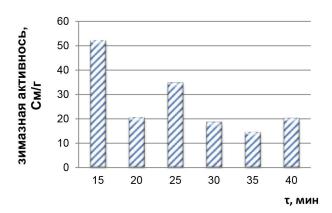
Подсекция Секции 3

Теоретические и прикладные аспекты фармации и биотехнологии

ОПРЕДЕЛЕНИЕ ЗИМАЗНОЙ АКТИВНОСТИ ХЛЕБОПЕКАРНЫХ ДРОЖЖЕЙ ХРОНОКОНДУКТОМЕТРИЧЕСКИМ МЕТОДОМ

Х. Батжаргал, А.П. Чернова Научный руководитель – к.х.н. А.П.Чернова


Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, batjargalkhaliuna@gmail.ru

В настоящее время на рынке пищевых продуктов для приготовления продуктов питания в домашних условиях присутствуют дрожжевые препараты различного качества (Саф-Момент, Саф-Левюр, ТМ «Смачна Кухня», Рактауа, Dr. Oetker, Трапеза и др.). Для биотехнологического процесса получения качественного продукта (препарата) используют свежие, здоровые пекарские дрожжи с высоким уровнем активности, что обеспечивает стабильность процесса брожения [1]. Кроме этого, параллельно производят контроль жизнеспособности дрожжей с использованием прямых методов микробиологии, который осуществляется в специализированных лабораториях. Таким образом, все большую популярность приобретают методы быстрой микробиологии, основанные на измерении в анализируемом образце какого-либо физико-химического параметра [2].

Целью нашей работы являлась определение зимазной активности пекарских дрожжей хронокондуктометрическим субстратным методом.

В качестве объекта исследования были выбраны широко распространённые на рынке пекарские дрожжи марок Саф-Момент, Dr. Оеtker и Трапеза. О зимазной активности пекарских дрожжей судили по скорости изменения электропроводности после добавления субстрата к образцу в ходе кондуктометрического анализа [3]. В качестве субстрата выступал 5% раствор глюкозы, который вносили после 5 минут анализа. Изменение электропроводности фиксировали через 15, 20, 25, 30, 35, 40 мин на приборе

«Анализатор метаболической активности» [4]. Суммарную зимазную активность дрожжевого продукта определяли по формуле [3]. Результаты зимазной активности представлены в виде

Рис. 1. Гистограмма опеределение зимазной активности пекарских дрожжей хронокондуктометрическим методом через 15, 20, 25, 30, 35, 40 мин.

гистограммы (рис. 1).

Для установления качества дрожжевых препаратов использовали манометрический метод определения зимазной и мальтазной активностей [5].

В ходе работы было установлено, что оптимальным временем определения зимазной активности хронокондуктометрическим методом является 15 мин. В случае увеличения времени (более 15 мин.) происходит уменьшение активности, связанное с завершением процесса брожения. Также была установлена линейная кор-

реляция между хронокондуктометрическим и манометрическим методами определения активности. Было выявлено, что исследуемые препа-

раты дрожжей обладают специфичной зимазной активностью и содержат хлебопекарные дрожжи хорошего и среднего качества.

Список литературы

- 1. Бабьева И.П. Биология дрожжей / И.П. Бабьева, И.Ю. Чернов. – М.: Товарищество научных изданий КМК, 2004.- 456с.
- 2. Патент РФ № 2229126. Способ оценки ферментативной активности дрожжей от 20.05.04. Авторов: Г.С. Качмазов, И.К. Сатцаева, З.Г. Галимова, Л.М. Семенова.
- 3. Асташкина А.П., Яговкин А.Ю., Бакибаев А.А. Субстратный способ определения суммарной ферментативной активности дрожжевых клеток // Вестник казанского технологического университета, 2009.— №2.- C.96-102.
- 4. Патент на полезную модель *РФ №* 76340. Анализатор метаболической активности биокатализаторов от 14.04.2008. Авторов: А.А. Бакибаев, А.П. Чернова, А.Ю. Яговкин, В.В. Жук, Д.М. Медведев, М.И. Тартынова, А.Е. Маркелов, А.Н. Мержа, В.И. Чернов.
- 5. Инструкция по микробиологическому и технохимическому контролю дрожжевого производств / Минпищепром; ВНИИХП.- М.: Издательство «Легкая и пищевая промышленность», 1984.

ДИАГНОСТКА ОПУХОЛИ МЕТОДОМ МАГНИТНО-РЕЗОНАНСНОЙ ТОМАГРАФИИ С ИСПОЛЬЗОВАНИЕМ НАНОЧАСТИЦ Fe₃O₄, НАЦЕЛЕННЫХ РН-ЗАВИСИМЫМ ВСТРАИВАЮЩИМСЯ ПЕПТИДОМ

О.Я. Брикунова

Научный руководитель - к.б.н., доцент А.Г. Першина

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, osy_23@mail.ru

Применение наноматериалов в медицине открывает новые возможности в диагностике и терапии заболеваний. Размер наночастиц сопоставим с размером биомолекул таких как РНК и белки, что обуславливает перспективы их применения для неинвазивной прижизненной визуализации. Для эффективного взаимодействия наночастиц с биологической мишенью поверхность наночастиц модифицируется с использованием молекул, способных специфически взаимодействовать с клетками в патологическом очаге.

Одним из перспективных типов подобных конструкций являются магнитные наночастицы Fe₃O₄, поверхность которых функционализирована рН-зависимым встраивающимся пептидом (Fe₂O₄-pHLIP) [1]. Данная конструкция обладает МРТ-контрастными свойствами и способна специфически накапливаться в поврежденных тканях, за счет встраивания пептида в мембрану клеток при пониженной межклеточной рН. Это открывает возможность успешно применять данную конструкцию для диагностики опухолей, выявления воспаления и ишемии.

Цель данной работы заключалась в исследование способности наноматериала Fe₃O₄-pHLIP селективно накапливаться в экспериментальной опухоли (ксенографт) для визуализации опухоли методом магнитно-резонансной томографии (MPT).

Эксперимент был проведен на иммунодефицитных мышах линии SCID, с трансплантированной опухолью аденокарциномы молочной железы человека MDA-MB-231, на базе SPF-вивария ИЦИГ СО РАН (г. Новосибирск). Мышам прививали подкожно в область правой лопатки 5×10^5 опухолевых клеток. Животных с развитой опухолью были разделены на две группы. Экспериментальной группе (n=5) внутрибрюшинно вводили Fe₂O₄-pHLIP в физиологическом растворе (2 мг/кг), мышам контрольной группы препарат не вводили. Животных сканировали на MP-томографе (Bruker Biospec, 11,7 Т) через 2 и 40 часов после введения Fe₃O₄-рHLIP. После