ОПТИМИЗАЦИЯ ПРОЦЕССА КОНВЕРСИИ КОКСОГЕННЫХ СТРУКТУР НА КАТАЛИЗАТОРЕ РИФОРМИНГА ПУТЕМ РЕГУЛИРОВАНИЯ МОЛЬНОГО СООТНОШЕНИЯ ХЛОРОВОДОРОД/ВОДА

П.А. Глик, В.А. Чузлов

Научный руководитель - д.т.н., профессор Э.Д. Иванчина

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, glik.pavel@mail.ru

Риформинг бензиновых прямогонных фракций остается основным октаноповышающим процессом нефтеперерабатывающих заводов в России. Процесс отлажен в плане технологического режима, поскольку является базовым процессов нефтепереработки с 1971 года. При этом основной проблемой риформинга остается снижение активности катализатора в результате дисбаланса в подаче хлорорганияских соединений и деминерализованной воды в реакторы.

Решить указанную проблему позволяет метод математического моделирования, в процессе которого необходимо, исходя из текущих значений параметров процесса, рассчитать оптимальную подачу воды в реактор, определить оптимальное значение мольного соотношения хлороводород/вода, и определить оптимальное значение хлорорганики с учетом баланса хлора и воды.

Окисление коксогенных структур условно, с приближением к реальным условиям, описывается следующим образом

$$C_{28}H_{14} + 28H_{2}O = 28CO + 35H_{2}$$

При расчете расхода воды – для поддержания активности катализатора на относительно постоянном уровне - следует учесть не только конверсию кокса, но и обеспечить дополнительный расход воды на окисление монооксида углерода

$$CO + H_2O = CO_2 + H_2$$

Таким образом, суммарный расход по воде и будет наиболее оптимальным с точки зрения

Таблица 1. Зависимость конверсии кокса от температурного режима	Таблица	. Зависимость конверсии	и кокса от температурного	режима
---	---------	-------------------------	---------------------------	--------

Тем-ра, К	Степень кон- версии X, %	Расход воды, л/ч	Оптимальная подача Cl, ppm	CO, ppm	Подача воды в реактор на СО, л/ч
753	5,10	0,30	1,00	0,2419	0,048
758	5,56	0,35	1,25	0,3126	0,060
759	5,65	0,36	1,30	0,3280	0,066
764	6,15	0,42	1,55	0,4121	0,072
775	6,79	0,48	1,85	0,5294	0,087

Таблица 2. Расход хлора в реактор риформинга Л-35-11/600

Дата	T _{BX} , °C	M	Расход воды, г/ч		Расход хлорор- ганики, г/ч		Текущий	Выход катали- зата, % мас.	
			без уче- та кокса	с учетом кокса	без уче- та кокса	с учетом кокса	выход про- дукта % мас.	без уче- та кокса	с учетом кокса
01.01.2011	484	21,7	411,0	450,85	38,40	42,13	82,4	83,6	83,8
03.02.2011	485	21,3	396,9	436,16	37,78	41,52	82,7	84,1	84,4
10.03.2011	485	22,4	439,2	483,56	39,76	43,78	82,3	84,2	84,4
13.04.2011	483	21,9	377,5	415,97	34,95	38,52	82,3	83,5	83,8
14.05.2011	485	21,9	419,8	463,04	38,87	42,87	82,8	84,2	84,6
30.05.2011	485	22,0	381,0	420,62	35,12	38,77	82,3	83,6	83,9
14.06.2011	490	22,9	363,4	401,51	32,18	35,55	82,5	82,5	82,8
10.07.2011	487	22,4	328,1	362,86	29,70	32,85	83,1	83,1	83,4
06.08.2011	486	22,2	342,2	378,81	31,26	34,60	82,9	82,9	83,2

поддержания стабильной работы катализатора.

При математическом описании процесса учитывается влияние температурного режима на конверсию кокса, поскольку для достижения требуемого числа крекинга, а также заданной степени конверсии сырья, постепенно изменяют температурный режим в реакторах при коксонакоплении на катализаторе.

Зависимость степени конверсии кокса и расхода воды в реактор риформинга от коксонакопления при различных температурах приведена

в таблице 1.

Таким образом, рассчитывается в текущем режиме расход хлорорганики в зависимости от режимных условий (табл. 2).

Таким образом, обеспечивается расчет оптимальных значений расходов воды и хлорорганики для установок Л-35-11/600, ЛЧ-35-11/600, ЛЧ-35-11/1000 на НПЗ ООО «КИНЕФ». При этом достигается увеличение ресурса катализатора до 23-25%.

Список литературы

Mohammad Reza Rahimpour. Progress in catalytic naphtha reforming process: A review //
Applied Energy, 2013.—№ 7.— P.79—93.

ЭТАПЫ МОДЕЛИРОВАНИЯ ПРОЦЕССА ГИДРОКРЕКИНГА ТЯЖЕЛОГО НЕФТЯНОГО СЫРЬЯ

П.А. Глин

Научный руководитель – д.т.н., профессор Э.Д. Иванчина

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, glik.pavel@mail.ru

Современная нефтепереработка и нефтехимия сосредотачивает свое внимание на качестве целевой продукции, в связи с чем, требования к показателям качества ежегодно становятся более ориентированными на экологию утилизации продуктов частными потребителями. Наряду с этим возрастает спрос на топлива широкого спектра потребления: высокооктановые бензины, дизельное топливо, авиационный керосин, котельное топливо. В связи с чем, глубина переработки нефтяного сырья существенно возрастает, тем самым увеличивается и выход светлых продуктов на единицу перерабатываемой сырой нефти.

Одним из наиболее перспективных и масштабных процессов глубокой переработки нефтяного сырья является гидрокрекинг вакуумных газойлей. Таким образом, процесс относится ко вторичным процессам переработки остаточного сырья вакуумной дистилляции мазута.

Целевое назначение процесса может варьироваться в зависимости от технологического режима от выпуска светлых фракций (легкой и тяжелой нафты — на компаундирование по производству высокооктановых бензинов) либо авиационного керосина до производства более тяжелого топлива – дизельного.

В настоящий момент на территории России функционирует или находятся на завершающих стадиях строительства единичные установки гидрокрекинга. К действующим относятся Московская ОАО «Татнефть», Волгоградская ООО «Лукойл» и Киришская ООО «Сургутнефтегаз». Таким образом, все установки еще проходят стадию апробации по сырью, технологическому режиму, что сказывается на частоте выпуска некондиционных партий топлива.

В связи с тем, что наиболее ранней и в некотором роде, первопроходцем в данном процессе, является Киришский НПЗ, запустивший в 2013 году установку гидрокрекинга, то наиболее целесообразно будет осуществить моделирование данного процесса именно на данном заводе. Ввиду имеющихся данных по удачной и неблагоприятной работе реакторного блока.

Как отмечалось ранее, установка комплексная и имеет в своем составе несколько технологических блоков. К таким блокам относятся: блок очистки и подготовки рециклового водород содержащего газа (ВСГ), блок подготовки сырья (блок фильтров очистки от механических примесей и блок печей – подогрев сырья перед реакторным блоком и продуктов перед фрак-