Литература

- 1. Иванов К. Е. Водообмен в болотных ландшафтах. Л:, Гидрометеоиздат, 1975. -281 с.
- 2. «Методика разработки нормативов допустимых сбросов веществ и микроорганизмов в водные объекты для водопользователей», утв. приказом Минприроды России № 333 от 17.12.2007
- 3. Наставление гидрометеорологическим станциям и постам. Выпуск 8. Гидрометеорологические наблюдения на болотах. Л.; Гидрометиздат, 1990 г. -360 с.
- «Положение об осуществлении государственного мониторинга водных объектов», утв. Постановлением Правительства Российской Федерации № 219 от 10.04.2007.

ХИМИЧЕСКИЙ СОСТАВ ПИТЬЕВЫХ ВОД СЕЛА СЕВЕРНОЕ НОВОСИБИРСКОЙ ОБЛАСТИ М.В. Ликаровская

Научный руководитель профессор С.Л.Шварцев Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Питьевая вода — это неотъемлемая часть жизни каждого человека и поэтому качество воды напрямую связано со здоровьем целого населения. Основными источниками питьевых вод являются поверхностные, подземные воды, которые очищают и обеззараживают муниципальные службы в данном регионе.

На территории с. Северногодля изучения химического состава отбирались пробы воды в 20 точках в пределах села. Из них 9 из поверхностных вод, в том числе из болота, а 11 из хозяйственно бытовых скважин.

Район расположен на северо-западе Новосибирской области. Граничит с Кыштовским, Венгеровским, Куйбышевским и Убинскими районами Новосибирской области, а также Томской областью. По территории района протекают реки Тара и Тартас [1].

Климат с.Северное континентальный и характеризуется продолжительной холодной зимой с поздним наступлением тепла и ранними заморозками. Теплый период – апрель – октябрь, а холодный период – ноябрь – март [1].

В геоморфологическом отношении Северный район расположен в пределах Омь-Тартасского геоморфологического района Восточно-Барабинской денудационно-аккумулятивной низменной равнины.

В геологическом строении участвуют протеразойские, палеозойские образования, мезозойские, неогеновые и четвертичные отложения. Наиболее древними отложениями являются палеогеновые, представленные темносерыми глинами мощностью 10-38 м.

Территория района характеризуется сильной заболоченностью, особенно в северной, северо-восточной и юго-восточной частях.

В гидрогеологическом отношении с. Северное расположено на весьма слабодренированной территории, сложенной с поверхности на всю глубину активной зоны слабоводопроницаемыми легкими глинами с близким залеганием к земной поверхности уровнем подземных вод.

По условиям формирования, режиму и гидродинамическим характеристикам вскрытый водоносный горизонт относится к типу порового безнапорного горизонта грунтовых вод [2].

Питание водоносного горизонта грунтовых вод в основном местное и происходит преимущественно за счет инфильтрации атмосферных осадков.

По данным мониторинга средняя многолетняя амплитуда сезонного колебания уровня грунтовых вод составляет 2,2 м. Наиболее высокие уровни в годовом ходе наблюдаются в конце мая – июня, самые низкие в феврале – марте.

В периоды весенне – летних максимумов возможно повышение уровня грунтовых вод на 0,4-0,6 м от замеренного при изысканиях, 119,4-119,7 м [2].

Село Северное располагается на левом берегу реки Тартас. Река Тартас берет начало в болотах Васюганской равнины, протекает по территории Новосибирской области и на 585 км впадает справа в реку <u>Омь</u>. Длина реки — 566 км, площадь водосборного бассейна — 16 200 км². Ширина водоохраной зоны р. Тартас в соответствии действующему Водному Кодексу Российской Федерации равна 200 м [1].

На территории района расположен государственный ландшафтный заказник федерального значения «Васюганский», территория на которой производился отбор проб входит в пределы заказника.

Исследование питьевых вод проводилось на территории Северного района Новосибирской области. Одной из основных задач является изучение химического состава различных типов питьевых вод.

Отбор проб проводился в соответствии с ГОСТ Р 51592-2000 «Вода. Общие требования к отбору проб». На точке отбора проб измерялись параметры изменяющихся компонентов: pH,Eh, температура воздуха и воды, $Fe_{oбщ}$, Fe^{3+} , NH_4 , NO_2 , HCO_3 . Анализ изменяющихся компонентов проводился при помощи полевой комплексной лаборатории HKB «ПС 100-82182574-15»;

На территории Северного района были отобраны 20 проб воды. Из них 9 из поверхностных источников, а 11 из хозяйственно-бытовых скважин села.

Химический состав питьевых вод села Северное

Таблица 1

Пара-	pН	CO ₂	HCO ₃	SO ₄ ²⁻	Cl-	Ca ²⁺	Mg ²⁺	Na ⁺	K ⁺	Fe ^{общ}	NH ₄ ⁺	NO ₃	Общ.	Мин-
метр													жест.	ция
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ед. изм.		3	7]	0		мг/л)	10	11	12	13	мг-эквив/л	мг/л
Ед. пэм.							1417.51						MI SKBIIB/31	1411731
Поверхностные воды														
	7,5	5,3	134	7,61	20,6	36	9,7	20,62	0,31	1,94	0,23	1,01	2,60	228,8
2	7,3	7,9	159	7,01	20,0	37	14	26,02	0,31	1,7	0,25	0,9	3,00	266,1
3	7,9	7,9	378	17,29	14	80	33	29,24	1,85	1,8	0,32	0,95	6,70	553,4
4	8,17	2,6	378	17,21	15,5	88	30,5	30,18	1,73	3,5	0,31	0,91	6,90	561,1
5	8,7	< 3	158	16,72	17,7	47	8,5	12,92	13,6	2,85	0,63	0,19	3,05	288,9
6	7,75	2,6	128	11,12	4,4	34	2,4	1,89	10,5	2,9	0,99	0,22	1,90	3,28
Подземные воды														
7	7,4	17,6	525	3,71	0,92	90	47,6	7,6	2,19	0,47	0,38	< 0.1	8,40	677
8	7,3	22	512	3,13	2,2	100	36,6	8,59	2,63	1,79	0,46	< 0,1	8,00	665,2
9	7,4	13,2	317	37,7	24,4	142	28	9,61	1,47	55,6	06,4	31,7	9,40	560,2
10	7,3	17,6	476	7,49	85,2	112	56,1	9,42	2,77	3,91	0,5	< 0,1	10,20	749
11	7,3	26,4	500	25,48	5,2	140	23,2	11,54	0,6	1,99	0,26	< 0,1	8,90	706
12	7,35	22	488	42,4	162	250	25,6	30,81	2,53	2,34	0,335	80,3	14,60	1001
13	7,5	13,2	494	14,32	46,1	122	44	7,46	2,22	2,6	0,75	0,21	9,71	730,1
14	8,3	< 3	464	11,12	88,5	100	63,4	8,34	2,18	2,31	1,02	0,15	10,20	741,1
15	8,18	24	451	5,11	17,7	100	31,7	6,09	3,37	3,78	0,69	0,26	7,60	639
16	7,4	< 3	323	7,91	67,4	114	39	8,74	2,71	5,14	2,48	0,2	8,90	562,8
17	7,95	< 0,1	403	2,88	35,5	94	31,7	7,14	2,1	4,44	1,9	< 0,1	7,30	576,3
18	7,4	< 3	433	35,73	98,7	190	43	0,39	5,36	0,55	0,4	119,4	13,02	806,2
19	7,35	< 3	561	35,07	69,2	146	67	8,26	3,29	3,43	0,58	0,26	12,79	889,8
Болото														
20	7,08	< 3	329	5,43	3,7	88	9,7	4,17	2,12	6,2	0,13	6,35	5,20	442,1

На сегодняшний день в районах Новосибирской области подземные воды являются практически единственным источником для хозяйственно-питьевого водоснабжения. Для водоснабжения потребителей Северного района эксплуатируются преимущественно неглубокозалегающие неогеновые водоносные горизонты. В районе действуют 184 скважины с общим водоотбором 3,1 тыс.м³/сут.

Речная сеть района довольно хорошо развита и принадлежит бассейну Иртыша, формирующая сток с массивов Васюганских болот. Русла рек извилисты, в верховьях их плохо выращенные долины, не имеющие четких границ. На территории Северного района находится гидротехническое сооружение — водозащитная дамба, протяженностью 5 км, расположенная на левом берегу р.Тартас вокруг села Северного. На состояние водных объектов основное негативное воздействие оказывают животноводческих фермы и предприятия, размещающие отходы производства на необорудованных площадках. С наступлением весны талые поверхностные воды с органическими веществами поступают в водные объекты [2].

В поверхностных водах рН изменяется от 7,5 до 7,8, что позволяет характеризовать их как слабощелочные. Температурный показатель воды приближен к температуре воздуха. Содержание компонентов SO_4^{2-} , CI^- , Ca^{2+} , Mg^{2+} , Na^+ , K^+ низкое. Общая минерализация колеблется от 3,28 до 561,1 мг/л, что позволяет характеризовать воды как пресные (согласно ГОСТ Р 54316-2011). По показателю общей жесткости воды средней жесткости. Питание поверхностны вод происходит за счет поверхностного стока атмосферных осадков, а так же разгрузке подземных вод.

Глубина подземных вод 22-33 м. Подземные воды территории исследований являются нейтральными, наибольшее значения pH имеет вода отобранная из колодца. Наиболее холодная вода в хозяйственно бытовых скважинах от 7 до 12,5 °C. Содержание компонентов Fe_{obm} , SO_4^{2-} , Cl^- , Ca^{2+} , Ca^{2+} , Mg^{2+} , Na^+ , K^+ низкое, наибольшее содержание NO_2 и NO_3 характерно для хозяйственно-бытовых скважин.По химическому составу (согласно М.Г.Курлова) воды гиднокарбонатные кальциевые, иногда гидрокарбонатно-сульфатные кальциевые. По минерализации воды характеризуется как пресные, по величине pH-нейтральные, средней жесткости, местами жесткие. По химическому составу (по классификации О.А.Алекина) класс вод-гидрокарбонатные, группа-кальциевые,тип-II. По степени жесткости воды являются очень жесткими.

Характерная особенность территории – её исключительно высокая заболоченность, наибольшая в области. Удельный вес болот в земельном фонде района равен 43% [2].

Болотные воды территории исследования являются нейтральными: общая минерализация 444,1 мг/л, гидрокарбонатно кальциевые. Содержание компонентов SO_4^{2} , Cl^2 , Ca^{2+} , Ca^{2+} , Mg^{2+} , Na^+ , K^+ низкое.

Согласно СанПиН 2.1.4.1074-01 содержание SO_4^{2-} , CI^- , Ca^{2+} , Mg^{2+} , Na^+ , K^+ в поверхностных и подземных водах не превышает ПДК. Качество питьевой воды, подаваемой системой водоснабжения, полностью соответствует требованиям санитарных правил [3].

Литература

- 1. Официальный интернет-портал Администрации Северного района Новосибирской области. Режим доступа: http://www.severnoe.nso.ru/
- Схема территориального планирования Северного района Новосибирской области выполнена ОАО «СибНИИградостроительства» в рамках Муниципального контракта №8 от 05.06.2008 по заказу администрации Северного района.
- 3. СанПиН 2.1.4.1074-01. «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества».

ХИМИЧЕСКИЙ СОСТАВ ПОЧВ ЗАСТРАЕВАЕМЫХ ТЕРРИТОРИЙ Е.А. Михайлова

Научный руководитель доцент А.А. Хващевская Национальный исследовательский Томский политехнический университет, г. Томск, Россия

В настоящее время происходит активное планирование и застройка территорий, относящихся раннее к сельскохозяйственным угодьям и используемых для выращивания различного рода сельскохозяйственных культур. Для повышения их урожайности и борьбы с вредителями на этих территориях используются сельскохозяйственные технологии агрогенных воздействий:

- внесение стандартных минеральных удобрений; внесение почвенных мелиоратов (раскисителей, гипса, торфа, песка или глины);
 - проведение водной мелиорации (осущение или орошение);
 - обработка территории инсектицидами, фунгицидами, гербицидами, дефолиантами
- обработка почвы, сопровождающаяся ее уплотнением, взаимодействием с истирающимися элементами орудий ее механической обработки и с выхлопами транспортных средств [4].

Указанные особенности эксплуатации сельскохозяйственных территорий могут значительно изменить содержание ряда компонентов состава грунта, что может вызвать их агрессивное действие по отношению к строительным материалам и конструкциям, воздействуя на последние растворенными солями или выщелачивая их составные части. Реальная опасность некоторых химических компонентов грунта определяется не столько их валовым содержанием, сколько количеством в грунтовых растворах, так как усиливается вынос компонентов в подчиненные ланшафты сельскохозяйственных территорий, изменяется физико-химическая обстановка в грунтах, прежде всего кислотно-основные показатели [4]. В этой связи изучение химического состава грунтов территорий используемых ранее для отличных от строительных нужд целей является актуальным при проведении инженерных изысканий под строительство зданий различного функционального назначения.

Цель работы – изучить химический состав водной вытяжки грунтов и возможную их агрессивность на территории Томского района, проектируемой для строительства жилого микрорайона.

Объектом исследований являются грунты сельскохозяйственных угодий, на которых выращивались различные корнеплоды - морковь, капуста, свекла и ряд зерновых культур. Отбор образцов грунта проводился согласно требованиям ГОСТ 28168-89 [2] с глубины 0-12 м. Подготовка водной вытяжки осуществлялась по процедуре, изложенной в [1] и включала 5 - минутное взбалтывание подготовленного грунта с водой при отношении грунта к воде 1:5. Всего отобрано и проанализировано 11 проб.

Для оценки агрессивности грунтов по отношению к свинцовой и алюминиевой оболочкам кабеля в водной вытяжке из грунта определялось содержание нитрат-иона, хлорид-иона и иона железа, органического вещества и значение рН. [3]. Для определения агрессивности грунтов по отношению к бетону в водной вытяжке определялись следующие компоненты: сульфат-ион, показатель рН, бикарбонатная щелочность, агрессивная углекислота, ионы магния, аммония, натрия, хлора, нитрата [5].

Химический анализ водной вытяжки проводился в проблемной научно-исследовательской лаборатории гидрогеохимии НОЦ «Вода» ИПР ТПУ. Результаты химического анализа представлены в таблице.

Таблица Результаты химического анализа водной вытяжки грунта территории Томского района

Компонент	Содержание, мг/кг											
Номер пробы	T1	T2	Т3	T4	T5	Т6	Т7	Т8	Т9	T10	T11	
Глубина отбора пробы, м	0-1,0	1,0	1,0-2,0	1,0-2,0	2,0	2,0	2,0	2,0	2,0-3,0	5,0	12,0	
рН, ед. рН	6,83	7,55	6,5	6,83	6,5	6,5	7,0	7,7	7,83	7,8	7,6	
УЭП, мкСм/см	22,3	130	14	28,2	16	11,4	42	101	108	111	132	
Органическое вещество*, мгО ₂ /кг	20,4	16,2	24,6	31,2	8,3	-	9,6	7,5	9,4	-	-	