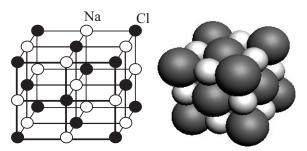
УДК 534.2:539

КОЭФФИЦИЕНТЫ ПУАССОНА ЩЕЛОЧНО-ГАЛОИДНЫХ КРИСТАЛЛОВ. Ч. І. ГАЛОГЕНИДЫ ЛИТИЯ

В.Н. Беломестных, Э.Г. Соболева

Юргинский технологический институт (филиал) ТПУ E-mail: sobolevaeno@mail.ru

Исследованы коэффициенты Пуассона кристаллов галогенидов лития при стандартных условиях и с изменением температуры. Установлено, что кристалл LiF имеет отрицательные значения коэффициентов Пуассона в направлениях (110, 110), (111) и в изотропном состоянии в интервалах соответственно от 260 K, 800 K, 1065 K до плавления.


Ключевые слова:

Коэффициент Пуассона, кристалл, упругие свойства.

Key words:

Poisson's ratio, crystal, elastic properties.

Упругие свойства щелочно-галоидных кристаллов сравнительно детально изучены [1] за исключением анизотропных коэффициентов Пуассона $\sigma_{(hk\ell)}$. Настоящей работой мы открываем серию публикаций по коэффициентам Пуассона этой важной группы ионных кристаллов исследованием $\sigma_{(hk\ell)}$ и σ (поликристалл) галогенидов лития. Галогениды лития с общей формулой LiX (где X-F, Cl, Br, I) представляют собой кристаллические вещества с кубической гранецентрированной решеткой типа NaCl (рис. 1). В табл. 1 приведены некоторые физические свойства галогенидов лития.

Рис. 1. Структура решетки кубических кристаллов типа NaCl [2]

Из приведенной таблицы видно, что кристалл LiF по сравнению с другими галогенидами лития обладает повышенной нецентральностью сил межатомного взаимодействия (Δ <<1). Анизотропия упругих свойств изучаемых кристаллов примерно одинакова и выше единицы.

Начиная с последней четверти прошлого века и по настоящее время мы являемся свидетелями все возрастающего интереса к одному из основных физико-механических параметров твердого тела, введенного С.Д. Пуассоном 200 лет назад и названного в его честь [4–6]. Коэффициент Пуассона служит относительной мерой поперечной деформации и наиболее информативным параметром теории упругости.

Коэффициенты Пуассона в особых кристаллографических направлениях (100), (110) и (111) кубических монокристаллов находили по известным соотношениям

$$\begin{split} \sigma_{\langle 100,001\rangle} &= \frac{c_{12}}{c_{11} + c_{12}}, \quad \sigma_{\langle 110,001\rangle} = \frac{2c_{12}}{c_{11} + 3Bc_s/c_{44}}, \\ \sigma_{\langle 110,1\overline{1}0\rangle} &= \frac{2Bc_s - c_{11}c_{44}}{3Bc_s + c_{11}c_{44}}, \quad \sigma_{\langle 111,111\rangle} = \frac{3B - 2c_{44}}{6B + 2c_{44}}, \end{split}$$
 где $B = \frac{1}{3}(c_{11} + 2c_{12}), \quad c_s = \frac{1}{2}(c_{11} - c_{12}).$

Таблица 1. Некоторые физические свойства галогенидов лития (300 K) [3]

Свойство	LiF	LiCl	LiBr	Lil
1. Плотность, 10 ³ кг/м ³	2,601	2,075	3,470	4,061
2. Период решетки, Å	4,0297	5,1398	5,501	6,012
3. Компоненты тензора упругой жесткости c_{ij} , ГПа c_{11}	106,77	49,40	39,40	28,50
C ₁₂ C ₄₄	39,38 63,33	22,60 24,90	18,70 17,30	14,00 13,50
4. Температура плавления, К	1122	883	823	742
5. Температура Дебая, К	701	398	244	166
6. Энергия решетки, кДж/моль	1010	841	798	742
7. Молярная теплоемкость при постоянном давлении, Дж/(моль·К)	41,8	48,0	49,8	51,0
8. Соотношение Коши $\Delta = c_{12}/c_{44}$	0,622	0,908	1,081	1,037
9. Фактор упругой анизотропии $A=2c_{44}/(c_{11}-c_{12})$	1,880	1,858	1,672	1,862

Для поиска средних значений коэффициента Пуассона σ (коэффициента Пуассона поликристаллов) использовали связь этого параметра с модулем объемной упругости (модулем всестороннего сжатия) B и модулем сдвига G:

$$\sigma = \frac{3B - 2G}{2(3B + G)}.$$

Модуль сдвига находили как среднее арифметическое значение из трех приближений — Фохт-Ройс-Хилла [7] $G_{\Phi PX}$, G. Peresada [8] G_{Per} и К.С. Александрова [9] G_{Ai} :

$$G = \frac{G_{\phi PX} + G_{Per} + G_{A\pi}}{3},$$

$$G_{\phi PX} = \frac{G_{\phi} + G_{P}}{2}, \quad G_{\phi} = \frac{1}{5}(c_{11} - c_{12} + 3c_{44}),$$

$$G_{P} = \frac{5c_{44}(c_{11} - c_{12})}{[4c_{44} + 3(c_{11} - c_{12})]},$$

$$G_{Per} = \left[\frac{1}{4}c_{44}^{3}(c_{11} - c_{12})^{2}\right]^{\frac{1}{5}},$$

$$G_{A\pi}^{3} + \frac{1}{8}(9B + 4c_{s})G_{A\pi}^{2} - \frac{3}{8}[(B + 4c_{s})c_{44}G_{A\pi} + 2Bc_{s}c_{44}] = 0.$$

В работе использовались справочные сведения по упругим постоянным монокристаллов галогенидов лития [7]. При этом диагональные компоненты матрицы постоянных жесткости c_{11} и c_{44} в современных условиях измеряются с высокой точностью (относительная погрешность десятые доли процента). Недиагональная компонента c_{12} не определяется непосредственно ни одним из известных методов, а ее значение получают как малую разность больших величин. Погрешность c_{12} составляет проценты и даже десятки процентов. В связи с этим

Рис. 2. Температурные изменения коэффициентов Пуассона кристалла LiX: 1) $\sigma_{(100)}$; 2) $\sigma_{(110,001)}$; 3) $\sigma_{(110,1\bar{10})}$; 4) $\sigma_{(111)}$; 5) σ (поликристалл)

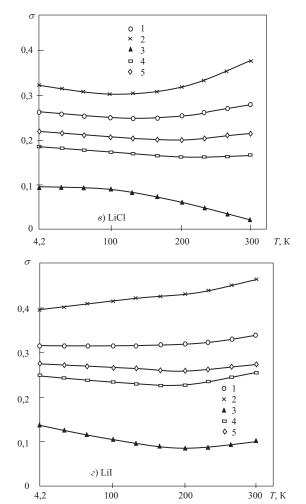

представленные в работе значения коэффициентов Пуассона как результат комбинаций постоянных жесткости c_{11} , c_{12} и c_{44} следует считать выполненными с погрешностью не хуже $\pm 10~\%$.

Таблица 2. Коэффициенты Пуассона и параметр Грюнайзена кристаллов галогенидов лития (300 K)

Кристалл	$\sigma_{\langle 100 \rangle}$	$\sigma_{\langle 110,001 \rangle}$	$\sigma_{\langle 110,1ar{1}0 angle}$	$\sigma_{\langle 111 \rangle}$	σ	γ
LiF	0,270	0,383	-0,039	0,118	0,185	1,271
LiCl	0,314	0,450	0,015	0,187	0,244	1,349
LiBr	0,322	0,438	0,077	0,224	0,267	1,544
Lil	0,329	0,476	0,031	0,211	0,264	1,617

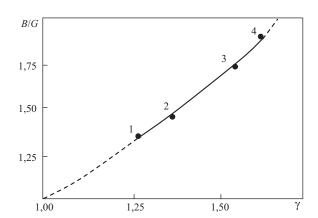
Значения коэффициентов Пуассона монои поликристаллов галогенидов лития при стандартных условиях (табл. 2) демонстрируют две закономерности:

- Коэффициенты Пуассона возрастают по ряду LiF→LiCl→LiBr→LiI (т. е. при переходе к более тяжелым галогенам).
- 2. Анизотропные коэффициенты Пуассона образуют неравенство $\sigma_{\langle 110,001\rangle} > \sigma_{\langle 100\rangle} > \sigma_{\langle 111\rangle} > \sigma_{\langle 110,1\bar{1}0\rangle}$. Среди минимальных коэффициентов Пуассона один имеет отрицательное значение (LiF, $\sigma_{\langle 110,1\bar{1}0\rangle} = -0,039$, кристалл обладает аномальными деформационными свойствами).

Известна взаимосвязь параметра Грюнайзена γ и коэффициента Пуассона σ [2]:

$$\gamma = \frac{3}{2} \left(\frac{1 + \sigma}{2 - 3\sigma} \right),$$

позволяющая оценить по значениям σ меру ангармонизма межатомных колебаний и нелинейности сил межатомных взаимодействий. Как видно из табл. 2, эта мера является типичной для ионных кристаллов и закономерно возрастает от LiF к LiI.


Температурные зависимости коэффициентов Пуассона кристаллов LiX представлены на рис. 2. Рис. 2, а, демонстрирует примерно одинаковый характер температурных изменений для всех пяти коэффициентов Пуассона кристалла LiF – плавное слегка нелинейное вначале увеличение сменяется уменьшением с ростом температуры, скорость которого возрастает в области предплавления. Значения трех коэффициентов Пуассона — $\sigma_{(110,1\bar{1}0)}$, $\sigma_{(111)}$, σ — при повышении температуры последовательно переходят из положительной области в отрицательную соответственно при температурах 260, 800 и 1065 К. Таким образом, обнаружен замечательный факт: кристалл LiF в состоянии предплавления становится ауксетиком (при продольном растяжении/сжатии он аномально расширяется/сужается в перпендикулярном направлении).

Для других галогенидов лития (рис. 2, δ – ϵ) температурные изменения коэффициентов Пуассона в области температур ниже 300 K сходны с начальными участками кривой для LiF. Можно ожидать, что при T>300 K значения $\sigma_{(110,1\bar{1}0)}$ кристаллов LiCl и LiBr станут отрицательными.

Представляло интерес рассмотреть также зависимость от γ критерия хрупкости-пластичности в виде отношения двух модулей B/G для исследованной группы кристаллов. Данная зависимость представлена на рис. 3. Галогениды лития находятся вблизи условной границы перехода хрупкости-пластичности ($B/G\approx1,75$), при этом LiF более склонен к проявлению хрупкости.

СПИСОК ЛИТЕРАТУРЫ

- 1. Беломестных В.Н., Похолков Ю.П., Ульянов В.Л., Хасанов О.Л. Упругие и акустические свойства ионных, керамических диэлектриков и высокотемпературных сверхпроводников. Томск: STT, 2001. 226 с.
- 2. Беломестных В.Н., Соболева Э.Г. Акустические, упругие и неупругие свойства кристаллов галогенатов натрия. Томск: Изд-во ТПУ, 2009. 276 с.
- 3. Беломестных В.Н., Теслева Е.П. Ангармоническое эффекты в твердых телах (акустические аспекты). Томск: Изд-во ТПУ, 2009. 151 с.
- Конек Д.А., Войцеховски К.В., Плескачевский Ю.М., Шилько С.В. Материалы с отрицательным коэффициентом Пуассона. (Обзор) // Механика композитных материалов и конструкций. – 2004. – Т. 10. – № 1. – С. 35–69.
- Светлов И.Л., Епишин А.И., Кривко А.И., Самойлов А.И., Одинцев И.Н., Андреев А.П. Анизотропия коэффициента Пу-

Рис. 3. Отношение упругих модулей как функция параметра Грюнайзена: 1) LiF; 2) LiCl; 3) LiBr; 4) LiI

Выводь

- 1. Исследованы анизотропия и температурные зависимости коэффициентов Пуассона четырех кристаллов соединений лития: LiF, LiBr, LiCl, LiI. Установлено, что при стандартных условиях анизотропные коэффициенты Пуассона в галогенидах лития подчиняются закономерности: $\sigma_{(110,001)} > \sigma_{(101)} > \sigma_{(110,10)}$.
- 2. Обнаружено, что в кристаллах LiF три коэффициента Пуассона в направлениях (110, 110), (111) и в изотропном состоянии становятся отрицательными в температурных интервалах соответственно от 260, 800, 1065 К до точки плавления. Таким образом, кристалл LiF вблизи температуры точки плавления приобретает аномальные деформационные свойства (становится ауксетиком).
- 3. Установлено, что галогениды лития находятся у границы перехода «хрупкий-пластичный» (отношение объемного модуля к модулю сдвига ≈1,75), причем LiF более склонен к проявлению хрупкости.
 - ассона монокристаллов никелевого сплава // Доклады АН СССР. 1988. Т. 302. № 6. С. 1372—1375.
- Baughman R.H., Shacklette J.M., Zakhidov A.A., Stafstrom S. Negative Poisson's ratio as a common feature of cubic metals // Nature. 1998. V. 392. № 6674. P. 362–365.
- Францевич И.Н., Воронов Ф.Ф., Бакута С.А. Упругие постоянные и модули упругости металлов и неметаллов. Справочник. Киев: Наукова думка, 1982. 286 с.
- Peresada G.L. On the calculation of elastic moduli of polycrystalls systems from single crystal data // Phys. Status Solidi. – 1971. – V. A4. – № 1. – P. K23–K27.
- Александров К.С. К вычислению упругих констант квазиизотропных поликристаллических материалов // Доклады АН СССР. – 1967. – Т. 176. – № 2. – С. 295–297.

Поступила 16.07.2011 г.