УДК 552.2+550.4(571.513)

УСЛОВИЯ ФОРМИРОВАНИЯ ДЕВОНСКИХ БАЗАЛЬТОВ ИДОЛЕРИТОВ ШИРА-ШУНЕТСКОГО РАЙОНА МИНУСИНСКОГО ПРОГИБА

А.А. Воронцов, Г.С. Федосеев*

Институт геохимии им. А.П. Виноградова СО РАН, г. Иркутск E-mail: voron@igc.irk.ru *Новосибирский государственный университет *Институт геологии и минералогии им. В.С. Соболева СО РАН, г. Новосибирск E-mail: fedoseev@igm.nsc.ru

Приведены данные о строении Шира-Шунетского района Чебаково-Балахтинской впадины Минусинского прогиба и рассмотрены геохимические и Sr-Nd изотопные особенности базитов. Установлено, что по содержанию петрогенных и редких литофильных элементов разнофациальные базиты близки между собою, что свидетельствует об их происхождении из общего магматического источника. Показано, что состав источника обладает промежуточными характеристиками между составами внутриплитных источников типа OIB и источников типа IAB, обычных для магматизма конвергентных границ литосферных плит.

Ключевые слова:

Девонский магматизм, Минусинский прогиб, базальт, долерит, магматические источники. *Key words:*

Devonian magmatism, Minusinsk trough, basalt, dolerite, magmatic sources.

Введение

В эволюции литосферы юго-западного складчатого обрамления Сибирской платформы важную роль сыграла девонская эпоха, поскольку в это время происходили масштабные магматические события, сопряженные с развитием многочисленных континентальных рифтов. Одним из таких рифтов является Минусинский прогиб, охватывающий территорию площадью более 50 тыс. км² между горными сооружениями Кузнецкого Алатау, Западного и Восточного Саян. Прогиб заполнен вулканогенно-осадочными комплексами, в которых широко распространены девонские магматические породы основного состава (базиты) быскарской серии, формирующие тела пластовой формы.

Установление генезиса базитов связано с двумя проблемами: определением фациальной природы пластовых тел и вещественного состава их магматических источников. Очевидно, что пластовые тела базитов представлены как покровными базальтами, так и долеритовыми силлами [1]. Однако количественные соотношения между покровами и силлами не установлены, поскольку эти образования обладают неотличительными (конвергентными) геологическими признаками [2]. В то же время, в ряде районов наличие долеритовых силлов не вызывает сомнений: заливы Сисимский, Усть-Коксинский, Убейский и Черемшанский, Копьевское и Новоселовское поднятия, район поселка Старый Борец и горы Карагай (рис. 1). К числу таких объектов относится также и Шира-Шунетский район с геологическими учебными полигонами четырех сибирских вузов – ТПУ, ТГУ, НГУ и ГУЦ-МИЗ. Этот район, на котором в течение полувека прошли практику десятки тысяч студентов, был выбран нами в качестве реперного объекта для геологической характеристики и оценки составов источников покровных базальтов и долеритовых силлов.

Геологическая и изотопно-геохимическая характеристики базальтов и долеритов

Шира-Шунетский район находится в юго-западной части Чебаково-Балахтинской впадины и включает в себя Ширинско-Марченгашский и Шунет-Матаракский участки (рис. 1).

На Ширинско-Марченгашском участке разрез раннедевонских отложений начинается сохочульской свитой, залегающей на гранитоидах уленьтуимского комплекса (рис. 2, *a*). В составе свиты преобладают трахиандезитовые лавобрекчии и туфоконгломераты, перекрытые пачкой чередующихся туфов и туфолав среднего состава с редкими прослоями туфогравелитов, туфопесчаников и алевролитов. В нижней части имеется пластовое тело крупнопорфировых долеритов [3]. Среди отложений верхней части свиты отмечены послойные тела трахириодацитов, базальтов и трахибазальтов, а также силлы и мелкие штоки долеритов.

Вышезалегающая придорожная свита состоит из трех пачек. Нижняя представлена пестроцветными конгломератами, песчаниками и алевролитами с флорой, кремнистыми туффитами, пепловыми и гравийными туфами, строматолитовыми известняками. В составе средней пачки участвуют строматолитовые известняки, красноцветные песчаники и долеритовые силлы. В верхней пачке распространены пестроцветные алевролиты, аргиллиты и песчаники, красноцветные гравийные туфы, окремненные известняки с флорой, базальтовые лавобрекчии с пиробитумами, выполняющими миндалины и прожилки. Марченгашская свита, залегающая с предполагаемым скрытым несогласием на придорожной, является в известном смысле уникальной для данного региона. В состав этой свиты включены базальты, андезитобазальты и трахибазальты, содержащие прослои и линзы красноцветных песчаников с флорой, гра-

Рис. 1. Положение участков с установленными силлами в Минусинском прогибе. 1,2) мульды и брахисинклинали, выполненные мезозойскими и позднепалеозойскими отложениями: 1) триасовыми и юрскими, 2) каменноугольными и пермскими; 3−4) девонские комплексы: 3) осадочный (D_{2gv}-D_{3fm}); 4) осадочно-вулканогенный (D₁-D_{2ef}); 5) выходы нижнепалеозойско-протерозойского фундамента на дневную поверхность; 6) участки изучения девонских магматических ассоциаций (1 – Ширинско-Марченгашский, 2 – Шунет-Матаракский); 7) разломы. Впадины Минусинского прогиба: НВ – Назаровская, ЧБВ – Чебаково-Балахтинская, СЕВ – Сыдо-Ербинская, МВ – Минусинская. Прогибы: КП – Кузнецкий, АП – Агульский. КВ – Красноярское водохранилище. Прямоугольником обозначена территория с учебными полигонами вузов Сибири, белыми окружностями – участки с базитовыми силлами

велитов и конгломератов. По всему разрезу свиты, несогласно перекрывающейся (за пределами участка) мергелями сарагашской свиты, закартированы многочисленные мелкие силлы и штоки долеритов (рис. 2, δ).

В геологическом строении Шунет-Матаракского участка принимают участие отложения (снизу вверх) имирской, матаракской, шунетской и арамчакской свит или толщ, составляющих быскарскую серию, несогласно залегающую на сложнодислоцированных кембрийских известняках (рис. 3).

К имирской свите (стратотип находится в районе г. Большой Имир) нами отнесены литокластиче-

ские туфы кисло-среднего состава, среди которых располагаются потоки трахириодацитов и трахиандезитов, а также маломощные силлы крупнопорфировых долеритов. Такие силлы закартированы на южном склоне г. Плоской, в районе Родничка и в основании склона г. Поклонной. Разрез красноцветной матаракской свиты начинается с валунных туфоконгломератов и наращивается разнозернистыми терригенными отложениями, содержащими прослои туфов трахиандезитового и трахириодацитового состава. В средней части свиты имеется горизонт (12 м) диамиктитовых брекчий, позволяющий подразделять ее на две подсвиты.

Рис. 2. Схемы геологического строения Ширинско-Марченгашского участка (а) и размещения долеритовых силлов (б) (по [3], с упрощением). Для (а): 1) терригенные отложения (D_{2gy}-D_{3tm}); 2-5) отложения (D₁-D_{2et}): 2) песчаники, алевролиты, гравелиты, 3) песчаники и конгломераты с редкими покровами базальтов, 4) базальты, андезибазальты, трахиты, трахидациты, их туфы и лавобрекчии, 5) силлы мелкозернистых (а) и крупнопорфировых (б) долеритов; 6) туфы и туфобрекчии имирской свиты; 7) додевонский фундамент (гранитоиды О, известняки €); 8) элементы залегания; 9) геологические границы; 10) тектонические нарушения, 11) точки отбора проб. Прямоугольник – площадь детальной съемки геологами ТГУ и ТПУ. Для (б): 1) четвертичные отложения; 2,3) марченгашская свита: 2) базальты и андезибазальты, 3) красноцветные песчаники, гравелиты, конгломераты; 4,5) придорожная свита: 4) песчаники; 5) конгломераты; 6) вулканиты сохочульской толщи; 7) силлы и штоки долеритов; 8) гранитоиды уленьтуимского комплекса; 9,10) разрывные нарушения и геологические границы: а – прослеженные, б – условные (отсутствующие на оригинальной схеме в [3])

Рис. 3. Схема геологического строения Шунет-Матаракского участка. Условные обозначения см. рис. 2, а

Нижняя подсвита обильно насыщена многочисленными силлами мелкопорфировых и афировых долеритов кузьменского комплекса. Шунетская свита сложена зеленовато-серыми известковыми алевролитами с мелкощебенчатой отдельностью. Монотонность ее строения нарушена горизонтами песчаников (нижняя часть), мергелей (средняя часть) и пестроцветных алевролитов и песчаников (верхняя часть). Границы свиты являются условными и устанавливаются по смене окраски пород. В разных частях свиты картируется от двух до четырех долеритовых силлов кузьменского комплекса, верхние эндоконтактовые зоны которых сложены миндалекаменными разностями базальтов. Мощность зон достигает 2 м. Миндалины выпол-

нены кальцитом, реже пренитом, иногда — керитом. Арамчакская свита представлена преимущественно красноцветными терригенными псефитами с незначительным участием вулканогенных пород. Отложения быскарской серии дислоцированы и эродированы, поражены несколькими разломами и перекрыты средне-верхнедевонскими отложениями сарагашской, бейской и ойдановской свит.

Таким образом, последовательность формирования нижнедевонских отложений на Ширинско-Марченгашском участке в целом аналогична Шунет-Матаракской, но резкая фациальная изменчивость пород затрудняет их корреляцию. Однако принципиально важным является то, что марчен-

Таблица 1. Содержания петрогенных (мас. %), редких и редкоземельных элементов (г/т) в базитах Шира-Шунетского района

Компоненты	ширинско-тиарченгашский участок			шунет-тиатаракский участок						
	ШИР 1/4	ШИР 1/6	ШИР 1/7	ШИР 2/1	K3M 1/1	K3M 1/2	ШНТ 1/1	MTP 1/2	MTP 2/1	MTP 3/1
SiO ₂	47,21	46,63	48,50	46,55	47,46	47,24	48,75	46,62	46,85	47,59
TiO ₂	1,62	1,96	1,66	1,62	1,49	1,51	1,30	1,31	1,20	1,44
Al ₂ O ₃	15,82	16,57	17,96	15,27	15,67	15,95	16,40	16,07	15,84	15,53
Fe ₂ O _{3 of}	10,56	12,05	10,38	10,90	10,19	10,65	9,70	11,57	10,89	10,70
MnO	0,16	0,18	0,15	0,17	0,17	0,17	0,18	0,18	0,17	0,17
MgO	7,82	4,97	5,42	8,41	7,01	7,11	5,77	7,55	7,97	7,51
CaO	9,12	8,50	7,71	8,82	8,42	8,44	7,36	9,39	9,55	8,66
Na ₂ O	4,04	3,56	4,42	4,29	4,48	4,55	4,76	3,42	3,16	4,31
K ₂ O	1,15	1,80	1,08	0,84	0,95	1,29	1,44	0,89	0,89	1,18
P ₂ O ₅	0,57	0,66	0,42	0,56	0,62	0,62	0,66	0,44	0,45	0,51
n.n.n.	2,04	3,14	2,27	2,77	3,22	2,48	3,79	2,63	3,01	2,33
Сумма	100,28	100,33	100,12	100,31	99,84	100,17	100,29	100,20	100,14	100,10
Rb	18,0	22,6	15,4	10,0	7,6	24,1	21,3	10,6	17,3	20,3
Ва	530	1458	1055	284	1869	519	780	368	414	621
Sr	1011	1578	779	594	992	863	1074	772	1100	972
Zr	295	301	216	217	250	195	307	162	168	177
Nb	17,8	17,8	9,6	11,3	15,8	14,9	21,2	10,4	11,5	10,6
Hf	5,5	5,9	4,3	4,2	4,6	4,4	5,8	3,4	3,5	3,8
Та	1,1	1,2	0,7	0,8	0,9	0,7	1,3	0,8	0,6	0,6
Y	29,4	34,0	23,3	23,1	28,1	30,0	28,9	22,9	26,3	28,4
Th	3,0	2,7	2,9	1,9	2,9	2,9	4,1	3,1	2,8	1,8
U	1,38	0,99	1,20	0,90	1,42	1,26	1,75	1,02	1,07	1,05
La	37,86	40,90	25,81	25,89	37,36	39,85	55,20	30,91	30,27	29,06
Ce	84,7	91,3	57,1	59,4	83,4	78,5	112,7	65,0	73,0	67,6
Pr	9,7	11,0	7,1	7,4	9,6	9,6	12,4	8,1	7,5	7,5
Nd	42,0	48,4	31,7	32,3	40,9	38,7	51,3	34,9	30,4	32,5
Sm	8,09	9,52	6,54	6,60	8,00	7,34	9,15	6,64	6,19	6,51
Eu	2,42	2,81	2,05	2,02	2,30	2,13	2,43	1,89	2,13	2,27
Gd	7,92	8,78	6,14	6,24	7,59	7,32	8,27	5,98	5,57	6,26
Tb	1,09	1,26	0,86	0,88	1,03	0,94	1,07	0,83	0,70	0,83
Dy	6,47	7,58	5,22	5,22	6,15	5,29	6,44	5,35	4,77	5,02
Но	1,26	1,48	1,04	1,04	1,23	1,18	1,24	1,07	0,84	0,96
Er	3,90	4,58	3,02	3,15	3,49	3,07	3,56	2,97	2,59	2,74
Tm	0,51	0,59	0,42	0,39	0,49	0,45	0,50	0,42	0,38	0,41
Yb	3,30	3,69	2,63	2,50	3,17	2,79	3,34	2,60	2,61	2,69
Lu	0,51	0,58	0,41	0,39	0,50	0,41	0,51	0,40	0,36	0,42

Примечание: Петрогенные элементы определены рентгено-флуоресцентным методом в ИГХ СО РАН, микроэлементы – методом ICP-MS в Аналитическом центре коллективного пользования ИНЦ СО РАН (пробоподготовка: сплавление с метаборатом лития). Fe₂O₃₀₆ представляет суммарное железо. ШИР 1/4, 6 и 7 – покровные базальты марченгашской свиты; долериты кузьменского комплекса: ШИР 2/1 – силл Переездный, КЗМ 1/1 и 1/2 – Кузьменский силл, ШНТ 1/1 – Шунетский силл, МТР 1/2, 2/1 и 3/1 – Матаракские силлы 1,2 и 3.

Рис. 4. График распределения редких и редкоземельных элементов в породах Шира-Шунетского района. Нормировано по [6], OIB по [6], IAB по [5]

гашская и шунетская свиты в максимальной степени насыщены долеритовыми силами, но различаются по составу матрицы, в которой размещаются силлы. В первом случае такой матрицей являются эффузивные базиты, содержащие красноцветные песчаники и со скрытым несогласием залегающие на отложениях придорожной свиты, а во втором зеленоцветные известковые алевролиты, согласно залегающие с матаракскими породами. По обилию силлов марченгашская свита резко превосходит шунетскую, в которой нами не встречено долеритовых даек и штоков. Следует отметить, что на обоих участках развиты одинаковые породы базитового ряда — субщелочные базальты, андезибазальты, мелкозернистые и крупнопорфировые долериты.

Субщелочные базальты обладают порфировой и афировой структурами. Вкрапленники в них представлены оливином, слаботитанистым авгитом и плагиоклазом (An₅₀₋₇₀). Основная масса характеризуется гиалопилитовой, реже витрофировой структурой и сложена девитрифицированным стеклом, в котором различимы мелкие зерна клинопироксена, плагиоклаза, магнетита и апатита. Породы, как правило, изменены. Плагиоклаз соссюритизирован, авгит замещен хлоритом, по оливину развиты серпентин, тальк, хлорит и вторичный магнетит. В субщелочных долеритах присутствуют те же породообразующие и акцессорные минералы, что и в базальтах, но в сочетании с единичными чешуйками бледноокрашенного биотита.

Мелкозернистые разности обладают долеритовой структурой, в эндоконтактовых зонах силлов развиты стекловатые и миндалекаменные разности базальтов. Крупнопорфировые долериты характеризуются порфировидной структурой, их отличительной особенностью является наличие (от 15 до 50 об. %) лабрадоровых табличек размером от 1 до 4 см по длинной стороне. Светло-серый лабрадор контрастирует с буровато-черной основной массой и часто формирует трахитоидную текстуру, что позволяет безошибочно определять эти породы визуально в полевых условиях. Для долеритов эндоконтактовых зон характерны миндалины, выполненные одним или несколькими из следующих минералов: кальцитом, цеолитами, халцедоном, хлоритом и пренитом.

По химическому и редкоземельно-элементному составу все рассматриваемые породы достаточно близки (рис. 4). Анализ таблицы 1 показывает, что они принадлежат умереннотитанистой (TiO₂ от 1,20 до 1,96 мас. %) субщелочной калиево-натриевой (4>Na₂O/K₂O>1) серии. Обращает на себя отсутствие значимых различий между покровными базальтами и долеритовыми силлами по уровню содержаний всех петрогенных элементов.

Рис. 5. Изотопный состав стронция и неодима в базальтах и долеритах Шира-Шунетского района на диаграмме εSr(T) – εNd(T), где T=390 млн л

Породы разных фаций глубинности проявляют удивительное сходство по концентрациям редких литофильных элементов. Они, также как и базальты Копьевского и Новоселовского поднятий Чебаково-Балахтинской впадины [4], близки по составу к внутриплитовым субщелочным базальтам типа OIB (рис. 4). В то же время, по сравнению с OIB они обеднены высокозарядными некогерентными элементами Nb, Ta, Zr, Hf, Ti и обогащены Ba, Sr и тяжелыми редкими землями. Подобные характеристики типичны для магматических серий активных континентальных окраин и островных дуг [5].

Таблица 2. Изотопный состав Sr и Nd в базитах Шира-Шунетского района

Параметр	Базальт	Долериты				
Параметр	ШИР 1/4	K3M 1/1	ШНТ 1/1			
$^{ m ^{87}Sr/^{86}Sr\pm 2\sigma}$	0,704389±11	0,704783±16	0,705174±16			
ε Sr(390)	-3,7	1,9	7,5			
$^{143}\text{Nd}/^{144}\text{Nd}\pm 2\sigma$	0,512669±8	0,512655±9	0,512571±6			
€ Nd(390)	4,6	4,3	3,1			

Изотопные параметры базитов, характеризующие состав магматических источников, представлены в таблице 2 и на графике $\varepsilon Sr(T) - \varepsilon Nd(T)$ (рис. 5). Точки составов базальта и долеритов группируются в линейно вытянутый тренд, отклоняющийся от мантийного ряда океанических пород.

СПИСОК ЛИТЕРАТУРЫ

- Лучицкий И.В. Вулканизм и тектоника девонских впадин Минусинского межгорного прогиба. – М.: Изд-во АН СССР. 1960. – 276 с.
- Федосеев Г.С. О масштабах базитового силлогенеза в северной части Алтае-Саянской складчатой области // Петрология магматических и метаморфических комплексов: Матер. II научн. конф. – Томск, 2001. – В. 2. – С. 181–186.
- Геология и полезные ископаемые Северной Хакасии (Путеводитель по учебному геологическому полигону вузов Сибири) // под ред. В.П. Парначева. – Томск: Изд-во Том. гос. унта, 1998. – 172 с.
- Воронцов А.А., Федосеев Г.С. Геохимические и Sr-Nd изотопные характеристики девонских базитов Копьевского и Новоселовского поднятий северной части Минусинского прогиба // Известия Томского политехнического университета. – 2010. – Т. 317. – № 1. – С. 92–97.

Подобное отклонение свидетельствует о том, что при формировании базитовых расплавов, происходило смешение источников с характеристиками горячих точек мантии типа PREMA, а также других источников с параметрами субстратов, обогащенных радиогенным стронцием. Такими субстратами могли быть как контаминированный литосферный материал (обогащен РЗЭ), так и карбонатный материал (обеднен РЗЭ), вовлеченный в надсубдукционную область магмообразования при доживесткой субдукции на юго-западной активной континентальной окраине Сибирского континента [7].

Выводы

Девонские вулканогенно-осадочные разрезы Шира-Шунетского района насыщены базитами: базальтами (покровы) и долеритами (силлы). Ширинско-Марченгашский и Шунет-Матаркский участки этого района различаются долей осадочной компоненты и характеризуются резкой фациальной изменчивостью пород. Базиты этих участков обладают близкими возрастными и вещественными параметрами, поэтому их следует относить к производным общего магматического источника. При его образовании происходило смешение расплавов, формирующихся одновременно над горячими точками мантии и в надсубдукционных условиях.

Работа выполнена при финансовой поддержке гранта РФФИ № 10-05-0055.

- Гриб Е. Н., Леонов В.Л., Перепелов А.Б. Геохимия вулканических пород Карымского вулканического центра // Вулканология и сейсмология. – 2009. – № 6. – С. 3–25.
- Sun S.S., McDonough W.F. Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes // Magmatism in the ocean basins. Geol. Soc. Spec. Publ. – 1989. – № 42. – P. 313–345.
- Воронцов А.А., Ярмолюк В.В., Федосеев Г.С., Никифоров А.В., Сандимирова Г.П. Изотопно-геохимическая зональность магматизма девонской Алтае-Саянской рифтовой области: к оценке состава и геодинамической природы мантийных магматических источников // Петрология. 2010. Т. 18. № 6. С. 45–58.

Поступила 29.03.2011 г.