СПИСОК ЛИТЕРАТУРЫ

- Беденко С.В., Шаманин И.В. Нейтронная активность отработанного керамического ядерного топлива // Известия вузов. Сер. Физика. – 2011. – Т. 54. – № 11/2. – С. 51–56.
- Внуков В.С. Глубина выгорания как параметр ядерной безопасности хранилищ и транспортных упаковочных комплектов с отработавшим ядерным топливом // Атомная техника за рубежом. – 1990. – № 12. – С. 9–11.
- 3. Шаманин И.В., Буланенко В.И., Беденко С.В. Поле нейтронного излучения облученного керамического ядерного топлива различных типов // Известия вузов. Сер. Ядерная энергетика. 2010. № 2. С. 97–103.
- Беденко С.В., Гнетков Ф.В., Кадочников С.Д. Дозовые характеристики полей нейтронов облученного керамического ядерного топлива различных типов // Известия вузов. Сер. Ядерная энергетика. 2010. № 1. С. 6–12.
- Шаманин И.В., Беденко С.В., Павлюк А.О., Лызко В.А. Использование программы ORIGEN-ARP при расчете изотопного состава отработанного топлива реактора ВВЭР-1000 // Известия Томского политехнического университета. 2010. Т. 317. № 4. С. 25–28.

Поступила 16.01.2012 г.

УДК 541.64:547.759.32

ПРИБЛИЖЕННОЕ ОБОБЩЕННОЕ РЕШЕНИЕ ТЕПЛОВОГО СОСТОЯНИЯ ТЕЛА ПРИ МАЛЫХ ЧИСЛАХ ФУРЬЕ (Fo<0,01)

В.С. Логинов, О.С. Симонова

Томский политехнический университет E-mail: loginovvs@tpu.ru

Получены простые аналитические решения при граничных условиях I и III родов, пригодные для расчета начальных стадий тепловых процессов в телах классической формы (пластина, цилиндр, шар).

Ключевые слова:

Теплопроводность, нестационарный тепловой режим, плотность теплового потока.

Key words:

Thermal conductivity, nonstationery thermal conditions, thermal flux density.

Введение

Длительная эксплуатация элементов энергетического оборудования (трубопроводы тепловых сетей, ядерные реакторы, турбогенераторы, ускорители заряженных частиц) в нерасчетных режимах приводит к их остановке. После ремонта проводится пуск в работу оборудования. В таких ситуациях зачастую наблюдаются необратимые тепловые процессы, связанные с разрушением тепловой и диэлектрической изоляции.

Особую актуальность представляет собой проектирование и расчет новых энергосберегающих энергетических установок с повышенными удельными энергетическими или электромагнитными характеристиками. Расчеты с большим количеством начальных и граничных условий не всегда приводят к достоверным результатам. Таким образом, возникла необходимость в обосновании и исследовании инженерного метода теплового расчета развития начальной стадии теплового процесса.

Постановка задачи

Ниже изложена методика с использованием так называемых датчиков плотности теплового потока [1]:

$$q = \rho c \delta \frac{\partial \upsilon}{\partial \tau},$$

где ρ — плотность; c — удельная массовая теплоемкость; δ — характерный размер; υ — избыточная температура; τ — текущее время.

В [2] изложен простой метод оценки теплового состояния плоского элемента на начальной стадии процесса. Он не требует использования множества чисел краевой задачи Штурма—Лиувилля и решения трансцендентных уравнений. Целью настоящей работы является получение обобщенного решения теплового состояния элемента (n=0 — пластина; n=1 — цилиндр; n=2 — шар) справедливого для малых чисел Фурье (Fo<0,01).

Пусть требуется приближенно решить одномерную нестационарную задачу теплопроводности

$$\frac{\partial \theta}{\partial \text{Fo}} = \frac{1}{R^n} \frac{\partial}{\partial R} \left(R^n \frac{\partial \theta}{\partial R} \right), \quad \text{Fo} > 0, \quad 0 < R < 1, \quad (1)$$

при краевых условиях

$$\theta(R,0) = 1,\tag{2}$$

$$\theta(0, \text{Fo}) \neq \infty, \quad \frac{\partial \theta(0, \text{Fo})}{\partial R} = 0,$$
 (3)

$$\theta(1, \text{Fo}) = 0. \tag{4}$$

Здесь
$$\theta(R, \text{Fo}) = \frac{T(\xi, \tau) - T_C}{T_0 - T_C}$$
 — безразмерная

температура; $T(\xi,\tau),\ T_{\scriptscriptstyle 0},\ T_{\scriptscriptstyle C}$ — соответственно температуры: текущая, начальная и на границе тела;

$$R = \frac{\xi}{\xi_1}$$
 — безразмерная координата; ξ , ξ_1 — текущая

координата и толщина элемента; $F_0 = \frac{a\tau}{\xi_1^2}$ — число

Фурье; *а* — коэффициент температуропроводности. Исходя из физической теории размерности коэффициента температуропроводности примем, что он равен

$$a = \delta \frac{\partial \xi}{\partial \tau}$$
 или $1 = L_0 \frac{\partial R}{\partial F_0}$. (5)

Подставив (5) в уравнение энергии (1), получим

$$\frac{\partial \theta}{\partial Fo} = \frac{L_0}{R^n} \frac{\partial}{\partial R} \left(R^n \frac{\partial \theta}{\partial Fo} \right), \quad Fo > 0$$
 (6)

или

$$\frac{R^n}{L_0} \frac{\partial \theta}{\partial F_0} = \frac{\partial}{\partial R} \left(R^n \frac{\partial \theta}{\partial F_0} \right),$$

решение которое с учетом условий (2), (4) имеет вид

$$\theta(R, Fo) = 1 - \frac{\exp[-(1-R)/\sqrt{Fo}]}{R^n}, \ 0 < R \le 1;$$
 (7)

$$\theta(R, \text{Fo}) = 1 - \exp\left[-\frac{(1-R)}{(n+1)\sqrt{\text{Fo}}}\right], \text{Fo} > 0, R \ge 0. (8)$$

Анализ решения (7):

- 1. При Fo \rightarrow 0, то $\theta(R,0)\rightarrow$ 1.
- 2. Если $R \rightarrow 1$, то $\theta(1, F_0) \rightarrow 0$.
- 3. Рассмотрим случай $R \rightarrow 0$. Для этого решение (7) представим в виде

$$\theta(R, \text{Fo})R^n \sqrt{\text{Fo}} = R^n \sqrt{\text{Fo}} - \sqrt{\text{Fo}} \exp[-(1-R)/\sqrt{\text{Fo}}].$$

Возьмем производные от левой и правой частей по R:

$$\sqrt{\text{Fo}} \left[n R^{n-1} \theta (R, \text{Fo}) + R^n \frac{\partial \theta (R, \text{Fo})}{\partial R} \right] =$$

$$= \left[n R^{n-1} \sqrt{\text{Fo}} - \exp(-(1-R)/\sqrt{\text{Fo}}) \right].$$

При $R \rightarrow 0$ левая часть последнего выражения равна нулю, а правая часть будет равна нулю, если $Fo \rightarrow 0$. Это означает, что только в этом случае выполняется граничное условие (3).

Отметим, что решение (8) получено также методом оценки теплового состояния [2]. Для этого ур. (1) запишем так

$$\frac{\partial \theta}{\partial F_0} = \frac{\partial^2 \theta}{\partial R^2} + \frac{n}{R} \frac{\partial \theta}{\partial R}.$$

При $R \rightarrow 0$ второе слагаемое в правой части принимает неопределенность вида 0/0. Раскрывая неопределенность по правилу Лопиталя, получим:

$$\frac{\partial \theta}{\partial F_0} = (n+1)\frac{\partial^2 \theta}{\partial R^2}$$
, Fo>0, $R \to 0$;

Решение дифференциального уравнения при краевых условиях (2), (4) имеет вид (8). Возьмем производную

$$\frac{\partial \theta(0, Fo)}{\partial R} = -\frac{1}{(n+1)\sqrt{Fo}} \exp \left[-\frac{1}{(n+1)\sqrt{Fo}} \right].$$

Если $Fo \to \infty$, то производная в этой точке равна нулю.

При Fo \rightarrow 0, раскрывая неопределенность 0/0, получим

$$\frac{\partial \theta(0, \text{Fo})}{\partial R} = -\frac{2\sqrt{\text{Fo}}}{(n+1)} \exp \left[-\frac{1}{(n+1)\sqrt{\text{Fo}}} \right] = 0.$$

Таким образом, решение (8) справедливо для малых моментов времени. По закону Фурье плотность теплового потока на внешней границе элемента равна

$$q = -\lambda \left(\frac{\partial T}{\partial \xi}\right)_{\xi = \xi_1} =$$

$$= \sqrt{\lambda c_p \rho / \tau} \left(T_0 - T_c\right) (1 - n\sqrt{\text{Fo}}). \tag{9}$$

Пример. Определить температуры в телах классической формы (n=0 — пластина, n=1 — цилиндр, n=2 — шар) в координате R=0,4 для безразмерного числа Фурье Fo=0,0001; 0,001, 0,002; 0,01; 0,02. Тело нагрето до температуры T=473 K (200 °C) и в начальный момент времени оно помещено в тающий лед T_c =273 K (0 °C).

Решение. Например, для шара n=2, Fo=0,02, R=0,4. По формуле (7) вычисляем

$$\theta^{np}(R, \text{Fo}) = 1 - \frac{\exp[-(1-R)/\sqrt{\text{Fo}}]}{R^2} = 1 - \frac{\exp[-(1-0.4)/\sqrt{0.02}]}{0.4^2} = 0.91.$$

Погрешность расчета по сравнению с точным значением [3] равна

$$\varepsilon = \frac{\theta(R, \text{Fo}) - \theta^{np}(R, \text{Fo})}{\theta(R, \text{Fo})} = \frac{1 - 0.91}{1} \cdot 100 \% = 8.98 \%.$$

Если R=0, то в формуле (8) $\theta^{pp}(R,Fo)$ =1,0; ε =0,0 %. Для цилиндра n=1, Fo=0,02, R=0,4,

$$\theta^{np}(R, \text{Fo}) = 1 - \frac{\exp[-(1-R)/\sqrt{\text{Fo}}]}{R} = 0,964;$$

 $\varepsilon = 3,59 \%.$

Для R=0, Fo=0,02, $\theta^{np}(R,Fo)$ =1,0; ε =0,0 %.

Для пластины n=0, Fo=0,02, R=0,4 получаем $\theta^{pp}(R,\text{Fo})=0,986$; $\varepsilon=1,44\%$.

При R=0 $\theta^{np}(R,Fo)=1,0$; $\varepsilon=0,0$ %.

В табл. 1, 2 представлены результаты расчетов по ур. (7), (8) и дано сравнение полученных результатов с точными значениями [3].

В стационарном режиме $\frac{\partial \theta}{\partial Fo} = 0$, Fo $\rightarrow \infty$, $\theta(R) \rightarrow 0$, т. е. температура элемента в любой точке равна T_c .

Таблица 1. Изменение во времени безразмерной температуры в пластине

		D 0 0			D 0 4		
	R=0,0			R=0,4			
Fo	θ(R,Fo) Расчет по [3, ур. (30)]	θ ^{πρ} (<i>R</i> ,Fo) Расчет по ур. (8)	ε, %	θ(R,Fo) Расчет по [3, ур. (28)]	$ heta^{np}(R, Fo)$ Расчет по ур. (7)	ε, %	
0,0001	1,000	1,000	0,000	1,000	1,000	0,000	
0,0010	1,000	1,000	0,000	1,000	1,000	0,000	
0,0020	1,000	1,000	0,000	1,000	1,000	0,000	
0,01	1,000	1,000	0,000	1,000	0,998	0,020	
0,02	1,000	0,999	0,085	0,997	0,986	1,103	
0,04	0,9992	0,993	0,594	0,966	0,950	1,656	
0,1	0,9493	0,958	-0,882	0,819	0,850	-3,780	

Таблица 2. Изменение во времени безразмерной температуры в шаре

	R=0,0			R=0,4		
Fo	θ(R,Fo) Расчет по [3, ур. (35)]	<i>Ө^{пр}(R</i> ,Fo) Расчет по ур. (8)	ε, %	θ(<i>R</i> ,Fo) Расчет по [3, ур. (34)]	$ heta^{np}(R, Fo)$ Расчет по ур. (7)	ε, %
0,0001	1,000	1,000	0,000	1,000	1,000	0,000
0,0010		1,000	0,000	1,000	1,000	0,000
0,0020		1,000	0,000	1,000	1,000	0,000
0,01		0,964	3,6	1,000	0,985	1,500
0,02		0,905	9,5	0,993	0,910	8,980

Влияние внешнего теплообмена в окружающую среду

Для решения этой задачи условие (4) заменим на граничное условие третьего рода и запишем его

так

$$-\frac{\partial \theta (1, \text{Fo})}{\partial R} = \text{Bi} \theta (1, \text{Fo}), \qquad (10)$$

где
$$\theta\left(R,\mathrm{Fo}\right) = \frac{T(\xi,\tau) - T_{\infty}}{T_{0} - T_{\infty}}$$
 — безразмерная тем-

пература;
$$Bi = \frac{\alpha \xi_1}{\lambda}$$
 — число Био.

Решение системы уравнений (1)—(3), (10) приближенным методом [2] имеет вид

$$\theta (R, Fo) = 1 - \frac{\text{Bi}\sqrt{\text{Fo}} \exp[-(1-R)/\sqrt{\text{Fo}}]}{R^{n}[1 + (\text{Bi} + n)\sqrt{\text{Fo}}]},$$

$$0 < R \le 1;$$
(11)

$$\theta(0, \text{Fo}) = 1 - \frac{(n+1)\sqrt{\text{Fo}} \operatorname{Bi} \exp\left[-\frac{(1-R)}{(n+1)\sqrt{\text{Fo}}}\right]}{[1+\operatorname{Bi}(n+1)\sqrt{\text{Fo}}]},$$

$$\text{Fo} > 0, \ R \ge 0. \tag{12}$$

На рис. 1, 2 представлены результаты сравнения по точным зависимостям [3] и по формулам (11), (12). *Анализ решений (11), (12)*:

- 1) При Fo \rightarrow 0 $\theta\rightarrow$ 1.
- 2) Если $Bi \rightarrow 0$, то $\theta \rightarrow 1$.
- 3) Из решения (12) находим

$$\frac{\partial \theta(0, \text{Fo})}{\partial R} = \lim_{R \to 0} \left\{ -\frac{\text{Bi} \exp[-1/(n+1)\sqrt{\text{Fo}}]}{[(\text{Bi} + n)\sqrt{\text{Fo}} + 1]} \right\}:$$

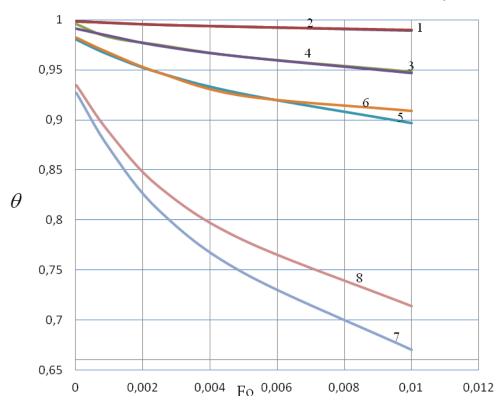


Рис. 1. Относительные температуры на поверхности пластины (n=0, R=1). Кривая температуры при Ві: 1,2) 0,1; 3,4) 0,5; 5,6) 1,0; 7,8) 4,0. Расчет по [3, ур. 40] и (11) соответственно

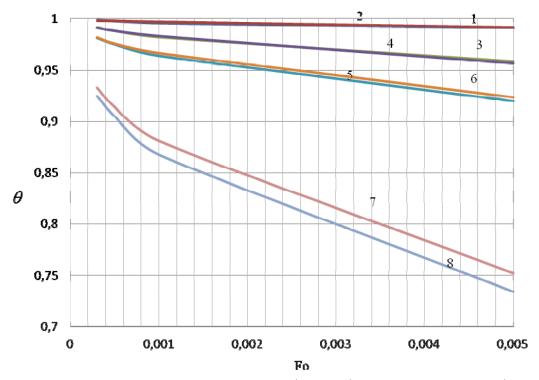


Рис. 2. Относительные температуры на поверхности шара (n=2, R=1,0). Кривая температуры при Ві: 1,2) 0,1; 3,4) 0,5; 5,6) 1,0; 7,8) 4,0. Расчет по [3, ур. 40] и (11) соответственно

а) если Fo
$$\rightarrow$$
0, то $\frac{\partial \theta(0,\text{Fo})}{\partial R} \rightarrow 0$;

б) при Fo
$$\rightarrow \infty$$
, $\frac{\partial \theta(0, \text{Fo})}{\partial R} \rightarrow 0$.

Как видно, решение (11) справедливо для поверхности пластины, у которой $\text{Bi}\sqrt{\text{Fo}}<0,4$, или шара ($\text{Bi}\sqrt{\text{Fo}}<0,126$).

Полученные приближенные аналитические решения полезны для оценки начальной стадии физического, в частности, теплового процесса в элементах классической формы. Они могут быть использованы при тестировании программных про-

СПИСОК ЛИТЕРАТУРЫ

- Полежаев Ю.В., Юревич Б.Ф. Тепловая защита. М.: Энергия, 1976. 391 с.
- Логинов В.С., Шабунина О.С. Приближенные методы оценки теплового состояния элемента при малых (Fo<0,02) и больших

дуктов на ПЭВМ, а также при разработке элементов специального энергетического оборудования.

Выводы

Впервые получены простые приближенные аналитические зависимости для расчета нестационарной температуры в элементе (пластина, цилиндр, шар). Использование полученных решений возможно для оценки начальной стадии физического, в частности, теплового процесса при малых числах Био−Фурье (0,126<Ві√Fо<0,4) при граничных условиях первого или третьего рода.

Работа выполнена по государственному контракту № 14.740.11.0101.

- (Fo>0,1) числах Фурье // Известия РАН. Сер. Энергетика. 2011. № 1. С. 70–74.
- Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967. – 600 с.

Поступила 02.03.2012 г.