 \text{ M}\Pi a.$

3) забой скважины:

 $P_{BH} = P_B - P_H;$

 $P_H = \rho_{BP} g h + \rho_{TC} g (L - h);$

 $P_B = P_{I\!I\!\Gamma} + \rho_{\pi \varkappa} g L;$

 $\begin{array}{l} P_{B \text{\tiny H}} = P_{\text{\tiny H}\text{\tiny T}} + \rho_{\text{\tiny TIX}} \ g \ L - \rho_{\text{\tiny DP}} \ g \ h - \rho_{\text{\tiny TC}} g^*(L - h) \\ = 26,465 + 1000^*9,81^*2446 \ -1080^*9,81^*400 - 1830^* \ *9,81^* \ 2046 \ = 10,13 \ M\Pi a. \end{array}$

2. Случай при опрессовке скважины.

 $P_{y}=7,02$ МПа;

 $P_{O\Pi} = 1,1$ $P_{y}=7,02*1,1=7,722$ МПа<Ропмин, следовательно Роп= Ропмин (ОК 146 мм) =12,5 МПа.

1) устье скважины:

 $P_{\rm BH}=P_{\rm B}-P_{\rm H};$

 $P_H = 0$; $P_B = Po\pi$;

 $P_{BH} = P_{on} = 12,5 \text{ M}\Pi a.$

2) уровень ТС за колонной:

 $P_{\rm BH} = P_{\rm B} - P_{\rm H};$

 $P_{H}=\rho_{\text{BP}}\;g\;\;h;$

 $P_B = P_{on} + \rho_{nx} g h;$

 $P_{\text{ВИ}} = P_{\text{ЦГ}}$ - ($\rho_{\text{БP}}$ - $\rho_{\text{пж}}$)gh=12,5-80*9,81*400=12,22 МПа.

3) Уровень башмак кондуктора:

 $P_{HIJ} = P_B - P_H$;

 $P_{H} = \rho_{BP} g h + \rho_{\Pi J B} g (h_{K} - h);$

 $P_B = P_{on} + \rho_{nx} g h_K;$

 $P_{\text{H}\text{I}} = P_{\text{on}} + \rho_{\text{пж}} \ g \ h_{\text{K}} \ \text{-}\rho_{\text{БP}} \ g \ h\text{-}\rho_{\Pi \text{Л} \text{B}} \ g \ (h_{\text{K}}\text{-}h) = 12,5 + 1000*700*9,81 - 1080*9,81*400 - 1100*9,81*(700-400) = 11,931 \ \text{М}\Pi a.$

4) забой скважины:

 $P_{\rm BH} = P_{\rm B} - P_{\rm H};$

 $P_H = \rho_{BP} \ g \ h + \rho_{TP} \ g \ (L - h_{\kappa})(1-k) + \rho_{\Pi J I B} \ g \ (h_K - h);$

 $P_B = P_{on} + \rho_{nx} g L;$

 $P_{BH}=P_{o\pi}+\rho_{\pi\pi}$ g L - ρ_{EP} g h - ρ_{TP} g (L - h_{κ})(1-k)- $\rho_{\Pi J I B}$ g(h_K-h) = 12,5 + 1000*9,81*2446-1080*9,81*400-1100*9,81*(700-400)-1830*9,81*(2446-700)*(1-0,25) =5,55 M \Pi a.

Строится график максимальных избыточных давлений (см. рис. 7).

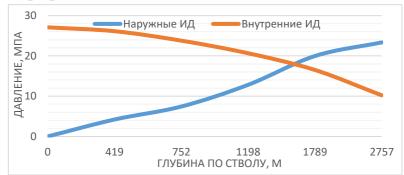


Рис. 7. График наружных и внутренних избыточных давлений.

2.4.1.3. Конструирование обсадной колонны по длине

Расчет первой секции.

$$P^{1}_{CM} \ge n_{CM} P^{1}_{HU},$$
 (2.77)

 $P^{1}_{CM} \ge 1,15*23,349=26,85 \text{ M}\Pi a.$

Выбирается обсадная труба диаметром 0,146 м, группы прочности Д с толщиной стенки δ^1 =0,0085 м, P^1_{CM} =31,4 МПа.

$$P_{HH}^{2} = P_{CM}^{2} / n_{CM}, \qquad (2.78)$$

 P^2_{HI} =26,7/1,15=23,21 МПа.

По графику определяется глубина установки секции, глубина по стволу $L^1 = 2717 \text{ м}.$

Определяется длина первой секции:

$$1^1 = L - L^1, (2.79)$$

где L - глубина скважины;

 $1^1 = 2757 - 2717 = 40 \text{ M}.$

Вес первой секции G^1 :

$$G^1 = 1^1 \cdot q^1, \tag{2.80}$$

где q^1 - вес 1 м труб первой секции с толщиной стенки δ^1 ; $G^1\!\!=\!\!40\!\!*\!29\!\!=\!\!1160$ кг.

Прочность на смятие труб для второй секции с учетом двухосного нагружения от наружного избыточного давления и растяжения от веса первой секции по выражению:

*
$$P^{2}_{CM} = P^{2}_{CM} (1-0.3 G^{1}/Q^{2}_{T}),$$
 (2.81)

где: ${}^*P^2_{CM}$ - прочность на смятие труб второй секции при двухосном нагружении; P^2_{CM} - прочность на смятие труб второй секции при радиальном нагружении (табличное значение);

 ${\bf Q}^2_{\rm T}$ - растягивающая нагрузка для второй секции, при которой напряжение в теле трубы достигает предела текучести

* P^2_{CM} =26,7*(1-0,3*1160/127400)=26,6 M Π a.

Определяется откорректированное значение наружного избыточного давления $*P^2_{\text{H}\text{U}}$ по формуле:

$$*P^{2}_{HII} = *P^{2}_{CM} / n_{CM},$$
 (2.82)

* P^{2}_{HH} =26,6/1,15=23,13 M Π a;

По графику $*L^1 = 2696$.

Откорректированная длина первой секции:

$$*I^1 = L - *L^1,$$
 (2.83)

*1¹=2757-2696=61 м.

Рассчитывается откорректированный вес первой секции

$$*G^1 = *l^1 \cdot q^1,$$
 (2.84)

 $*G^1 = 61*29 = 1769$ кг;

Определяются фактические коэффициенты запаса прочности для второй секции на глубине $*L^1$ при откорректированной длине первой секции $*1^1$ на внутреннее давление:

$$n_P = P^2_P / P^2_{BM},$$
 (2.85)

где: P^2_P - прочность труб второй секции на внутреннее давление;

 ${
m P^2_{BU}}$ - внутреннее избыточное давление на глубине ${
m H^1}$ (по графику ${
m P^2_{BU}}$ =10,6 МПа).

 $n_P=35/10,6=3,3>[\ n_P]=1,15.$

На страгивание в резьбовом соединении в наклонно-направленной скважине:

$$n_{CTP} = Q_{CTP}^2 (1-k*i)/G^1,$$
 (2.86)

где k — коэффициент снижения прочности резьбового соединения при интенсивности искривления 1 град/10 м (для трубы группы прочности Д диаметром 146 мм κ =0,08);

i – фактическая интенсивность искривлении, град/м (i=1,5 град/10 м). n_{CTP} =102000*(1-1,5*0,08)/1769=50,74>[n_{CTP}]=1,15.

Расчет второй секции.

Принимается толщина стенок для труб второй секции δ^2 =7,7 мм.

Найдем значение наружного избыточного давления P^3_{HU} при n_{CM} =1 из условия:

$$P^{3}_{HIJ} = P^{3}_{CM} / n_{CM} = 26,7/1 = 26,7 M\Pi a.$$

Необходимо с учетом данного коэффициента запаса прочности ограничить длину второй секции из условия перекрытия продуктивного пласта на 50 метров. Продуктивный пласт лежит на глубине 2420 м, следовательно, точка находится на глубине, по вертикали, H=2370 м, по стволу $L^2=2640$ м.

Определяется длина второй секции 1²:

 $1^2 = *L^1 - L^2 = 2696 - 2640 = 56 \text{ M}.$

Вес второй секции G^2 :

 $G^2 = 1^2 q^2 = 56 * 26,5 = 1484 \text{ K}\Gamma.$

Сумма весов двух секций ΣG^2 :

 $\Sigma G^2 = *G^1 + *G^2 = 1748 + 1484 = 3232 \text{ KG}.$

Определяются фактические коэффициенты запаса прочности для третьей секции на глубине $*L^2$ при откорректированных параметрах двух секций:

$$n_p = P_P^3 / P_{BH}^3 = 35/10,96=3,19 > [n_p];$$

$$n_{CTP} = Q_{CTP}^3 (1-k*i) / \Sigma *G^2 = 102000 (1-1,5*0,08) / 3232 = 27,78 > [n_{CTP}].$$

Расчет третьей секции.

Принимается толщина стенок для труб третьей секции δ^3 =7,7 мм.

Найдем значение наружного избыточного давления P^4_{HU} при n_{CM} =1 из условия:

 $P^4_{HIJ} = P^4_{CM} / n_{CM} = 22,4/1 = 22,4 M\Pi a.$

По графику $L^3 = 2485$ м.

Определяется предварительная длина третьей секции 1³:

 $L^3 = *L^1 - L^2 = 2640 - 2485 = 155 \text{ M}.$

Предварительный вес третьей секции G^3 :

$$G^3 = 1^3 q^3 = 155*26,5=4107,5 \text{ K}\text{T}.$$

Корректируется прочность на смятие труб четвертой секции с толщиной стенок δ^4 в условиях двухосного нагружения:

*
$$P_{CM}^4 = P_{CM}^4 (1-0.3 \Sigma G^3 / Q_T^4) = 22.4*(1-0.3*(3232+4107.5)/115600) = 21.97 M\Pi a;$$

*
$$P^4_{HII}$$
 = * P^4_{CM} / n_{CM} = 21,97/1=21,97 M Π a;

По графику определяется:

 $*L^3=2361 \text{ M}.$

Откорректированная длина третьей секции:

$$*1^3 = 2640 - 2361 = 279 \text{ M}.$$

Откорректированный вес третьей секции *G³:

$$*G^3 = 279*26,5=7393,5$$
 кг.

Откорректированная сумма весов трех секций ΣG^3 :

$$\Sigma G^3 = \Sigma G^2 + *G^3 = 3232 + 7393,5 = 10625,5 \text{ K}\text{C}.$$

Определяются фактические коэффициенты запаса прочности для четвертой секции на глубине $*L^3$ при откорректированных параметрах трех секций:

$$n_p = P_P^4 / P_{BH}^4 = 31,4/12,78 = 2,46 > [n_p];$$

$$n_{CTP} = Q_{CTP}^4 (1-k*i) / \Sigma *G^3 = 93100 (1-1,5*0,08) / 10625, 5=7,7 > [\ n_{CTP}].$$

Так как толщина стенок труб второй и третьей секции совпадает, объединим третью секцию со второй.

Расчет третьей секции.

Принимается толщина стенок для труб третьей секции δ^3 =7 мм.

Найдем значение наружного избыточного давления P^4_{HU} при n_{CM} =1 из условия:

 $P^4_{HIJ} = P^4_{CM} / n_{CM} = 19,4/1 = 19,4 M\Pi a.$

По графику $L^3=1741$ м.

Определяется предварительная длина третьей секции 1³:

 $L^3 = *L^2 - L^3 = 2361 - 1741 = 620 \text{ M}.$

Предварительный вес третьей секции G³:

 $G^3 = 1^3 q^3 = 620*24,3=15066 \text{ kg}.$

Корректируется прочность на смятие труб четвертой секции с толщиной стенок δ^4 в условиях двухосного нагружения:

 $*P^{4}_{CM} = P^{4}_{CM} (1-0.3 \ \Sigma G^{3} \ / \ Q^{4}_{T} \) = 19.4*(1-0.3*(10625.5+15066)/107800) = 18.01 \ M\Pi a;$

 $*P^4_{HII} = *P^4_{CM} / n_{CM} = 18,01/1=18,01 MПа.$

По графику определяется $L^3=1626$ м.

Откорректированная длина третьей секции:

 $*1^3 = 2361 - 1626 = 735 \text{ M}.$

Откорректированный вес третьей секции *G³:

 $*G^3 = 735*24,3=17860,5$ кг.

Откорректированная сумма весов трех секций ΣG^3 :

 $\Sigma G^3 = \Sigma G^2 + *G^3 = 10625,5 + 17860,5 = 28486 \text{ kg}.$

Определяются фактические коэффициенты запаса прочности для четвертой секции на глубине $*L^3$ при откорректированных параметрах трех секций:

$$n_p \!\!= P^4_P \ / \ P^4_{BH} \!\!=\!\! 29,\! 5/17,\! 64 \!\!=\!\! 1,\! 67 \!\!>\!\! [\ n_p];$$

$$n_{\text{CTP}} = Q_{\text{CTP}}^4 (1-k*i) / \Sigma*G^3 = 86300(1-1.5*0.08) / 28486 = 2.67 > [n_{\text{CTP}}].$$

Расчет четвертой секции.

Принимается толщина стенок для труб четвертой секции δ^4 =6,5. Так как меньших толщин для диаметра труб 146 мм нет, из условия прочности на растяжение определяется длина рассчитываемой секции из следующего условия:

$$Q_{CTP}^{4}(1-k*i)/n_{CTP} = \Sigma G^{3} + G^{4}, \qquad (2.87)$$

 $G^4 = 86300(1-0.08*1.5)/1.15-28486 = 37552 \text{ kg};$

$$L^4 = G^4/q^4 = 37552/22, 6 = 1661 \text{ m}.$$

Рассчитывается максимальная глубина установки четвертой секции из условия прочности на внутреннее давление:

$$1,15 = P^{4}_{P} / P^{4}_{BUMAKC}, (2.88)$$

 $P^4_{\text{BUMAKC}} = 29,5/1,15 = 25,65 \text{ M}\Pi a.$ $L^4 = 487.$

Длина четвертой секции составит:

 $*1^4 = 1626 - 487 = 1139 \text{ M}.$

Вес четвертой секции составит:

 $*G^4 = 1139*22,6=25741,4 \text{ K}\Gamma.$

Сумма весов трех секций
$$\Sigma G^4$$
:
 $\Sigma G^4 = \Sigma G^3 + *G^4 = 28486 + 25741, 4 = 54227, 4$ кг.

Расчет пятой секции.

Принимается толщина стенок для труб пятой секции δ^5 =7. Определяется длина рассчитываемой секции из условия прочности на растяжение:

$$Q_{CTP}^{5}(1-k*i)/n_{CTP} = \Sigma G^{4} + G^{5};$$

$$G^5=93100(1-0.08*1.5)/1.15-54227.4=17014 \text{ Ke};$$

$$L^5 = G^5/q^5 = 17014/24,3 = 700 \text{ M}.$$

Рассчитывается максимальная глубина установки пятой секции из условия прочности на внутреннее давление:

$$1,15 = P_P^5 / P_{BMMAKC}^5$$

$$P_{BMMAKC}^{5}=31,4/1,15=27,3 \text{ M}\Pi a.$$

Следовательно, пятая секция труб выдержит все нагрузки на всем оставшемся интервале.

Вес пятой секции $*G^5$:

$$*G^5 = 487*24,3=11834,1 \text{ K}\Gamma.$$

Сумма весов пяти секций ΣG^5 :

$$\Sigma G^5 = \Sigma G^4 + *G^5 = 54227, 4+11834, 1=66061, 5 \text{ Ke}.$$

Параметры обсадной колонны представлены в таблице 2.4.2.

Таблица 2.4.2

Параметры обсадной колонны:

		•	П				
№ секции	Группа прочности	Толщина стенки, мм	Длина секции, м	1 м трубы	Секции	Суммар- ный	Интервал установки,м
1	Д	8,5	61	29	1769	1769	2696-2757
2	Д	7,7	335	26,5	8877,5	10625,5	2361-2696
3	Д	7	735	24,3	17860,5	28486	1626-2361
4	Д	6,5	1139	22,6	25741,4	54227,4	487-1626
5	Д	7	487	24,3	11834,1	66061,5	0-487
		ИТОГО	2757		ИТОГО	66061,5	

2.4.2. Расчет процессов цементирования скважины 2.4.2.1. Выбор способа цементирования обсадных колонн

Среди существующих способов цементирования выберем способ, который обладает наилучшей технологичностью способ прямого одноступенчатого цементирования, к тому же при этом способе можно получить наиболее высокое качество разобщения.

В интервале 400-2264 м по вертикали, цементирование проводится облегченным гельцементным раствором плотностью 1470 кг/м 3 , интервал 2264-2446 м цементируется цементным раствором плотностью 1830 кг/м 3 .

Определяется средневзвешенная плотность тампонажного раствора:

$$\rho_{CPTP} = (\rho_{TP1} * h1 + \rho_{TP2} * h2) / (h1 + h2) \kappa \Gamma / M^3, \qquad (2.112)$$

 $\rho_{TP} = (1470*1864+1830*182)/(1864+182)=1502 \text{ kg/m}^3.$

Проверяется пласт на гидроразрыв:

$$P_3 < P_{\Gamma}p/1, 2,$$
 (2.113)

$$P_3 = P_{\Gamma C} + P_K,$$
 (2.114)

где P_{K^-} гидравлические сопротивления в затрубном пространстве P_{K} в конце продавки тампонажной смеси;

 $P_{\Gamma C}$ — гидростатическое давление на забой со стороны составного столба тампонажного раствора, буферной жидкости и бурового растворов (в МПа):

$$P_{\Gamma C} = g [(L - H_1) \rho_{BP} + H^1 \rho_{TP}] 10^{-6} M\Pi a,$$
 (2.115)

 $P_{\Gamma C} = 9.81*(2446-2046)*1080+2046*1502)*10^{-6}=33,34 \text{ M}\Pi a.$

Гидравлические сопротивления находят по формуле Дарси-Вейсбаха:

$$P_{K} = \lambda_{K} v_{K}^{2} \rho_{TP} L / (2(D_{CKB} - D_{OK})) \Pi a,$$
 (2.116)

где λ_K — коэффициент гидравлических сопротивлений в кольцевом пространстве, для практических расчетов принимается равным 0,035 соответственно;

 $D_{CKB},\ D_{OK}$ — соответственно средний диаметр скважины, наружный диаметр обсадной колонны, м;

 $V_{{\scriptscriptstyle T,K}}-$ скорость подъема жидкости в трубе и кольцевом пространстве, м/с;

L – длина обсадной колонны, м;

d_{OK} - внутренний диаметр обсадной колонны, м;

 ρ_{TP} - плотность тампонажного раствора кг/см³;

 $P_K = 0.035*1502*2757*0,4^2/(2*(0.2159*1,2-0.146)) = 0.103 \text{ M}\Pi a;$

 $P_3 = 33,34 + 0,103 = 33,443 \text{ M}\Pi a.$

Определяется давление ГРП:

где grad Pгр ср.взв - средневзвешенный градиент пластового давления, кгс/см² (см. табл. 1.2.4).

Grad Prp cp.B3B=(grad
$$P_1*h_1+grad P_2*h_2+...+grad P_n*h_n$$
)/H, (2.118)

grad P_n – градиент пластового давления;

 $h_{n}-$ длина интервала по вертикали, м;

Н – глубина скважины по вертикали, м.

Prp=10*((180*0,165+0,166*90+0,167*140+0,168*50+0,169*160+0,17*70+0,171*20+0,172*830+0,175*430+0,176*90+0,178*330+0,179*10+0,18*46)/2446)*24,46 ΜΠα =43,144 ΜΠα;

 $P_3 = 33,34+0,103=33,443 \text{ M}\Pi a;$ 34,443 < 43,144/1,2.

Расчетная средняя плотность столба жидкости меньше максимального значения. Условие (2.109) выполняется, а следовательно, выбранный способ цементирования можно использовать для данной скважины.

2.4.2.2. Расчет объёмов буферной жидкости, тампонажного раствора и продавочной жидкости

Объем буферной жидкости определяется как произведение:

$$V_{\text{БЖ}} = S_{\text{K}} v_{\text{B}\Pi} t \text{ m/c}, \qquad (2.134)$$

где $S_K = \pi \ ((D_{CKB} \, k \,)^2 - D^2_{OK})/4 -$ площадь затрубного (кольцевого) пространства, м²; $v_{B\Pi}$ – скорость восходящего потока, $(v_{B\Pi} = 0.4 \, \text{M/c})$;

t - время контакта, с (t=600 c);

k — коэффициент кавернозности, учитывающий увеличение объёма затрубного пространства за счёт образовавшихся каверн, открытых трещин и пор в стенках скважины (k=1,2).

 $V_{\text{БЖ}}=3,14*((0,2159*1,2)^2-0,146^2)/4*0,4*600=8,6 \text{ m}^3.$

Высота столба буферной жидкости составит:

 $h=V_{\rm БЖ}/Sk=8,6*4/(3,14\ ((0,2159*1,2)^2-0,146^2))=240\ {\rm M}$ (по вертикали в нижнем интервале $h=168\ {\rm M}$).

Принимается буферная жидкости с плотностью 1000 кг/м³.

Определяется, не произойдет ли НГВП при данном объеме буферной жидкости:

$$((L-h)*p_{6p}+h*p_{6m})*g>1,025*Рпл,$$
 (2.135)

 $((2446-168)*1080+168*1000)*9,81>1,025*24,46*10^6,$

25,56 > 25,0715 МПа – условие выполняется.

Объём тампонажного раствора V_{TP} (в м³) определяется как сумма объёмов кольцевого пространства в межтрубном пространстве (кондуктор — эксплуатационная колонна), объёма кольцевого пространства между стенками скважины и наружными стенками обсадной колонны, с учётом коэффициента кавернозности, и объёма цементного стакана, который оставляют в колонне:

$$V_{TP} = \pi \left[(D_{CKB} \, k)^2 - D^2_{OK} \right] (L - H_K) + (d^2_{KOH} - D^2_{OK}) \, H_{IJK} + d^2_{HOK} \, h_{CT} / 4 \, m^3, (2.119)$$
 где D_{CKB} – диаметр скважины, м;

D_{ОК} – наружный диаметр обсадной колонны, м;

 d_{KOH} — внутренний диаметр кондуктора, м;

d_{нок} – внутренний диаметр низа обсадной колонны, м;

L – глубина скважины по стволу, в м;

 H_K – глубина спуска кондуктора по стволу (H_K =753 м);

 H_{IIK} — высота подъёма цементного раствора от башмака кондуктора по стволу (H_{IIK} =300 м);

 $h_{\rm CT}$ — высота цементного стакана в обсадной колонне (принимается $h_{\rm CT}$ =27 м, исходя из условия 10 м на каждые 1000 м ствола скважины).

 $V_{TP} = 3,14*(((0,2159*1,2)^2-0,146^2)*(2757-753)+(0,245^2-0,146^2)*300+0,132^2*27)/4 = 77$ M^3 .

Необходимое количество продавочной жидкости $V_{\Pi P}$, определяется по формуле:

$$V_{\text{IIP}} = \pi \left[\left(d^2_{\text{OK}} \ \text{L} - d^2_{\text{HOK}} \ \text{h}_{\text{CT}} \right] / 4 \,\text{m}^3, \right]$$
 (2.136)

 $d_{OK}-$ средневзвешенный внутренний диаметр обсадной колонны, м. $d_{OK}\!\!=\!\!(d1^*\!11\!+\!d2^*\!12\!+\!d3^*\!13\!+\!d4^*\!14\!+\!d5^*\!15\!+\!d6^*\!16\!+\!d7^*\!17)\!/L^*\!h7\!\!=\!\!0,\!129^*\!981\!+\!0,\!1306^*\!$ $*345\!+\!0,\!132^*\!188\!+\!0,\!133^*\!267\!+\!0,\!132^*\!242\!+\!0,\!1306^*\!584\!+\!0,\!129^*\!150)\!/2757\!\!=\!\!0,\!1304$ мм; $V_{\Pi P}=\!3,\!14^*(0,\!1304^2\!*\!2757\!-\!0,\!129^2\!*\!150)\!/4\!\!=\!\!36,\!4$ м 3 .

2.4.2.3. Определение необходимых количеств компонентов тампонажного раствора

Для чистого цемента ПЦТ-I-100:

- водоцементное отношение т=0,5.

Для гельцемента ЦТО-4-150:

- водоцементное отношение m=1,6;
- глиноцементное отношение Б=0,5.

Для чистого цементного раствора необходимо найти количество цемента и воды. При принятом водоцементном отношении m количество цемента определяется следующим образом. В одном кубометре цементного раствора содержится цемента - $\rho_{\rm II}$; воды - m · $\rho_{\rm II}$, удельный вес 1 м³ раствора составляет - $q_{\rm P}$. Тогда расход цемента на 1 м³ раствора составит:

$$\rho_{IJ} = q_{IJP} / (1+m) \kappa \Gamma / M^3,$$
 (2.120)

 $\rho_{\rm II} = 1830/(1+0.5) = 1220 \text{ kg/m}^3$.

Расход воды на 1 м³ раствора составит:

$$\rho_B = m^* \rho_{IJ} \kappa \Gamma / M^3, \qquad (2.121)$$

 $\rho_B = 0.5*1220 = 610 \text{ kg/m}^3$.

Потребное количество цемента для приготовления всего объема цементного раствора определяется по формуле:

$$G_{II} = V_{IIP} * \rho_{II} \cdot K_{II} \kappa \Gamma, \qquad (2.122)$$

где K_{π} – коэффициент неизбежных потерь цемента при затворении, принимается K_{π} =1.05.

$$V_{\text{LIP}} = 0.785 * ((D_{\text{CKB}} k)^2 - D^2_{\text{OK}}) * H_{\text{II}} \text{ M}^3,$$
 (2.123)

 $V_{\text{LIP}} = 257*0,785*((0,2159*1,2)^2-0,146^2) = 9,24 \text{ m}^3;$

 $G_{\text{Ц}} = 9,24*1220*1,05 = 11836$ кг.

Потребное количество воды для приготовления всего объема цементного раствора определяется по формуле:

$$G_{BII} = m * G_{II} * K_B \text{ } K\Gamma,$$
 (2.124)

где $K_B = 1,08 \div 1,10$ - коэффициент, учитывающий потери воды;

 $G_{Bu} = 0.5 \cdot 11836,44*1,1=6510 \text{ кг.}$

Для гельцементного раствора необходимо найти количество воды, цемента и глинопорошка. В одном кубометре раствора содержится: цемента - $\rho_{\rm U}$; воды – $M^*\rho_{\rm U}$; глинопорошка – $S^*\rho_{\rm U}$.

Расход цемента на 1 м³ раствора составит:

$$\rho_{IJ} = q_{\Gamma IJ}/(1+M+E) \kappa \Gamma/M^3,$$
 (2.125)

 $\rho_{II} = 1470/(1+1.6+0.5) = 474 \text{ kg/m}^3$.

Расход воды на 1 м³ раствора составит:

$$\rho_{\rm B} = M * \rho_{\rm II} \, \kappa_{\rm \Gamma} / {\rm M}^3, \qquad (2.126)$$

 $\rho_B = 1.6 * 474 = 759 \text{kg/m}^3$.

Расход глинопорошка на 1 м³ раствора составит:

$$\rho_{\rm H} = E^* \rho_{\rm II} \ {\rm Kr/M}^3,$$
 (2.127)

 $\rho_H = 0.5*474 = 237 \text{ kg/m}^3$.

Общее количество гельцемента определяется как:

$$G_{\Gamma \coprod} = V_{\Gamma \coprod} * \rho_{\coprod} \cdot K_{\Pi} \kappa_{\Gamma},$$
 (2.128)

 $G_{\Gamma II} = (77-9,24)*474*1,05=33724 \text{ K}\Gamma.$

Общее количество воды определяется как:

$$G_{\rm B} = M * G_{\Gamma II} \quad \kappa \Gamma, \tag{2.129}$$

 $G_{Bru}=1,6*33724*1,1=59354$ кг.

Общее количество наполнителя определяется как:

$$G_{\rm H} = \mathbf{F}^* G_{\Gamma II} \, \kappa \Gamma, \tag{2.130}$$

 $G_H = 0.5*33724=16862$ кг.

На весь объем цементирования скважины суммарное количество цемента составит:

$$\sum G_{II} = G_{II} + G_{\Gamma II} T, \qquad (2.131)$$

 $\sum G_{II} = 11836 + 33724 = 50586$ кг.

Суммарное количество сухого порошка (цемента и наполнителя) составит:

$$\sum G = \sum G_{II} + G_H \text{ Kg}, \qquad (2.132)$$

 $\sum G = 50586 + 16862 = 67448 \text{ кг.}$

Объем воды для затворения общей массы сухого тампонажного материала (в ${
m M}^3$):

$$\sum G = G_{Bru} + G_{Bu} \kappa \Gamma, \qquad (2.133)$$

 $\sum G = 59354 + 6510 = 65864$ кг.

2.4.2.4. Гидравлический расчет цементирования скважины

Гидравлический расчет цементирования скважин проводится в следующем порядке.

Максимальное ожидаемое давление на цементировочной головке $P_{\text{ЦГ}}$ (в МПа) рассчитывают по формуле:

$$P_{II\Gamma} = \Delta P_{\Gamma C} + P_T + P_K + P_{CT},$$
 (2.139)

где Δ $P_{\Gamma C}$ - максимальная ожидаемая разность гидростатических давлений в затрубном пространстве и в трубах в конце процесса цементирования, МПа;

 $P_{T,}$ P_{K} - гидравлические сопротивления соответственно в трубах и в затрубном пространстве при принятом значении $v, M\Pi a;$

 $P_{CT} = 2.5 \div 3 \text{ МПа}$ - давление момента "Стоп".

Разность гидростатических давлений определяют по формуле:

$$\Delta \ P_{\Gamma C} = \ g \ [(L^1 - H^1) \ (\rho_{BP} - \rho_{\Pi P}) + (H^1 - h^1) \ (\rho_{TP} - \rho_{\Pi P})] \ 10^{-6} \ M\Pi a, \quad (2.140)$$

где L^1 - глубина скважины по вертикали, м;

 ${
m H}^{1}$ - высота подъема тампонажного раствора от башмака колонны по вертикали, м;

 h^1 - высота цементного стакана в колонне по вертикали, м;

 $g = 9.81 \text{ м/c}^2$ - ускорение свободного падения;

 $\rho_{\Pi P}$ - плотность продавочной жидкости кг/м³;

 ho_{TP} — средневзвешенная плотность тампонажного раствора.

 $\Delta P_{\Gamma C} = 9.81*((2446-2046)(1080-1000)+(2006-27)(1502-1000))*10^{-6}=10.02 \text{ M}\Pi a.$

Гидравлические сопротивления внутри обсадной колонны P_T и в затрубном пространстве P_K (в МПа) в конце продавки тампонажной смеси находят по формулам Дарси-Вейсбаха:

$$P_T = \lambda_T \rho_{\text{IIP}} v_T^2 L / (2d_{\text{OK}}) \Pi a,$$
 (2.141)

$$P_K = \lambda_K v_{\kappa}^2 \rho_{TP} L / (2(D_{CKB} - D_{OK})) \Pi a,$$
 (2.142)

где $\lambda_{T, K}$ – коэффициенты гидравлических сопротивлений внутри обсадной колонны и кольцевом пространстве, для практических расчетов принимаются равными 0,02 и 0,035 соответственно;

 $D_{CKB},\ D_{OK}$ — соответственно средний диаметр скважины, наружный диаметр обсадной колонны, м;

 $V_{\text{т,k}}$ – скорость подъема жидкости в трубе и кольцевом пространстве, м/с;

L – длина обсадной колонны, м;

 $d_{\rm OK}\,$ - внутренний диаметр обсадной колонны, м;

 $\rho_{TP}\,$ - плотность тампонажного раствора кг/см³;

 $ho_{\Pi P} -$ плотность продавочной жидкости, кг/см 3 .

Определяется скорость потока в трубах, если известно, что в конце продавки в кольцевом пространстве v=0,4 м/с:

$$R = S \kappa \Pi / S T, \qquad (2.143)$$

$$r = ((Dc*k)^2 - Do\kappa^2)/dBH^2,$$
 (2.144)

 $r = ((0,2159*1,2)^2 - 0,146^2)/0,1304^2 = 2,69;$

 $v_T = r^* v_K = 2,69*0,4=1,08 \text{ m/c};$

 $P_T = 0.02*1000*2757*1.08^2/(2*0.1304)=0.247 \text{ M}\Pi a;$

 $P_K = 0.035*1502*2757*0.4^2/(2*(0.2159*1.2-0.146)) = 0.103 \text{ M}\Pi a;$

 $P_{\text{III}} = 10,02 + 0,247 + 0,103 + 3 = 13,37 \text{ M}\Pi a.$

Затем рассчитывается давление на цементировочных насосах цементировочных агрегатов P_{IIA} (в МПа):

$$P_{IIA} \ge P_{III\Gamma} / 0.8, \tag{2.145}$$

 $P_{IIA} \ge 13,37/0,8=16,71 \text{ M}\Pi a.$

Производительность закачки цементного и бурового растворов (в ${\rm m}^3/{\rm c}$):

$$Q = 0.785 (D^{2}_{CKB} - D^{2}_{OK}) \text{ v m}^{3/c}, \qquad (2.146)$$

где v—скорость подъёма тампонажного раствора в кольцевом пространстве в м/с. $Q = 0.785*((0.2159*1.2)^2-0.146^2)*1.8=0.064 \text{ m}^3/\text{c}.$

2.4.2.4.1. Выбор типа и расчёт необходимого количества цементировочного оборудования

По расчетным значениям Q и $P_{\text{ЦА}}$ выбирается агрегат 5ЦА-320, количество которых определяется из соотношения:

$$n = Q / q + 1,$$
 (2.147)

где: q — производительность одного ЦА при давлении $P_{\text{ЦА}}$ (для 5ЦА-320 с диаметром втулки 127 мм на пятой передаче q=26,16 л/с);

1 – резервный агрегат.

 $n = 64/26, 16+1=3,45\sim4$ агрегата.

Приготовление тампонажных растворов для изоляции продуктивных горизонтов должно производиться в отдельной осреднительной емкости с целью получения однородной смеси и качественного разобщения пластов. Рассчитывается дополнительное количество цементировочных агрегатов, которые будут качать тампонажный раствор в эту ёмкость при диаметре втулок 127 мм. При этом производительность будет 26,16 л/с.

Для обеспечения Q = 64 л/с при продавке тампонажного раствора в скважину необходимо иметь запас по суммарной производительности агрегатов, работающих на осреднительную ёмкость. Проектируется три дополнительных цементировочных агрегата. Определяется подача этих агрегатов: $Q_{\text{ДОП.}} = 3.26, 16 = 78,48 \text{ л/c}.$

Определяется коэффициент запаса по производительности агрегатов, работающих на осреднительную ёмкость:

 $k_{\text{ОСР. ЁМК.}} = Q_{\text{ДОП.}} / Q_{\text{MAX.}} = 78,48/64 = 1,23.$

Общее количество агрегатов, участвующих в цементировании скважины, равно 7.

Требуемое количество цементосмесительных машин m определяется по формуле (выбирается смесительная установка УС-6-30 исходя из технических характеристик, количества сухого цемента и опыта при цементировании скважин):

$$m = Q / q_{CM},$$
 (2.148)

где q_{CM} - производительность одной цементосмесительной машины, л/с (для УС-6-30 q_{CM} =27 л/с);

 $m=64/27=2,37\sim3$ машины.

Затем проверяется, достаточно ли суммарной массы тампонажной смеси в бункерах цементосмесительных машин G (в тоннах) для цементирования колонны:

$$G = m G_{\text{B}} \ge G_{\text{CYX}} T, \qquad (2.149)$$

где G_{CYX} - требуемая суммарная масса сухого тампонажного материала из формулы, т;

 $G_{\rm b}$ - вместимость бункера смесителя, т (для УС-6-30 вместимость бункера 14,5 м³ следовательно $G_{\rm b}$ =14,5*2,6=37,7 т).

 $m=67,447/37,7=1,79\sim2$ машины.

Выбираются 3 смесительные машины.

2.4.2.4.2. Расчёт режима закачки и продавки тампонажной смеси

Максимальное давление на цементировочной головке, без учёта давления "Стоп" в конце продавки тампонажной смеси $P_{\rm L}$ может быть найдено по формуле:

$$P_{IJ} = P_{IJ\Gamma} - P_{CT}, \qquad (2.150)$$

 $P_{II} = 13,37-3=10,37 \text{ M}\Pi a.$

Рассчитывается давление, которое возникает на цементировочной головке в момент прихода тампонажной смеси на забой, P^{1}_{II} (в МПа):

$$P_{II}^{1} = \Delta P_{TC}^{1} + P_{T}^{1} + P_{K}^{1}, \qquad (2.151)$$

где Δ $P^1_{\Gamma C}$ - максимальная ожидаемая разность гидростатических давлений в затрубном пространстве и в трубах на момент прихода тампонажной смеси на забой, МПа (эта величина отрицательна);

 $P^{1}_{T,}$ P^{1}_{K} - гидравлические сопротивления соответственно в трубах и в затрубном пространстве, МПа.

 $\Delta P^1_{\Gamma C}$ можно рассчитать по формуле:

$$\Delta P^{1}_{\Gamma C} = g L^{1} (\rho_{\Pi X} - \rho^{1}_{CPB3B}) 10^{-6} M\Pi a,$$
 (2.152)

где: L¹ - глубина скважины по вертикали, м;

 $g = 9.8 \text{ м/c}^2$ - ускорение свободного падения;

 $\rho_{\text{БР}}$ - плотность бурового раствора, кг/м³ (плотность буферного раствора принимается равной плотности бурового раствора);

 ho^1_{CPB3B} — средневзвешенная плотность раствора в обсадной колонне на момент прихода тампонажного раствора на забой, кг/м³. Она равна плотности тампонажного раствора ho_{TP} , если необходимый объём тампонажного раствора $V_{TP} \geq V_{OK}$ - внутреннего объёма обсадной колонны, равного:

$$V_{OK} = \pi d^2_{OK} L / 4 M^3, \qquad (2.153)$$

где: L – длина обсадной колонны, м;

 $d_{OK}-$ средневзвешенный внутренний диаметр обсадной колонны, м.

 $V_{OK} = 3,14*0,1304^{2*}2757/4 = 36,8 \text{ m}^3;$

Следовательно $\rho_{TP} = \rho^1_{CPB3B} = 1502 \text{ кг/м}^3$;

 $\Delta P^{1}_{\Gamma C} = 9.81*2446*(1080-1502)*10^{-6} = -10.37 \text{ M}\Pi a.$

В связи с тем, что величина P^1 _Ц будет иметь малое и даже отрицательное значение, закачку тампонажного раствора до забоя можно производить с максимальной производительностью, которая ограничивается только условием:

$$P^{1}_{3} \le P_{\Gamma P} / (1, 2 \div 1, 5),$$
 (2.154)

Так как забойное давление с другой стороны равно $P^{1}_{3} = P^{1}_{\Gamma C} + P^{1}_{K}$, условие (2.150) можно переписать в виде:

$$P^{1}_{\Gamma C} + P^{1}_{K} \le P_{\Gamma P} / (1, 2 \div 1, 5),$$
 (2.155)

Записав выражение для гидростатического давления на забой $P^1_{\Gamma C}$ и преобразовав (2.151) относительно гидравлического сопротивления в кольцевом пространстве P_K , получим:

$$P_K^1 \le P_{\Gamma P} / (1,2 \div 1,5) - 10^{-6} \text{ g } L^1 \rho_{BP} M\Pi a,$$
 (2.156)

где: L^1 - глубина скважины по вертикали, м;

g = 9.81 м/с² - ускорение свободного падения;

 $\rho_{\text{БР}}$ - плотность бурового раствора, кг/м³.

 $P_{K}^{1} \le 43,144/1,2-10^{-6}*9,81*2446*1080=3,09 \text{ M}\Pi a.$

Из формул (2.138), (2.151) найдём максимально допустимую скорость подъема жидкости в кольцевом пространстве:

$$\begin{split} v_{MAKC} \leq & \sqrt{(2(P_{\Gamma P}/1, 2 - 10^{-6} \ g \ L^1 \ \rho_{BP})(Dc^*k - D_{OK})/(\lambda_K * \rho_{TP} * L^* 10^{-6}))} \ \text{m/c}, \ (2.157) \\ v_{MAKC} \leq & \sqrt{(2(43, 144/1, 2 - 10^{-6}*9, 81*2446*1080)*(0, 2159*1, 2 - 0, 146)/(0, 035*1502*)} \\ *2757*10^{-6})) = & 2,2 \ \text{m/c}. \end{split}$$

Рекомендуемая скорость подъема жидкости в кольцевом пространстве v_{макс}=1,8 м/с, поэтому в дальнейших расчетах принимается таковой.

Рассчитываются гидравлические сопротивления в трубах и кольцевом пространстве P_T^1 и P_K^1 для этого случая из формулы (2.141) и (2.142):

$$P_{T}^{1} = \lambda_{TMAKC} \rho_{TP} v_{T}^{2} L / (2d_{OK}), \qquad (2.158)$$

$$\begin{split} P^{1}_{T} &= \lambda_{T_{MAKC}} \, \rho_{TP} \, v_{\scriptscriptstyle T}^{2} \, L \, / \, (2d_{OK}), \\ P^{1}_{K} &= \lambda_{K} \, v_{\scriptscriptstyle KMAKC}^{2} \rho_{\delta p} \, L \, / \, (2(D_{CKB} - D_{OK})), \end{split} \tag{2.158}$$

 $v_T = 1.8 * 2.69 = 4.842 \text{ m/c};$

 $P_T^1=0.02*1502*4.842^2*2757/(2*0.1304)=7.45 \text{ M}\Pi a;$

 $P_{K}^{1} = 0.035*1080*1.8^{2}*2757/(2(0.2159*1.2-0.146))=1.479 \text{ M}\Pi a.$

Подставив полученные значения ΔP^{1}_{TC} , P^{1}_{T} , P^{1}_{K} в формулу (2.147) определяется величина давления на цементировочной головке в момент прихода тампонажного раствора на забой.

$$P_{II}^{1} = -10,37+7,45+1,479 = -1,441 \text{ M}\Pi a.$$

Давление на цементировочной головке в момент начала закачки тампонажного раствора в обсадную колонну $P^0{}_{\mathrm{II}}$ (в МПа) равна сумме гидравлических сопротивлений в секциях обсадной колонны P^0_{T} и P^0_{K} , которые рассчитывают по формулам, аналогичным формулам (2.141) и (2.142):

$$P_{T}^{0} = \lambda_{T} \rho_{BP} v_{TMAKC}^{2} L / (2d_{OK}) \Pi a,$$
 (2.141)

$$P^{0}_{K} = \lambda_{K} v_{\kappa}^{2} \rho_{bP} L / (2(D_{CKB} - D_{OK})) \Pi a,$$
 (2.142)

 $P^{0}_{T} = 0.02*1080*4,842^{2}*2757/(2*0,1304)=5,3 \text{ M}\Pi a;$

 $P_{K}^{0} = 0.035*1.8^{2}*1080*2757/(2(0.2159*1.2-0.146)) = 1.479 \text{ M}\Pi \text{a};$

 $P^{0}_{IJ} = P^{0}_{T} + P^{0}_{K} = 5,3+1,479 = 6,779 \text{ M}\Pi a.$

$$\Sigma V^1 = V_{OK}, \qquad (2.160)$$

 $V_{OK} = 36.8 \text{ m}^3$.

В конце продавки тампонажного раствора ΣV равен сумме объёмов тампонажного раствора V_{TP} и продавочной жидкости $V_{\Pi P}$:

$$\Sigma V = V_{TP} + V_{\Pi P}, \qquad (2.161)$$

 $\Sigma V = 36.8+77=113.8 \text{ m}^3.$

По полученным данным построим график изменения давления на цементировочной головке (см. рис. 8).

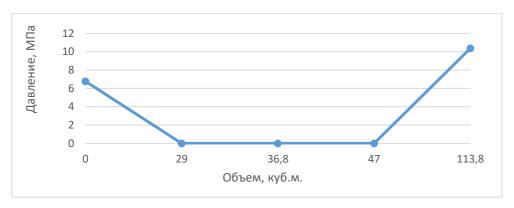


Рис. 8. График изменения давлений на цементировочной головке

Цементировочный агрегат 5ЦА-320 с диаметром втулки 127 мм, имеет следующие параметры (см. табл. 2.4.9):

Таблица 2.4.9.

Параметры агрегата 5ЦА-320

Передача	Давление, МПа	Подача насосов, л/с		
2	18,5	5,95		
3	10	11,36		
4	6,6	17,25		
5	4,4	26,16		

Используя величины давлений, приведённые на графике, производительность ускоренной закачки тампонажного раствора до забоя Q_{MAKC} и производительность продавки тампонажной смеси Q выбираются следующие режимы работы агрегатов: первый $1 \, \text{m}^3$ жидкости закачивается на третьей передаче, $9.5 \, \text{m}^3$ на четвертой, $64.5 \, \text{m}^3$ на пятой, затем $14 \, \text{m}^3$ на четвертой, $22 \, \text{m}^3$ на третьей и $2.8 \, \text{m}^3$ на второй.

Режим работы агрегатов представлен в табл. 2.4.10.

Таблица 2.4.10.

Режим работы агрегатов

Вид жидкости	Объём, м3	Число агрегатов	Скорость агрегата	Время закачки, мин.	Плотность, г/см3
Буферная (вода + ПАВ)	8,6	2	III	2,74	1
	1	3	III		
ЦТО-4-150	9,5	3	IV		1,47
	57,26	3	V		
ПЦТ – І – 100	7,24	3	V	55	1 02
11Ц1 – 1 – 100	2	3	IV	33	1,83
Пестополицая	12	3	IV		
Продавочная	22	3	III		1
жидкость	2,8	1	II		

2.4.3. Выбор технологической оснастки обсадных колонн

Для облегчения спуска обсадной колонны и ее качественного цементирования по выбранной технологии в состав колонны вводят следующие дополнительные элементы:

- 1.Башмак обсадной колонны БКМ 146 (ОСТ 39 011 87) Диаметр башмака 166 мм, центральное отверстие диаметром 70 мм, длина 298 мм.
- 2.Клапан обратный дроссельный ЦКОДМ 146 (ТУ 39 –01– 08 –28 –77)
- 3.Центраторы ЦЦ2 146/270 (ТУ 39 01 08 283 77)
- 4. Комплект разделительных пробок типа КРП 146.
- 5. Цементировочная головка типа ГУЦ 140-168Х400.

2.4.4. Проектирование процессов испытания и освоения скважин

Вторичное вскрытие пласта

Вторичное вскрытие пласта заключается в создании гидравлической связи скважины с пластом. Во избежание открытого фонтанирования вторичное вскрытие осуществляется на репрессии, величина которой составит 5 %.

Для создания гидравлической связи в скважинах, обсаженных эксплуатационными колоннами, для вскрытия применяют стреляющие (кумулятивные, пулевые) и гидропескоструйные перфораторы.

Наиболее подходящим к данным условиям является ленточный перфоратор ПКС 105T, который имеет следующие характеристики (см. табл. 2.5.1):

Таблица 2.5.1.

Техническая характеристика ПКС 105Т

Плотность перфорации, отверстия/метр:	
За один спуск	10
Максимальный интервал перфорации за один спуск, м	30
Длина канала, м:	
σ сж =45 МПа	0,275
σ _{CЖ} =25 MΠa	0,350
Диаметр канала, мм:	
В трубе	44
В породе:	
σ _{СЖ} =45 МПа	12
σ сж =25 МПа	14

Плотность перфорации принимается равной 10 отверстий/метр.

Вызов притока из пласта

Чтобы получить приток из продуктивного горизонта, необходимо давление в скважине снизить значительно ниже пластового. Существуют различные способы снижения давления, основанные либо на замене тяжелой промывочной жидкости на более легкую, либо на плавном или резком понижении уровня жидкости в эксплуатационной колонне.

2.5. Выбор буровой установки

На основании ранее проведенных расчетов принимается вес наиболее тяжелой бурильной колонны Q = 66061 кг (вес обсадной колонны, см п. 2.4.1.).

Расчет максимальных нагрузок, действующих на крюк производится из учета, что при прихватах и затяжках в процессе спуска и подъема колонны бурильных труб необходимо приложить дополнительные усилия при подъеме колонны. Расчет производится по следующей формуле:

$$P = K \cdot Q \kappa H, \tag{2.170}$$

где Q – масса КБТ, кH;

K — коэффициент учитывающий увеличения веса колонны при ликвидации прихвата, K = 1,3.

 $P = 1.3 \cdot 660.61 = 1056 \text{ kH}.$

Учитывая максимальную нагрузку на крюке, а также то, что площадь ведения буровых работ заболочена и бурение ведется с кустовой площадки, район обеспечен электроэнергией и глубина скважин не превышает 3000 м, выбирается буровая установка типа БУ 3000 – ЭУК 1М.

Техническая характеристика БУ 3000 – ЭУК 1М приведена в табл. 2.7.1.

Таблица 2.7.1. Техническая характеристика БУ 3000 - ЭУК 1М

3000
2000
5×6
8,5
P-560
ПКР-560
УНБ-600
650
УВ-250 MA1
АВШ6/10
УТБК-5×200
ЛБ-750
12
120
100
18

3. СПЕЦИАЛЬНАЯ ЧАСТЬ

При строительстве нефтяных и газовых скважин, остро встала проблема из-за некачественного цементирования. Процесс заколонных перетоков цементирования скважин - операция необратимая. Цементирование является основным методом изоляции затрубного пространства нефтяных скважин с самого появления этой отрасли промышленности. Это самостоятельная дисциплина, в которой заняты технические эксперты, постоянно работающие над улучшением технологий материалов ИΧ применения. Зачастую невозможность разобщения интервалов с помощью цементирования

обусловлена отсутствием передовых методов. Когда цемент не обеспечивает требуемой изоляции за трубного пространства, результат может быть следующим:

- обводнение скважины;
- потери продукции из-за межпластовых перетоков;
- миграция газа, обнаруженная по повышенному затрубному давлению/повышенной скорости потока в затрубном пространстве;
- загрязнение мелкозалегающих водоносных горизонтов
- неправильная оценка перспектив скважины по углеводородному сырью

Одним из наиболее эффективных способов решения данной проблемы является применение расширяющихся тампонажных растворов.

По результатам многочисленных исследований, одной из причин возникновения заколонных и межколонных перетоков, в особенности на ранних стадиях твердения тампонажных растворов, являются усадочные деформации. Для предупреждения указанных осложнений предлагается вводить в состав вяжущего материала расширяющие добавки. Увеличение их объёма или продуктов их взаимодействия с составляющими цемента способствуют исключению каналообразований в зоне цементного камня, обсадной колонной и цементного камня с горной породой.

Если расширение происходит В период протекания коагуляционнокристаллизационных явлений, то такая структура цементного камня может не только значительно расширяться, но и способна к устранению возникающих при этом микро разрывов. Необратимые разрушения цементного камня наблюдаются при расширении уже сформировавшейся структуры, поэтому необходимо строго времени процесс расширения различными **УВЯЗЫВАТЬ** структурообразования.

Известны два способа обеспечения расширения цементного камня.

Первый способ - в состав цементного раствора вводятся вещества, образующие при химической реакции между собой или вяжущими материалами газообразные продукты. Расширение газа приводит к расширению формирующегося камня. Однако этот способ эффективен только в условиях атмосферного давления, а в условиях скважины расширению пузырьков препятствует гидростатическое давление.

Второй способ — вводят вещества (расширяющиеся добавки), которые при химической реакции между собой или с другими веществами цементного раствора образуют кристаллические продукты. Рост кристаллов этих веществ в порах цементного камня является причиной собственных напряжений, вызванных кристаллизационным давлением. На ранней стадии твердения цементному камню присуща открытая пористость, поэтому гидростатическое давление не

препятствует деформации среды и существенно не влияет на расширение. Собственные напряжения регулируются в этом случае кинетикой развития и величиной кристаллизационного давления и определяются выбором расширяющей добавки применительно к свойствам цемента и условиям твердения.

Одним из методов улучшения герметичности затрубного пространства и общей технологии цементирования является использование разбухающих пакеров.

Разбухающие пакеры

осложнений В разобщении Многих интервалов, возникающих из-за некачественного первичного цементирования, можно избежать путем установки разбухающих пакеров в обсадную колонну. В производстве разбухающих пакеров используют эластомеры, сорбирующие ту или иную жидкость и самостоятельно увеличивающиеся в размерах при контакте со скважинной средой. Такими флюидами могут являться буровой раствор, применявшийся при бурении ствола, буферная жидкость для первичного цементирования, а также добываемые или закачиваемые жидкости. Из смеси эластомеров изготавливают специальные составы, разбухающие в водных или углеводородных средах. При разбухании эластомерный уплотнительный элемент соприкасается со стенкой скважины или цементным камнем. После такого соприкосновения разбухание эластомера продолжается, что создает стойкий к действию давления герметичный контакт между уплотнительным элементом и стенкой скважины. В тех местах, где цемент отсутствует, уплотнительный элемент обеспечивает гидравлическое разобщение за счет собственной длины и создаваемого давления. Такие пакеры следует устанавливать на тех глубинах, где разобщение интервалов наиболее необходимо.

Существует несколько способов изготовления разбухающих пакеров. Разбухающие пакеры для первичного цементирования имеют конструкцию, в которой разбухающий эластомер обернут и приклеен вокруг укороченной обсадной трубы. Труба-основание имеет такие же диаметр, удельный вес и марку стали, как и обсадная колонна, в которой будет установлен пакер. Соединения пакера – как и у обсадной колонны. На обеих сторонах эластомерного уплотнения используются антиэкструзионные торцевые кольца для защиты эластомера в процессе установки, а также для предотвращения выдавливания эластомера при возникновении перепада давления на пакере (рис. 1).

Существуют два основных типа эластомеров: один разбухает в присутствии жидкости на углеводородной основе, другой – в присутствии жидкости на водной основе. Кроме эластомеров, разбухающих в нефти и воде, есть и гибридные эластомеры (способность разбухать в нефти и/или воде). Для активации пакеров не требуются манипуляции с трубой или гидравлическое давление. Когда эластомер вступает в контакт с жидкостью разбухания, она впитывается в структуру эластомера. При впитывании жидкости эластомер растягивается или увеличивается в диаметре до тех пор, пока пакер не соприкоснется со стенкой ствола скважины, или пока не заполнится канал или пустота в цементном камне. Разбухание продолжается, создавая внутреннее давление разбухания. Давление разбухания стойкий к действию давления герметичный стык дифференциального давления. Давление разбухания является функцией свойств жидкости разбухания, температуры и времени. Тип эластомера определяется заканчиванием или предполагаемой добываемой жидкостью, а также параметрами ствола скважины, в первую очередь забойной температурой. Если предполагаемая жидкость имеет углеводородную основу, следует спускать пакер, разбухающий под действием углеводородов; если предполагаемая жидкость имеет водную основу, следует спускать пакер, разбухающий под действием воды. В случае неопределенности нужно спускать гибридный разбухающий пакер. Цементирование является главным способом изоляции затрубного пространства

Цементирование является главным способом изоляции затрубного пространства нефтяных скважин с самого появления этой отрасли промышленности. Хотя цемент все еще является основным средством герметизации затрубного пространства в большинстве случаев, существуют ситуации, в которых сам по себе он оказывается недостаточным. Разбухающие пакеры успешно дополняют цемент для обеспечения долгосрочной герметичности затрубного пространства.

Используя разбухающие пакеры для первичного цементирования, можно достичь следующих целей:

- 1. Предотвращение заколонных перетоков в микро зазоре между обсадной колонной и цементным кольцом.
- 2. Блокирование заколонного перетока за счет заполнения и герметизации каналов в цементном камне, образовавшихся из-за плохого вытеснения бурового раствора.
- 3. Создание режима потока в зоне вокруг пакера, способствующего хорошему удалению бурового раствора.
- 4. Защита нижней стенки ствола наклонно-направленной скважины от негативного воздействия асимметрии потока в за трубном пространстве.

Стоимость разбухающего пакера в дополнение к общей стоимости компоновки заканчивания по сравнению со временем и деньгами, необходимыми для решения проблемы перетоков, очень небольшая. Включив разбухающие пакеры в компоновку заканчивания скважины, можно добиться значительной экономии на внутрискважинных работах в течение всего срока эксплуатации скважины.

4.ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И РЕСУРСОСБЕРЕЖЕНИЕ

Основной задачей проектирования является организация правильного сочетания ее совместного труда участников производственного процесса с материальными условиями производства в целях выполнения установленных заданий при минимальных затратах труда и средств.

4.1.Структура и организационные формы работы бурового предприятия

Стрежевской филиал ЗАО «ССК» был образован из бурового предприятия ООО «Бурение - 1». Его основной задачей является оказание сервисных услуг по бурению скважин в Западно-Сибирском регионе.

Предприятие возглавляет директор филиала, у которого есть шесть заместителей: технический директор — первый заместитель директора, заместитель директора по экономике и финансам, заместитель директора по безопасности, заместитель директора по производству, заместитель директора по работе с персоналом и заместитель директора по общим вопросам.

Техническому директору подчиняются следующие руководители: главный технолог, главный геолог и заместитель технического директора по ОТ и ПБ. Также он курирует работу отдела главного механика, отдела главного энергетика, производственно-технического отдела бурения, производственно-технического отдела КРС и отдела компьютерных технологий.

Главный технолог возглавляет технологический отдел, технологическую группу по бурению и группу заключительных работ, а также лабораторию буровых и тампонажных растворов. Главной задачей этих подразделений является контроль и выполнение технологии строительства скважин.

Главный геолог возглавляет геологический отдел, который разделен на отдел бурения и отдел КРС, также в его подчинении находится группа геологов на месторождении. Задачей геологического отдела является предоставление информации, связанной с геологией при бурении и освоении скважин.

Схема организационной структуры предприятия представлена в приложении Γ .

4.2 Нормативная карта

	1					7.4	ուսի	mai	пвна	я кар	1 a					
Наименование работ	№№ нор- матив-ных пачек		ервал ения, м	Мощ-ность интервала, м	долот	Норма проход- ки на долото, м	Коли- чество рейсов	механ	ремя ического ния, час	СПО, ПЗР к СПО, час		Прочи е работ ы, связан -ные с рейсо м, час	Итого по гр. 10+11+12+13 , час	-ные работы (4 % к гр. 14), час	Время на прочие работы , связан- ные с глубин ой (11 % к гр. 14), час	Всего на интервал бурения (гр. 14+15+16), час
		от	до					1 метра	интервала							
Направление																
Бурение	I	0	40	40	393,7 СЦВ	1000	0,05	0,02	0,8	0,2	0,2	0,1	1,3	0	0	1,3
Кондуктор				1			,,,,,,	,	-,-	-,-	-,-	-,-	-,-			-,-
Бурение	1	40	100	60	295,3 СЗГВ	500	0,2	0,012	1,2	0,52	0,55	0,29	2,56	0,1	0,28	2,94
Бурение	1	100	270	170	295,3 СЗГВ	345	0,34	0,0174	2,07	0,78	0,92	0,34	4,11	0,16	0,45	4,73
					295,3											
Бурение Смена	I	270	753	483	СЗГВ	500	0,91	0,012	5,45	1,48	3,3	0,48	10,7	0,43	1,18	12,31 0,52
обтираторов												0,50	0,50 40,50	0,02		41,48
Крепление Каротажные												40,50		0,98		6,45
работы												6,20	6,20	0,25		0,86
Смена вахт Итого:							1,45	0,04	8,72	2,78	4,77	0,86 49,17	0,86 65,43	1,94	1,91	69,29
Эксплуатационн							1,45	0,04	0,72	2,70	4,77	43,17	05,45	1,54	1,51	· · · · · · · · · · · · · · · · · · ·
ая колонна					215.9											
Бурение	Ш	753	1732	979	М3- ГВ	700	0,45	0,014	4,41	1,17	2,2	0,58	8,35	0,33	0,92	9,61
Смена обтираторов												0,00	0,00	0,00		0,00
Смена вахт												0,12	0,12	2,22		0,12
Проверка превенторов												0,90	0,90	0,04		0,94
Итого:							0,45	0,01	4,41	1,17	2,20	1,60	9,37	0,37	0,92	10,66
					БИТ 215,9											
Бурение Смена	III	1732	2757	1025	M5	500	0,8	0,024	9,58	3,3	2,93	0,71	16,52	0,66	1,82	19
обтираторов				ļ			1			1		0,17	0,17	0,01		0,17
Смена вахт							1					0,24	0,24			0,24
Каротажные работы												7,09	7,09	0,28		7,37
Крепление												56,90	56,90	1,32		58,22
Смена вахт				1						1		1,03	1,03			1,03
Проверка превенторов							ļ					7,76	7,76	0,31		8,07
Итого:							0,19	0,15	8,07	5,02	0,73	73,90	87,73	2,51	1,63	91,87
Всего:	au ag						4,48	0,28	47,89	16,81	13,57	131,93	210,19	6,70	9,07	225,97
Норматив продолжительно скважины	сть бурения													225,97		
Проектная продолжительность бурения скважины, час 233,88																
Проектная продол:														9,70		
сут Проектная коммер	ческая															5777
скорость, м/ст.мес																VIII

4.3. Составление линейно-календарного графика

Линейно-календарный график представлен в табл. 6.4.1.

Линейно-календарный график работ

			<i>график раооп</i>						
Линейно-календарный график работ Бригады учавствующие в строительстве									
Месяц	Вышкомон- тажные	Буровые	Освоение						
1									
2	Монтаж								
3		Скважина 1							
		Окважина 1							
4		Скважина 2							
		Скважина 3	Освоение 1						
5			Освоение 2 Освоение 3						
		Скважина 4							
6		Скважина 5							
		Скважина 6	Освоение 4						
7			Освоение 5						
8		Скважина 7							
		Скважина 8	Освоение 6						
9		Скважина 10	Освоение 8						
10			Освоение 9						
10			Освоение 10						
11									
12									

5.СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ 5.1 Производственная безопасность

Рассмотрим основные элементы производственного процесса, формирующие опасные и вредные факторы при выполнении, проектировании и подготовки геолого-технических мероприятий.

Таблица 5.1 –Основные опасные и вредные производственные факторы

Вид работ	Факторы (ГОСТ	Нормативные						
, , <u>1</u>	изменени	документы						
Камеральный этап (работа внутри помещения)								
	Вредные Опасные							
	Отклонение показа микроклимата в пом							
Работа за персональным	Недостаточная освеще рабочей зоны	енность		СанПиН 2.2.4.548-96				
компьютером (ПК) и оборудованием удаленного контроля и	Нервно-эмоциональное н	напряжение		Сантин 2.2.4.340-90				
мониторинга (система телеметрии)	Превышение уровне	й шума						
расположенного на рабочем месте внутри помещения	Превышение уровня в	пбрации	Электрическ	ГОСТ 12.1.003-83 (1999) ССБТ. ГОСТ 12.1.012-90				
	Повышенная запыленная загазованность рабоче		ий ток	ССБТ. ГОСТ 12.1.005-88 ССБТ.				
	Повышенная запылен загазованность рабоче		Пожаро- взрывобезопа сность					
	Полев	ой этап						
	Отклонение показателей климата на открытом воздухе	Опасные						
Работа непосредственно на месте,на кустовойплощадке	Превышение уровней меха произво,		еся машины и анизмы дственного удования	ΠБ 08-624-03, ГОСТ 12.1.012-90, ГОСТ 12.1.029-80				
	Превышение уровня вибрации	Элект						

5.1.1. Анализ выявленных вредных факторов при строительстве скважины на Средне-Нюрольском нефтяном месторождении (Томская область)

Отклонение показателей микроклимата в помещении:

Рассмотрим основные показатели микроклимата рабочей зоны и сравним с допустимыми значениями (таблица 5.2) согласно санитарным

нормам и правилам (СанПиН) 2.2.4.548-96.

Таблица 5.2 — Допустимые параметры микроклимата на рабочих местах производственных помещений

	Категория	Температ	ypa, 0°C		ительная ость, %	Скорость движения воздуха, м/с		
Сезон года	Сезон года выполняемых работ	Фактическое значение	допустимое значение	фактическо е значение	допустимое значение	фактическ ое значение	допустимо е знач.	
Холодный	16	22	19-24	45	15-75	0-0,05	0,1	
Теплый	1б	24	20-28	55	15-75	0-0,05	0,1	

Все условия микроклимата на рабочем месте имеют оптимальное значения, мероприятий по улучшению условий микроклимата проводить не нужно.

Отклонение показателей климата на открытом воздухе.

Согласно НТД при нормировании параметров микроклимата выделяют холодный период года, характеризуемый среднесуточной температурой наружного воздуха, равной -20°C и ниже и теплый период года, характеризуемый среднесуточной температурой наружного воздуха выше +18°C.

Работы на открытом воздухе приостанавливаются работодателями при следующих погодных условиях, которые представлены в таблице 5.3.

Таблица 5.3 –Погодные условия

Скорость ветра, м/с	Температура воздуха, °С
При безветренной погоде	-40
Не более 5,0	- 35
5,1–10,0	-25
10,0–15	-15
15,1–20,0	-5
Более 20,0	0

Недостаточная освещенность:

Помещения с постоянным пребыванием людей должны иметь естественное освещение. Естественное освещение подразделяется на

следующие типы: боковое, верхнее и комбинированное (верхнее и боковое).

Освещенность на поверхности стола в зоне размещения рабочего документа должна быть 300-500 лк. Освещенность поверхности экрана не должна быть более 300 лк.

В таблице 5.4 представлены нормируемые параметры естественного и искусственного освещении.

Таблица 5.4 - Нормируемые параметры естественного и искусственного освещения.

Рабочее место, подлежащее освещению	Разряд зрительнойра боты	Место установки светильников	Отраслеваян ормаосвещен н ости,ПК	Норма, ПК
1	2	3	4	5
Роторный стол	II	На ногах вышки, на высоте 6 м под углом 20-300 к вер- тикали	40	200
Щит КИП	I	Перед приборами	50	220
Пульт талевого блока	IV	На лестничных площадках по высоте вышки	13	80
Полати верхового рабочего	II	На ногах вышки на высоте не менее 2,5 м от пола по-латей, под углом 500	25	150
Кронблок	IV	Над кронблоком	25	80
Приемный мост	IV	На ногах вышки на высоте 6 м	30	200
Пульт бурильщика	I	Над пультом	50	220
Машинно- насосный блок, эл/моторы, компрессоры	блок, л/моторы, II На высоте не менее 3 м		30	200

Превышение уровней шума:

В непосредственной близости от рабочего места могут находиться насосы и двигателя, которые создают уровень звука, не превышающий допустимый согласно государственному стандарту (ГОСТ) 12.1.003-83 (1999). Норма для помещения управления составляет 80 дБА, а значение уровня звука на рабочем месте составляет 60-65 дБА.

Превышение уровней вибрации:

В процессе бурения, рабочие подвергаются воздействию повышенного уровня шума и вибрации. Согласно ГОСТ 12.1.003-01

Мероприятия для устранения превышения уровня вибрации следующие: установка защитного, изолирующего кожуха на двигатель, усиление рамы крепления двигателя к полу.

Таблица 5.5 - Уровень звукового давления на буровой

Характеристики помещений	Урог среднего	Уровень звука и эквивалент						
помещении	63	250	500	1000	2000	4000	8000	уровня, дБА
Рабочие места и зоныв помещенияхи территориях предприятия	99	86	83	80	78	76	74	85

Таблица 5.6 - Предельно допустимые уровни колебательной скорости вибрации

	Направление	Среднегеометрические частоты, Гц									
Вибрация	формирования вибрации	1	2	4	8	16	31,5	63	125	250	500
Общая	Вертикальное (по оси)	20 132	7,1 123	2,5 114		1,1 107	1,1 107		1,1 107	1	-
Локальная	по каждой оси	-	-	-	5,0 120		3,5 117			1,3 108	0,9 105

5.1.2. Анализ выявленных опасных факторов при строительстве скважины на Средне-Нюрольском нефтяном месторождении (Томская область)

Движущиеся машины и механизмы; подвижные части производственного оборудования.

Движущиеся части оборудования представляют опасность травмирования рабочего в виде ушибов, порезов, переломов и другие увечья, которые могут привести к потере трудоспособности.

Источник: механизмы, оборудование и транспортные средства.

Основной величиной характеризующей опасность подвижных частей является скорость их перемещения. Согласно ГОСТ 12.2.009-80 опасной скоростью перемещения подвижных частей оборудования, способных травмировать ударом, является скорость более 0,15 м/с.

В соответствии с ГОСТ 12.2.003-74 «ССБТ. Оборудование производственное. Общие требования безопасности» движущие части производственного оборудования, если они являются источником опасности, должны быть ограждены, за исключением частей, ограждение которых не допускается функциональным их назначением.

Одним из важных условий безопасного труда является недоступность подвижных частей оборудования, для рабочего, в ходе технологического процесса.

Для этого проводят следующие мероприятия:

- 1. Устанавливают защитные устройства (местные ограждения, крышки, кожуха ипрочее).
- 2. Крупногабаритные перемещающиеся части оборудования и транспортные устройства окрашивают чередующимися под углом 45° полосами желтого и черного цветов, для оповещения обопасности.
- 3. На наружной стороне ограждений наносят предупреждающий знак опасности по ГОСТ12.4.026-76.

- 4. Устанавливают предохранительные и блокирующие устройства предотвращающие поломку деталей станков, самопроизвольное опускание шпинделей, головок, бабок, поперечен и другихчастей.
- 5. Устанавливают тормозные устройства обеспечивающие остановку. Для этого применяются колодочные тормозные устройства и торможение электродвигателяпротивовключением.
- 6. Ремонт и проверка оборудования проводится толькопри отключенных механизмах вращения илиперемещения.

Электробезопасность:

Источник: провода и оборудование под напряжением.

Электробезопасность — система организационных мероприятий и технических средств, предотвращающих вредное и опасное воздействие на работающих от электрического тока и электрической дуги. Правила электробезопасности регламентируются ПУЭ.

Электроустановки и связанные с ними конструкции должны быть стойкими в отношении воздействия окружающей среды или защищенными от этого воздействия. При опасности возникновения коррозии необходимо предусмотреть дополнительные меры по защите оборудования. Для

цифрового и цветового обозначения всех отдельных неизолированных илиизолированных проводников необходимо использовать цвета и цифры в соответствии с ГОСТ Р 50462. Оборудование относится к электроустановкам с напряжением до 1 кВ. Безопасность обслуживающего персонала должна включать в себя:

- 1) Соблюдение расстояния до токоведущих частей или закрытия, изоляции токоведущих частей;
- 2) Применение блокировки аппаратов и ограждающих устройств, для предотвращения ошибочных операций и доступа к токоведущимчастям;
 - 3) Применение предупреждающей сигнализации;
 - 4) Применение устройств, для снижения напряженности 63

электрических и магнитных полей допустимых значений.

Помещения относятся к 1 категории помещений по степени опасности поражения электрическим током, так как оно имеет токонепроводящий пол и имеет невысокую влажность. ПУЭ

Также в помещении отсутствует токопроводящая пыль и располагается небольшое количество токопроводящих предметов. Для

всех электроустановок используется искусственное заземление, которое необходимо проверять каждые тримесяца.

Пожаровзрывобезопастность:

Источники: оборудование, работающее с горючими веществами, оборудование использующие электричество.

Пожарная безопасность представляет собой единый комплекс организационных, технических, режимных и эксплуатационных мероприятий по предупреждению пожаров. Общие требования пожарной безопасности изложены в техническом регламенте. Ответственным за обеспечение пожарной безопасности в организациях и на предприятиях являются руководители или лица, исполняющие их обязанности. В эти обязанности входит:

1) Обеспечение своевременного выполнения противопожарных

мероприятий при эксплуатации подчиненных им объектов;

- 2) Слежение за выполнением соответствующих правил пожарной безопасности;
- 3) Контроль боеготовности пожарных частей и добровольных пожарныхдружин;
- 4) Назначение ответственных за обеспечение пожарной безопасности установки.

Категория пожаровзрывоопасности помещения и кустовой площадки согласно техническому регламенту: класс пожароопасности – Π -II (зона,

расположенная в помещении, где выделяются горючие пыли или волокна), класс взрывоопасности — 2 (зона, в которых при нормальном режиме работы оборудования не образуются взрывоопасные смеси газов или паров жидкостей с воздухом, но возможно образование такой взрывоопасной смеси газов или паров жидкостей только в результате аварии или повреждения технологического оборудования. Категория здания по пожароопасности — В1 (пожароопасное).

Места расположения первичных средств пожаротушения должны указываться в планах эвакуации, разработанные согласно техническому регламенту. Огнетушители необходимо размещать в заметных и легкодоступных местах, где исключается попадание на них прямых солнечных лучей и непосредственное воздействие с нагревательными приборами.

Ручные огнетушители необходимо размещать:

- навеской на вертикальные конструкции на высоте не более5м от уровня поля до нижнего торца огнетушителя и на расстоянии от двери, достаточном для ее полногооткрывания;
 - установкой в пожарные шкафы.

На внешней стороне пожарного шкафа, на пожарном щите и соответственно на стенде должен быть указан порядковый номер, и номер телефона ближайшей пожарной части. Порядковые номера пожарных щитов

и шкафов указывают после следующих буквенных индексов: «ПЩ», «ПК».

Пожарный инвентарь необходимо размещать на видных местах, иметь свободный доступ к ним и не препятствовать эвакуации во время пожара.

Необходимый минимум первичных средств пожаротушения:

- порошковые огнетушители типаОП-3(3);
- накидки из огнезащитной ткани размером 1,2 х 1,8 м и 0,5 х 0,5м.

5.2 Экологическая безопасность

5.2.1 Мероприятия по охране атмосферы

Средства защиты атмосферы должны ограничить наличие вредных веществ в воздухе среды обитания человека на уровне не выше ПДК (предельно допустимая концентрация). На практике реализуются следующие варианты защиты атмосферного воздуха:

- вывод токсичных веществ из помещений общеобменной вентиляцией;
- локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязнённого воздуха в специальных аппаратах и его возврат в производственной или бытовое помещение, если воздух после очистки в аппарате соответствует нормативным требованиям к приточному воздуху;
- локализация токсичных веществ в зоне их образования местной вентиляцией, очистка загрязнённого воздуха в специальных аппаратах, выброс и рассеивание в атмосфере;
- очистка технологических газовых выбросов в специальных аппаратах,
 выброс и рассеивание в атмосфере; в ряде случаев перед выбросом
 отходящие газы разбавляют атмосферным воздухом;
- очистка отработавших газов энергоустановок, например двигателей внутреннего сгорания, в специальных агрегатах, и выброс в атмосферу или производственную зону.

В соответствии с ГОСТ 17.2.3.02-78 для каждого проектируемого и действующего промышленного предприятия устанавливается ПДВ (предельно допустимый выброс) вредных веществ в атмосферу при условии, что выбросы вредных веществ от данного источника в совокупности с другими источниками (с учётом перспектив их развития) не создадут приземную концентрацию, превышающую ПДК.

В тех случаях, когда реальные выбросы превышают ПДВ, необходимо в системе выброса использовать аппараты для очистки газов от примесей.

Аппараты очистки вентиляционных и технологических выбросов в атмосферу делятся на: пылеуловители (сухие, электрические, фильтры, мокрые); туманоуловители (низкоскоростные и высокоскоростные); аппараты для улавливания паров и газов (адсорбционные, хемосорбционные, абсорбционные и нейтрализаторы); аппараты многоступенчатой очистки (уловители пыли и газов, уловители туманов и твёрдых примесей, многоступенчатые пылеуловители).

5.2.2 Мероприятия по защите гидросферы, литосферы

Одной из наиболее сложных проблем по охране гидросферы и литосферы от загрязнения является проблема утилизации отработанных буровых растворов (ОБР), бурового шлама (БШ) и буровых сточных вод (БСВ) и нейтрализации их вредного воздействия на объекты природной среды.

Наиболее доступным направлением утилизации ОБР является их повторное использование для бурения новых скважин. Этот подход оправдан не только с экологической, но и экономической точки зрения, т.к. он обеспечивает значительное сокращение затрат на приготовление буровых растворов.

Перспективным направлением утилизации ОБР представляется его использование для крепления скважин. ОБР используется в качестве добавок к известным тампонажным материалам, традиционно применяемым в практике цементирования скважин.

Наиболее прогрессивным направлением утилизации ОБР является их использование в качестве исходного сырья для получения изделий грубой строительной керамики, в частности, в производстве керамзита и глинистого кирпича. Предпосылкой этого служит компонентный состав ОБР, основу которого составляет высококачественная глина, являющаяся главным компонентом бурового раствора и находящаяся в высокодисперсном состоянии. Глинистая фракция ОБР представлена в подавляющем большинстве случаев глиной высокого качества, что придает такому сырью

хорошие технологические свойства.

Несмотря на очевидные преимущества утилизации отходов бурения, самым доступным является их ликвидация путем захоронения. Захоронение отходов бурения в специально отведенных местах предусматривает использование для этих целей шламохранилищ, бросовых земель или оставшихся после разработки карьеров. Такое захоронение сопряжено со транспортными расходами значительными И поэтому экономически невыгодно. В настоящее время в большинстве случаев практикуется захоронение полужидкой массы и не текучего осадка непосредственно в амбарах на территории буровой после предварительного шламовых подсыхания их содержимого. Однако такое захоронение не предотвращает загрязнения природной среды, так как содержащиеся в отходах загрязнители вследствие подвижности и высокой проникающей способности мигрируют в почвогрунты, вызывая в них отрицательные негативные процессы.

Анализ данной проблемы показывает, захоронение отходов бурения не решает проблемы защиты окружающей среды от загрязнения. Необходимо их обезвреживание. Существует несколько способов нейтрализации ОБР.

Заслуживает внимания способ ликвидации шламовых амбаров методом расслоения ОБР на загущенную и осветленные фазы с последующим отверждением верхней части осадка после удаления осветленной воды.

Одним из эффективных методов обезвреживания бурового шлама является гидрофобизация поверхности. За счет высаливания полимера частицы породы покрываются пленкой, препятствующей растворению в воде токсичных и загрязняющих веществ.

В качестве безреагентных методов обезвреживания твердых отходов заслуживает внимания термический метод. Термическая обработка шламовых масс обеспечивает разрушение органики всех основных классов, присутствующих в буровом шламе.

Эффективным и практически доступным методом частичного обезвреживания бурового шлама может стать отмывка его от загрязняющей

органики (в том числе нефти и нефтепродуктов) горячей технической водой системы оборотного водоснабжения буровой.

Можно сделать вывод, что метод обезвреживания ОБР с последующим захоронением продуктов отверждения на территории буровой является более выгодным по сравнению с другими методами не только с экологической, но и с технико-экономической точки зрения.

В соответствии с требованиями природоохранного законодательства, все земли, нарушенные в период цикла строительства скважины, подлежат восстановлению. Работы по проведению рекультивации выполняются в два этапа: механический и биологический.

Механическая рекультивация предусматривает следующие виды работ: демонтаж и вывоз бурового оборудования; очистка территории от технического мусора; переработка ОБР; выравнивание рельефа площади.

Биологическая рекультивация проводится на участках с нарушенным растительным покровом. Для восстановления растительности проектом предусматривается проведение биологической рекультивации, которая заключается в следующем: обработка нарушенного грунта, пропитанного ГСМ; подготовка почвенного слоя; рыхление нарушенного участка механическими средствами; внесение комплексных минеральных удобрений и создание плодородного слоя; засев травами.

Таблица 5.7 - Выбросы в атмосферу

Источник	Наименование выбрасываемого вещества	Количество образования (т/год)	Периодичность выбросов		
1	2	3	4		
Дизеля силового	Диоксид азота Сажа	11,0716 0,536	На отогна отполитали на маниталини и		
блока (труба	Диоксид серы	1,3090	На этапе строительно-монтажных работ, бурения, испытания		
выхлопного	Оксид углерода	6,8466	раоот, бурсния, испытания скважины		
коллектора)	Бензапирен	1,5*10 ⁻⁵	СКВАЖИПЫ		
	Диоксид азота	12,8881			
Дизеля насосного	Сажа	0,6337			
блока	Диоксид серы	1,5349	11		
электростанции	Оксид углерода	8,5411	На этапе строительно-монтажных		
(труба	Формальдегид	0,1635	работ, бурения, испытания		
выхлопного коллектора)	Керосин (углеводороды СН)	3,4035	скважины		
	Диоксид азота	4,4844			
	Диоксид серы	12,8433	Ие отого отроитон не ментемии и		
Котельная	Оксид углерода	3,0679	На этапе строительно-монтажных работ, бурения, испытания		
Котельная	Бензапирен	1,69*10 ⁻⁶	скважины		
	Мазутная зола (по ванадию)	0,03220	СКВАЖИПЫ		
	Углеводороды (С ₁ -С ₅)	0,3831			
Склад ГСМ	Углеводороды (C_6-C_{10})	0,1582	На этапе строительно-монтажных		
(емкости)	Бензол	0,0021	работ, бурения, испытания		
	Толуол	0,0012	скважины		
	Углеводороды (C ₁₂ -C ₁₉)	0,0343			
C=	Диоксид азота	0.1703	II		
Спецтехника	Оксид углерода	0,5346	На этапе строительно-монтажных		
(дежурный трактор)	Керосин (углеводороды)	0,2348	работ, бурения, испытания скважины		

Таблица 5.8 - Сточные воды

Источник	Наименование стока	Количество образующихся сточных вод (м³/час)	Периодичность сбросов	Место сброса			
1	2	3	4	5			
Производственные стоки в периоды:							
	- строительно- монтажных работ;	100,00		Для сбора технологических вод под вышечным,			
	- бурения и крепления;	3506,16		силовым блоками, ОЦС и МНО			
Промплощад- ка	- испытания	313,11	В период строительно- монтажных работ, в период бурения, период испытания скважины	выполняется гидроизоляция с уклонам к сточным желобам, связанными с гидроизолированными бетонными прямиками. Из прямиков вода периодически, по мере накопления, откачивается в металлическую емк.			
	Хозяйст	твенно бытовые ст	гоки в периоды:				
Промплощад- ка	- строительно- монтажных работ;	112,89	В период строительно- монтажных	Отводятся в			
Вахтовый поселок	- бурения и крепления;	419,59	работ, в период бурения, период	отдельный земляной амбар			
	- испытания	210,04	испытания скважины				

5.3 Безопасность в чрезвычайных ситуациях при строительстве наклонно-направленной скважины на Средне-Нюрольском месторождении (Томская область)

Мероприятия по устранению ЧС ГНВП, пожары:

В процессе строительства скважины возможны возникновения различного вида чрезвычайные ситуации. Это могут быть открытые нефтяные фонтаны и последствия, при не принятых мерах, падение и разрушение вышки или элементов талевой системы, а также взрывы и пожары. Данные факторы приводят к выводу из строя оборудования,

нанесение огромного ущерба природной среде, в исключительных случаях к смертельнымисходам.

В случае возникновения аварийной ситуации - открытого фонтана, а так же в следствие пожара, работы по их ликвидации должны осуществляться силами Северной военизированной части по предупреждению возникновения и по ликвидации открытых фонтанов и нефтяныхфонтанов.

Анализ возможных чрезвычайных ситуаций представлен в таблице 5.9.

Таблица 5.9 - Анализ чрезвычайных ситуаций

Чрезвычайная ситуация	Источники чрезвычайной ситуации	Характер чрезвычайной ситуации	Последствия чрезвычайной ситуации
1	2	3	4
Пожары	Внутренние: являются проявления недр при вскрытии продуктивных пластов. Разлив нефти с возгоранием. Внешнее: поджог	Локальный (пострадавших не более 10 человек, материальный ущерб не более 1000 МРОТ, ЧС в пределах территории объекта)	Пожар, разрушение зданий, ожоги, летальные исходы
Пожар	Внутреннее: Разлив нефти и дизельного топлива с возгоранием, выброс бурового раствора с последующим фонтанированием углеводородного сырья; проведение огневых работ. Внешнее: поджог	Локальный (в пределах буровой вышки)	Пожар, повреждение механизмов и оборудования, разрушение вышки, ожоги, отравления продуктами горения, летальные исходы

5.4. Правовые и организационные вопросы обеспечения безопасности

Профессия буровика входит в список потенциально опасных с точки зрения вероятности возникновения профессиональных заболеваний. Этому способствует ряд вредных и опасных факторов, начиная от географических условий работы, заканчивая спецификой буровой отрасли. Поэтому системный анализ опасных и вредных факторов, а также разработка методов оптимизации рабочего процесса являются актуальными проблемами для

улучшения условий труда работников буровых бригад. Большинство месторождений нефти и газа Западной Сибири находятся в районах с суровыми климатическими условиями, часто резко-континентального характера. На работников, при выполнении операций на открытой местности, воздействует комплекс неблагоприятных метеорологических факторов (высокие и низкие температуры, солнечная радиация, осадки, пыльные бури и др.).

В федеральном законе РФ от 28.12.2013 № 426-ФЗ «О специальной оценке условий труда», указано, что с вредными условиями труда сталкиваются рабочие на предприятиях горной и угольной промышленности, на металлургическом и абразивном производстве, в электроэнергетике, в нефтяной и химической промышленности.

Государство предусмотрело, что люди, работающие на вредных производствах, обеспечиваются льготами и компенсациями.

Компенсация за вредные условия труда и ее размер устанавливаются на основании статей Трудового кодекса, коллективного договора или иных внутренних документов предприятия.

Законодательно предусмотрено, что люди, работающие в опасных условиях, могут получать такие гарантии и компенсации:

- уменьшение количества рабочих часов (36 часов в неделю и меньше),
- оплачиваемый отпуск, являющемся дополнительным и предоставляемым каждый год (не меньше 7 календарных дней),
- происходит рост оплаты труда (не меньше 4% от оклада),
- льготы для пенсионного обеспечения,
- бесплатное лечение и оздоровление,
- выдача расходных материалов спецодежды, обеззараживающих средств.

Не вызывает сомнений факт, что условия труда, сложившиеся в нефтяной и газовой промышленности, являются причиной высокой профессиональной заболеваемости, а также могут являться косвенной причиной производственных травм и увечий. Правильное моделирование производственных ситуаций, направленное на снижения влияния опасных и вредных факторов в процессе бурения, позволит кратно улучшить условия труда в буровой отрасли.

Нормативно-правовые акты в области обеспечения охраны труда и промышленной безопасности представлены в таблице 5.10

Таблица 5.10 - Нормативно-правовые акты

Номер	Требования безопасности				
1	2				
ПБ 08-624-03	Правила безопасности в нефтяной и газовой промышленности				
ПБ 08-37-93	Правила безопасности при геологоразведочных работах				
ПУЭ от 1.01.03	Правила устройства электроустановок				
ГОСТ 12.0.003 - 74	Опасные и вредные производственные факторы. Классификация				
ГОСТ 12.1.007-76	Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности				
ГОСТ 12.1.003-83	Шум. Общие требования безопасности				
ГОСТ 12.1.012-90	ССБТ. Вибрационная безопасность. Общие требования				
ГОСТ 12.1.029-80	Система стандартов безопасности труда. Средства и методы защиты от шума. Классификация				
ГОСТ 12.1.004-91	Система стандартов безопасности труда. Пожарная безопасность. Общие требования				
ГОСТ 12.1.044-89	Пожаровзрывоопасность веществ и материалов				
СНиП 2.09.04-87	Административные и бытовые здания				
СНиП 23-05-95	Естественное и искусственное освещение				
CH 2.2.4/2.1.8.562-96	Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки				
CH 2.2.4/2.1.8.566-96	Производственная вибрация, вибрация в помещениях жилых и общественных зданий				

ЗАКЛЮЧЕНИЕ

В ходе выполнения дипломной работы приведены расчеты и обоснования по всем вопросам, поставленным в техническом задании.

Приведены развернутые географо-экономические характеристики района работ, характеристики нефтеносности и водоносности месторождения, геологические условия разреза.

В технологической части проекта обоснован выбор турбинного способа бурения, рассчитан пяти интервальный профиль ствола скважины, выбрана конструкция эксплуатационного забоя. Далее обоснование выбора одноколонной конструкции скважины, рассчитаны глубины спуска и диаметры обсадных колонн, обоснованы высоты подъема тампонажных растворов. Разработаны режимы бурения для всех интервалов: приведено обоснование класса и типоразмера долот, расчет осевой нагрузки на долото, расчет частоты вращения долота. Осуществлен выбор забойных двигателей для всех интервалов. Спроектированы компоновки низа бурильной колонны и выполнен расчет бурильной колонны. Обоснован тип очистного агента и расчет его необходимого расхода, приведена рецептура бурового раствора, произведен гидравлический расчет промывки скважины, критериев рациональной обоснование отработки Спроектирована конструкция обсадных колонн из условия прочности по длине, приведен расчет параметров цементирования, обоснована технология крепления и цементирования. Подробно освещен вопрос освоения скважины. Произведен выбор буровой установки и расчет её параметров эксплуатации.

В разделе «Социальная ответственность» описаны вопросы безопасности жизнедеятельности и конкретно безопасности в рабочей зоне, действия при чрезвычайных ситуациях; по охране окружающей среды, приведены мероприятия по снижению вредного воздействия от производства.

В разделе «Финансовый менеджмент» описаны структура и организационные формы работы предприятия СФ АО «ССК», проведен анализ ТЭП и баланса рабочего времени, предложен план организационно-экономических мероприятий по повышению ТЭП, определена нормативная продолжительность строительства скважины.

В специальной части проекта проведен анализ методов борьбы с заколонными перетоками.

Список использованных источников

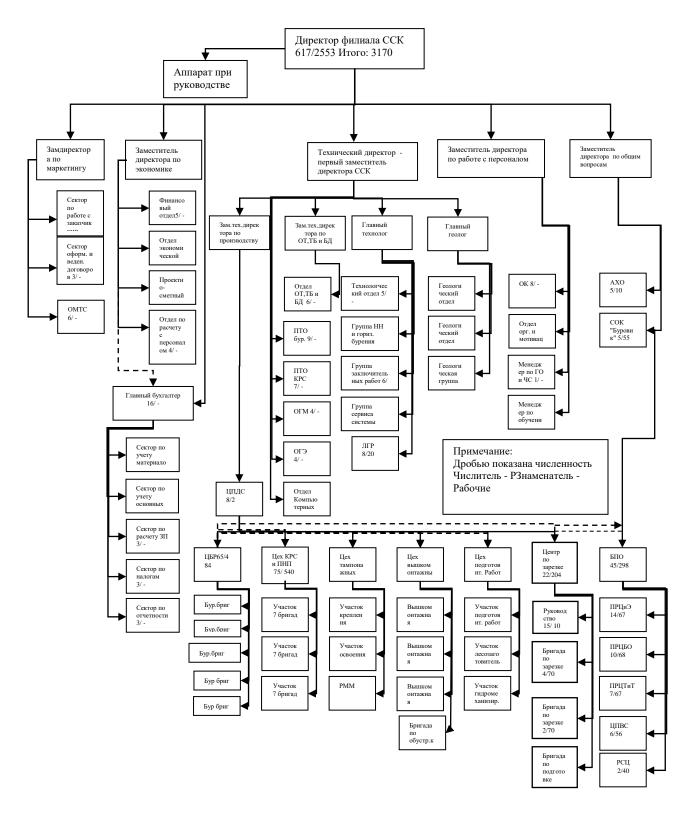
- 1. Иогансен К.В. Спутник буровика: Справочник М.: Недра, 1986. 294 с.
- 2. Рязанов В.И. Направленное бурение глубоких скважин: Практическое пособие. Томск: Изд. ТПУ, 1999. 84 с.
- 3. Правила безопасности в нефтяной и газовой промышленности. М: Госгортехнадзор, 1998. 160 с.
- 4. Рязанов В.И., Баранов А.Н., Борисов К.И. Расчет бурильных колонн: Учебное пособие. Томск: Изд. ТПУ, 1996. 68 с.
- 5. Калинин А.Г., Левицкий А.З., Соловьев Н.В. Практическое руководство по технологии бурения скважин на жидкие и полезные ископаемые: Справочное пособие/Под ред. А.Г. Калинина. М.: ООО «Недра Бизнесцентр», 2001-450 с.
- 6. Середа Н.Г., Соловьев Е.М. Бурение нефтяных и газовых скважин: Учебник для вузов. 2-е изд., перераб. и доп. М.: Недра, 1988. 360 с.
- 7. Леонов Е.Г., Исаев В.И. Гидроаэромеханика в бурении. М: Недра, 1987. 340 с.
- 8. Инструкция по расчету обсадных колонн для нефтяных и газовых скважин. М: ВНИИТнефть 1997 194с.
- 9. Лукьянов В.Т., Воевода Р.Б. Заканчивание скважин. М.: Недра, 1987.-205c.
- 10. Данюшевский В.С. Алиев Б.Г. Справочное руководство по тампонажным материалам. Томск: Изд. ТПУ, 1987 68с.
- 11. Булатов А.И. Аветистов А.Г. Справочник инженера по бурению: В 4 кн. М.: Недра, 1995.
- 12. Инструкция по технологии вызова притока из пласта пенами с использованием эжекторов. М.: ВНИИТнефть, 1985. 163 с.
 - 13. Соловьёв Е.М. Заканчивание скважин. М.: Недра, 1979. 303 с.
- 14. Ясов В.Г., Мыслюк М.А. Осложнения в бурении: Справочное пособие. М.: Недра, 1991.-333 с.
- 15. Денисов П.Г. Сооружение буровых: Учебник для учащихся профтехобразования и рабочих на производстве. М.: Недра, 1989. 397 с.
 - 16. Ширков А.И. Охрана труда в геологии. М.: Недра, 1990. 235 с.
- 17. Охрана окружающей среды / Под ред. Брылова С.А. — М.: Высшая школа, 1985. — 272 с.
- 18.ПБ 10 14 92 «Правила устройства и безопасной эксплуатации грузоподьемных кранов» М.: Госгортехнадзор, 1992.

Приложение А. Сметный расчет 1.

Вышкомонтажные работы, строительство артезианской скважины,

обустройство куста и т.д.

	обустроис			ЗАО СФ «ССК»			
				ЗАО СФ «ССК»			
				Стоимость в руб. с НДС		ПС	
			Кол-	Стоимо	Ств в руб. с т	1м	
п/н	Наименование операций	Ед.изм.	во	всего	1скв.	проходки.	
	Стоимость строительства скважины без ПЗР к ГРП (без мобилизации)	куст	1	214 750 574	23 861 175	9 177,37	
	Стоимость строительства скважины						
	без ПЗР к ГРП (с мобилизацией)	куст	-				
1	в том числе:		0	12.026.624.45	1 445 404	557	
1.	Вышкомонтажные работы, всего		9	13 026 634,47	1 447 404	557	
1.1	Монтаж БУ	операция	1	5 449 066			
	Первичный монтаж БУ Пповторный монтаж БУ			5 440 077			
1.2	•		7	5 449 066 5 417 608	772 044	222	
1.2	Передвижка 5м.	операция	7	5 417 608	773 944	232	
1.3	Передвижка 15 м	операция	1	1 047 946	1 047 946	45	
1.4	Откатка БУ на 25м	операция	1	1 112 014	1 112 014	48	
1.5	Демонтаж БУ.	операция	1				
2.	Бурение, всего	руб		174 175 109	19 352 790	7 443,38	
	в том числе						
	Бурение скв. ф колонны 146мм,						
2.1	глубина 2600 м (с учетом ГФР, техн. сопровождения)	CICD	9	114 791 530	12 754 614	4 906	
2.1	Крепление (с учетом использования	СКВ	7	114 /91 330	12 /34 014	4 900	
2.1.1	СКЦ)	скв	9	42 335 960	4 703 996	1 809	
2.1.2	Освоение скв. (без ПЗР к ГРП)	скв	9	17 047 619	1 894 180	729	
3.	Стр-во арт. скважины	скв	1	1 137 270	126 363	49,0	
4.	Обустройство куста			8 155 000,00	906 111	349	
	в том числе:						
4.1	Обвязка скважин	шт.	9	1 600 000	177 778	68	
4.2	Замерная установка (ЗУ)	шт.	1	360 000	40 000	15	
4.3	Блок гребенки (БГ)	шт.	1	155 000	17 222	7	
4.4	Блок дозирования реагентов (БДР)		1	100.000	11 111	4	
4.4	(БРХ)	шт.	1	100 000	11 111	4	
4.5	Емкость подземная (ЕП)	шт.	1	350 000	38 889	15	
4.6	Прожекторная мачта	шт.	2	400 000	44 444	17	
4.7	Выкидные линии д 114х5 мм	МΠ	435	870 000	96 667	37	
4.8	Кабельная эстакада	МΠ	150	1 200 000	133 333	51	
4.9	Сети электрические	комплекс	1	1 100 000	122 222	47	
4.10	Автоматика, телемеханика	шт.			0	0	
4.11	Пром-ливневая канализация				0	0	
4.11.1	Сети канализации, стальная труба д 219х6 мм	МП	70	450 000	50 000	19	
4.11.2	Дренажная емкость	шт.	2	720 000	80 000	31	
4.11.3	Дренажный колодец	шт.	4	400 000	44 444	17	
4.11.4	Водоотводной лоток	M	65	450 000	50 000	19	


				ЗАО СФ «ССК» Стоимость в руб. с НДС		
						ІДС
			Кол-			1м
п/н	Наименование операций	Ед.изм.	ВО	всего	1скв.	проходки.
5.	Заключительные работы	м3	1630	1 223 000	135 889	52,0
	в том числе:					
5.1	Объем грунта	м3	1630	1 000 000		
5.2	Дальность возки	KM	20			
5.3	Площадка под агрегаты для ПРС	м2	1440	223 000		
6.	Рекультивация			4 500 000,00	500 000	192,0
	в том числе:					
6.1	Объем грунта	м3	5385	4 500 000		
6.2	Дальность возки	КМ	1			
7.	Прочие затраты, всего			12 533 561	1 392 618	536
	в том числе:					
	Бухсправка (авиация, содерж. общеж.,					
7.1	столов., связь)	руб		8 808 152	978 684	376
7.2	Экологические выплаты	руб		2 551 264	283 474	109
7.3	Отстой тампонажной техники	руб		1 174 145	130 461	50
7.3	Вывоз шлама	тонн				
7.4	Комплектация БУ	руб				
8.	Мобилизация					
	в том числе:					
	Мобилизация БУ	руб				
	Мобилизация бригадного хоз-ва	руб				

Приложение Б. Сметный расчет. Бурение скважины на Средне-Нюрольском месторождении.

Статьи затрат		іствующих цен	
	кол-во	цена	сумма
1.Заработная плата:			1 736 036
буровой бригады	32	29 700	1 013 558
содержание бур.обор.и бур. труб	17	22 000	395 149
эксплуатация котельной	9	18 700	167 938
бриг. освоения	16	29 700	159 390
1.1.Социальные налоги			463 522
2.Амортизация:			820 781
амортизация бур.оборудования			
2а.Капремонт бур.оборудования			171 994
3.Электроэнергия			397 432
Аварийная станция АСДА-200 (топливо)			70 392
подключенная мощность			
плата за электроэнергию			327 040
4.Материалы:			3 732 555
Материалы и запчасти			302 285
Содержание бур.оборудования			74 145
Содержание бур.труб			1 718
Эксплуатация котельной			633 852
Износ бурильных труб			318 969
Долота:			1 235 500
III 393,7-СЦВ	0,50	75 000	37 500
III 295,3 СЗ-ГВ	6,00	129 000	774 000
215.9 БИТ 5М	1,00	286 000	286 000
III 215,9 M3-ГВ	2,00	69 000	138 000
Материалы для бурения и крепл:.			225 366
Башмак колонный БК-324	1	5 700	5 700
Башмак колонный БК-245	1	4 700	4 700
Башмак колонный БК-146	1	2 060	2 060
Обратный клапан ЦКОД-324	1	13 130	13 130
Обратный клапан ЦКОД-245-2	1	11 350	11 350
Обратный клапан ЦКОД-146-1	1	4 570	4 570
Пробка разделительная ПП -394	1	3 960	3 960
Пробка разделительная ПП -219*245	1	3 300	3 300
Пробка разделительная ПП -146*168	1	1 980	1 980
Центратор ЦЦ-245/295-320-1	37	1 345	49 765
Центратор ЦЦ-146/191-216-1	24	771	18 504
Центратор ЦТГ-146/290	10	5 820	58 200
Скребок корончатый СК146/190	25	601	15 025
Смазка графитовая ГС-1	0,10	22 374	2 237
Смазка Р-402	0,052	111 240	5 784
Кассета с сеткой вибросит 2	1,000	2 720	2 720
Кассета с сеткой вибросит 0,9	2,000	2 720	5 440
Кассета с сеткой вибросит 0,55	2,000	2 770	5 540
Кассета с сеткой вибросит 0,25	2,000	2 850	5 700
Кассета с сеткой вибросит 0,15	2,000	2 850	5 700

Статьи затрат	в действующих ценах				
	кол-во	цена	сумма		
Химреагенты:			940 720		
Глинопорошок	32,00	2 608	83 456		
Глинопорошок (доп. запас)	5,56	2 608	14 489		
сайпан	0,587	175 656	103 040		
сайпан (доп. запас)	0,022	175 656	3 903		
Полипак	0,720	196 140	141 221		
Полипак (доп. запас)	0,090	196 140	17 653		
НТФ	0,083	96 987	8 050		
ФК-2000	3,035	32 804	99 560		
ФК-2000 (доп. запас)	0,111	32 804	3 645		
Сода кальцинированная	0,250	8 050	2 013		
Сода кальцинированная (доп. запас)	0,011	8 050	89		
Сода каустическая	0,038	15 420	586		
ТПФН	0,035	26 800	927		
Пластификатор С-3	0,070	34 320	2 402		
Пента-465	0,019	165 247	3 140		
CaCL	0,250	15 910	3 978		
СНПХ-ПКД	0,200	39 899	7 980		
Тилоза	0,200	356 738	71 348		
КМЦ80/800	1,120	38 645	43 283		
ДР-100	7,000	21 945	153 615		
АСПМ	5,000	7 700	38 500		
Нефть (аварийный запас на куст)	1,911	6 630	12 670		
ПКД СНПХ-515 осв	0,090	167 292	15 056		
Соль (натрий хлористый) осв	10,600	6 966	73 841		
Обсадная труба	10,000	0,00	4 933 026		
245х8,9, м	753		1,000,020		
Масса, т	42	34 000	1 426 287		
168х8,9, м	2 757		- 1-1-1-1		
Масса, т	103	34 000	3 506 739		
5.Тампонажные работы			1 201 733		
6.Прокат турбобуров			622 761		
7.Транспорт			1 251 823		
8.Геофизические работы			1 085 550		
9. Эксплуатация А-50			147 991		
10. Содержание лаборатории			184 140		
ИТОГО:			16 749 344		
Накладные расходы	16,2%		2 713 394		
С накладными расходами			19 462 738		
11. Технологическое сопровождение			876 000		
12.Контроль за газовым фактором					
(газокаротажная станция)			300 000		
13. Платежи по экологии			0		
14.Отбор керна (услуги)			128 889		
С плановыми накоплениями 8%	8%		22 429 037		
С непредвиденными затратами 1%	1%		22 653 327		
Итого стоимость скважины			22 653 327		
Итого стоимость скважины с НДС			26 730 926,12		

Приложение Г. Организационная структура Стрежевского филиала АО "Сибирская Сервисная Компания"

