анод — Рt-сетка, катод — горизонтально расположенная Сu-пластина; католит — 2%-ный раствор NaOH с добавлением этанола (2:1); сила тока 1,5 A, 30°C; $C_{\text{п-HA}}$ = 0,066 моль/л, масса наносимого композита — 1 г).

Как следует из данных таблицы 1, электрохимическое восстановление *n*-НА на Си-катоде осуществляется со сравнительно высокими значениями скорости процесса и степени его превращения. Электрогидрирование *n*-НА на монометаллических композитах с введёнными солями меди (II) и никеля (II) проходит с более высокими скоростями, чем в электрохимическом процессе. На биметаллических Ni–Сu и Со–Сu-композитах *n*-НА гидрируется также интенсивнее, чем в электрохимическом процессе. Величина конверсии гидрируемого соединения на этих композитах возрастает до 91–96% (по хроматографическим данным — до 95–100%). Основным продуктом гидрирования n-НА является n-фенилендиамин (π -ФДА).

Согласно выполненным рентгенофазовым анализам, электрокаталитическая активность биметаллических Ni–Cu и Co–Cu-композитов сополимера ПАни+ПАД обусловлена, главным образом, появлением в их составах кристаллических фаз металлической меди Cu^0 за счёт электрохимического восстановления её катионов в ходе электрогидрирования n-HA. Катионы Ni^{2+} и Co^{2+} не восстанавливаются в заданных условиях. После применения их композитов в электрогидрировании n-HA в фазовых составах обнаруживаются кристаллические фазы гидроксидов этих металлов, что объясняет отсутствие электрокаталитической активности Ni—Co-композитов Π Aни+ Π AД в исследуемом процессе.

ТРИБОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОМПОЗИЦИЙ ПОЛИДИЦИКЛОПЕНТАДИЕНА – СКЭПТ-30

Д.Ю. Герман

Научный руководитель – д.т.н., профессор В.Г. Бондалетов

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, germandmn@sibmail.com

Твердые полимерные композиционные материалы (пластмассы) широко применяются в узлах трения скольжения и качения современных машин и механизмов. Технически обоснованное применение пластмасс позволяет увеличить надежность и ресурс машин, улучшить их эксплуатационные, технико-экономические характеристики, вес и технологичность изготовления деталей, а также отказаться от дефицитных сплавов цветных металлов и снизить стоимость машин [1]. Среди полимеров особое место занимает полидициклопентадиен (ПД-ЦПД) и композиции на его основе, благодаря его высоким прочностным характеристикам [2]. ПДЦПД – это пространственно сшитый полимер, получаемый метатезисной полимеризацией с раскрытием цикла дициклопентадиена [3]. Одним из способов улучшения эксплуатационных показателей ПДЦПД является введение в его состав различных эластомеров (стирол-бутадиеновый каучук, бутадиеннитрильный каучук, этилен-пропиленовый каучук и др.). Приготовление исходных композиций на основе ДЦПД и каучука обычно проводится при высоких температурах в инертной атмосфере [4].

В работе исследовалась зависимость коэффициента трения композиционного материала на основе дициклопентадиена с 1% синтетического каучука СКЭПТ-30 от линейной скорости вращения диска методом «индентор – диск».

Полимеризуемую композицию получали путем растворения каучука в дициклопентадиене в инертной атмосфере при 155°С в течение 24 час. в присутствии 0,2 % мас. ингибиторов (Irgafos 168 + Irganox 1010, 1:1 мас.). Полимеризацию проводили в форме при 180°С при соотношении мономера к рутениевому катализатору

Таблица 1. Коэффициенты трения металлического индентора по полимерному диску

Линейная ско-				
рость вращения	$\mu_{_{ m Ha^{_{4}}}}$	$\mu_{_{ ext{MUH}}}$	$\mu_{_{ m Makc}}$	$\mu_{_{ m cp}}$
диска, см/с				
5	0,213	0,185	0,433	0,356
10	0,354	0,251	0,402	0,352
15	0,284	0,203	0,374	0,333
20	0,237	0,146	0,483	0,344
30	0,209	0,130	0,378	0,275
40	0,176	0,118	0,455	0,308
50	0,279	0,184	0,357	0,311

Ховейды-Граббса 2 поколения, равном 10000:1.

Трибологические испытания полученного композита проводились в условиях «сухого» трения, где в роли индентора выступает металлический шар диаметром 3 мм из стали ШХ15. Поверхности полимерных дисков шлифовались на шлифовально-полировальном станке ATM SAPHIR 520. Начальная шероховатость поверхности диска составляла $S_a = 6,2$ мкм. Полученные результаты представлены в таблице 1.

В результате исследования было выявлено постепенное снижение величины среднего коэффициента трения при скоростях вращения диска от 5 до 30 см/с и его рост при увеличении линейной скорости вращения диска. Повышение коэффициента трения при высоких скоростях вращения, вероятно, обусловлено критическим разрушением полимера, вследствие которого происходит выкрашивание частиц полимера на треке.

Список литературы

- 1 Машков Ю.К. Трибофизика металлов и полимеров. Изд-во ОмГТУ, 2013.—240с.
- 2. В.В. Лебедев // Восточно-европейский журнал передовых технологий, 2012.— Вып.59.— С.21–23.
- 3. Davidson T. Wagener K. // Journal of Molecular
- Catalysis A: Chemical, 1998.— Vol.133(12).— P.67—74.
- 4. Seung Tack Yu, Sung Jae Na, Tae Sun Lim, Bun Yeoul Lee // Macromolecules, 2010.—Vol.43(2).—P.725—730.

СИНТЕЗ НОВЫХ МОНОМЕРОВ ДЛЯ **ROM-ПОЛИМЕРИЗАЦИИ**

Р.Р. Даянова, Н.П. Никонова Научный руководитель – м.н.с. Г.С. Боженкова

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, reginadayanova97@gmail.com

Среди современных материалов, широко используемых в различных областях человеческой деятельности, важное место занимают полимеры и материалы на их основе. В данный момент научный интерес представляют полимеры на основе норборнена и его производных в связи с особыми свойствами [1]. Одним из новых и современных способов получения полимеров на основе циклических олефинов является реакция метатезисной полимеризации с раскрытием цикла (ROMP – Ring Opening Metathesis Polymerization). Разработка эффективных катализаторов для ее реализации придали новый импульс развитию эффективных методов синтеза ранее малодоступных соединений.

Поли(норборнен-дикарбоксиимиды) с момента их получения методом ROMP в 1992 стали наиболее хорошо изученным типом живых полимеров [2]. С тех пор полимеры функционализировали многочисленными активными группами, адаптируя их к различным областям применения [3–4]. Вследствие их выдающихся тепловых характеристик, превосходной оптической прозрачности, эффективных характеристик формирования пленки, низкого влагопоглоще-

ния и прочных механических свойств полимеры используются как в качестве пассивных, так и активных компонентов в органических электронных и оптических приложениях [5–6].

Введение адамантила в норборнен-дикарбоксиимиды может значительно изменить физико-химические и физико-механические свойства полимеров. В ранних работах сообщалось, что введение адамантана в качестве группы боковой цепи значительно увеличивает температуру стеклования (Тg) и термостабильность полимеров [7]. В течение последних нескольких лет такие мономеры на основе норборнена представляют интерес в связи с простотой синтеза и высокой реакционной способностью в процессе метатезисной полимеризации с раскрытием цикла. Напряженные молекулы мономера легко полимеризуются с практически полной степенью превращения в высокомолекулярные полимеры. Реакции полимеризации проходят без каких-либо побочных продуктов.

В связи с этим целью настоящей работы явилось получение N-адамантил-экзо-норборнен-5,6-дикарбоксиимида (ADNDI), идентификация и получение сополимеров на его основе