ИЗУЧЕНИЕ ФОРМ НАХОЖДЕНИЯ ТЕХНОГЕННЫХ РАДИОНУКЛИДОВ В ВОДНЫХ ОБЪЕКТАХ СЕМИПАЛАТИНСКОГО ИСПЫТАТЕЛЬНОГО ПОЛИГОНА МЕТОДОМ КАСКАДНОЙ ФИЛЬТРАЦИИ

А.С. Торопов

Научный руководитель: д.г.-м.н, профессор Л.П. Рихванов Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Актуальность исследования форм нахождения радионуклидов в водных объектах бывшего Семипалатинского испытательного полигона (СИП) обусловлена фактическим отсутствием информации о том, как распределяются физико-химические формы техногенных радионуклидов и как они способны мигрировать с поверхностными водами в виде взвешенных веществ, псевколлоидной, коллоидной форме либо в виде растворенных веществ. Механизмы транспорта техногенных радионуклидов с водой исследованы недостаточно, что связано как с методическими трудностями, так и с объективной сложностью определения форм нахождения радионуклидов и элементов в водных системах из-за их ультранизких количеств. Форма нахождения радионуклидов определяет скорость и интенсивность их миграции вблизи радиационно-опасных объектов, а также влияние на состояние окружающей среды и здоровье населения. В данной работе были изучены формы нахождения искусственных радионуклидов в поверхностных водах СИП.

Всего было исследовано 3 водоисточника, где ранее были установлены суммарные активности радиоактивных элементов [1] и которые являются одними из наиболее загрязненных на СИП. Среди них 2 водотока штолен 177 и 503, а также искусственное озеро «Телкем-2».

Для изучения распределения форм нахождения радионуклидов в воде пробы подвергали каскадной фильтрации и выделяли следующие формы: грубое взвешенное вещество (1-10 мкм), тонкое взвешенное вещество (1-0,45 мкм), псевдоколлоиды (0,1-0,45 мкм), коллоиды высокомолекулярных веществ (0,1-100 кДа), органические коллоиды низкомолекулярных веществ (10-100 кДа) и растворенная (<10 кДа).

Радиохимические и спектрометрические анализы проводились в соответствие со стандартными методиками [2-4]. Определение ¹³⁷Сѕ и ²⁴¹Ат проводили гамма-спектрометрическим методом на гамма-спектрометре с полупроводниковым детектором из особо чистого Ge, производства ORTEC, ⁹⁰Sr — прямым измерением методом бета-спектрометрии с использованием жидкосцинтилляционного спектрометра TriCarb серии 2900, удельную активность ²³⁹⁺²⁴⁰Pu определяли после предварительного радиохимического выделения с электроосаждением на металлическом диске методом альфа-спектрометрии с использованием спектрометрической установки Alpha Analyst, производства Canberra.

Величина рН воды штольни 177 площадки «Дегелен» составила $6,76\pm0,02$, минерализация — 400 ± 10 мг/л. Уровень рН в воде штольни 503 составил 7,02, величина минерализации — 420 мг/л. По основным физико-химическим параметрам, вода озера Телкем-2 относилась к щелочной (рН = $8,58\pm0,02$), по степени минерализации — к классу соленых вод (6400 ± 130 мг/л). Содержание органических веществ во всех изученных водных объектах было ниже предела обнаружения (<10 мг/л).

Результаты распределения форм нахождения в водных объектах СИП показаны в таблицах 1-3.

Таблица 1 Формы нахождения искусственных радионуклидов в воде водотока штольни 177, Бк/л

Фракция	137Cs	⁹⁰ Sr	²³⁹⁺²⁴⁰ Pu
<10 мкм	5,0±0,5	680±70	$0,58\pm0,06$
<1 мкм	5.0 ± 0.5	690±70	0.53 ± 0.05
<0,45 мкм	4,3±0,4	660±70	0,44±0,04
<0,1 мкм	3,7±0,4	680±70	$0,40\pm0,04$
<100 кДа	3.8 ± 0.4	670±70	0.68 ± 0.07
<10 кДа	3,6±0,4	720±70	0,32±0,03

Таблица 2 Формы нахождения искусственных радионуклидов в воде водотока штольни 503, Бк/л

_	-	-	
Фракция	¹³⁷ Cs	⁹⁰ Sr	²³⁹⁺²⁴⁰ Pu
<10 мкм	<0,3	150±15	0.70 ± 0.07
<1 mkm	<0,3	160±20	0.6 ± 0.06
<0,45 мкм	<0,3	150±15	0.52 ± 0.05
<0.1 мкм	<0.3	150±15	0.37 ± 0.04
<100 кДа	<0.3	130±15	$(7.2\pm0.7)\cdot10^{-2}$
<10 кЛа	<0.3	110±10	$(6.2\pm0.6)\cdot10^{-2}$

Таблица 3 Формы нахождения искусственных радионуклидов в воде озера Телкем-2, Бк/л

_	-	-	_
Фракция	¹³⁷ Cs	⁹⁰ Sr	²³⁹⁺²⁴⁰ Pu
<10 mkm	<0,4	190±20	0.35 ± 0.03
<1 мкм	<0.4	170±20	0.24 ± 0.02
<0,45 мкм	<0,4	170±20	0,26±0,03
<0,1 мкм	<0,4	160±20	0.30 ± 0.03
<100 кДа	<0.4	160±20	0.11 ± 0.01
<10 кДа	<0,4	160±20	$(4\pm0.4)\cdot10^{-2}$

Активность 137 Cs в воде водотока штольни 177 составила 5.0 ± 0.5 Бк/л для самой крупной фракции, снижаясь до 3.6 ± 0.4 Бк/л для растворенной формы (менее 10 кДа). Таким образом, порядка $30\,\%$ 137 Cs связано с частицами различного размера, находящихся в поверхностных водах. Активность данного радионуклида для воды водотока штольни 503 и озера Телкем-2 была ниже предела обнаружения.

Было установлено, что основной формой нахождения ⁹⁰Sr была растворенная форма для всех изученных водных объектов. Однако для воды водотока штольни 503 наблюдалось снижение остаточной активности после фильтрации через мембраны, отсекающие коллоидное вещество (10 и 100 кДа) порядка 25-30 % от начальной активности данного радионуклида.

Установлено, что $^{239+240}$ Ри способен находиться как во взвешенной форме, так и в коллоидах и растворенной форме. Так, например, для воды водотока штольни 503 активность $^{239+240}$ Ри изменялась ступенчато с 0,7 до (6.2 \pm 0.6)· 10^{-2} Бк/л, после фильтрации через мембрану с разрешением 10 кДа. Распределение форм нахождения следующее: мембрана 1 мкм удерживает 17% $^{239+240}$ Ри, 0,45 мкм - 6%, 0,1 мкм - 21 %, 100 кДа - 43 % и 10 кДа - 1 %.

Для водотока штольни 177 выявлено, что более 50% $^{239+240}$ Pu находилось в растворенной форме.

Для озера Телкем-2 активность ²³⁹⁺²⁴⁰Pu снизилась на один порядок с 0,35 to 0,04 Бк/л с максимумом задержания на мембранах, отсекающих коллоиды.

Соотношение между формами нахождения зависит в первую очередь от самого водоисточника и подвержено изменениям условий окружающей среды.

Обобщая результаты по определению форм нахождения радионуклидов в водных объектах СИП, выявлено, что для 90 Sr характерна растворенная форма нахождения, для $^{239+240}$ Pu свойственно нахождения в различных формах, с преобладанием коллоидных и растворенных, при этом соотношение форм нахождения зависит от изучаемого объекта. Для установления форм нахождения 137 Cs и 241 Am необходимы более детальные исследования.

Данные о формах нахождения техногенных радионуклидов в воде могут в дальнейшем послужить основой для разработки практических рекомендаций по оценке радиоэкологического состояния СИП, прогнозирования уровня содержания и миграции радионуклидов в компонентах экосистем на СИП и близлежащих территориях.

Часть работы проведена за счет поддержки Министерства образования и науки Республики Казахстан, номер гранта 0122/14 ПЦФ.

Литература

- Aidarkhanova A.K. Lukashenko S.N. Investigation of character of distribution of radioactive contamination in the "water – sediments" system of Semipalatinsk Test Site and adjacent territories. // ENVIRA-2015 International Conference proceedings. Greece, 2015. P. PS3-43.
- Активность радионуклидов в объемных образцах. Методика выполнения измерений на гамма-спектрометре: МИ 2143-91. - Введ. 1998-06-02. - Рег. № 5.06.001.98. – М.: НПО ВНИИФТРИ, 1991. - 17 с.
- 3. Методика определения изотопов плутония–(239+240), стронция-90 и америция-241 в объектах окружающей среды (почвы, растения, природные воды). № 06-7-98 от 04.03.1998г. Алматы: ГП "ЦСМС".
- Методика определения содержания искусственных радионуклидов ^{239,240}Pu, ⁹⁰Sr и ¹³⁷Cs в природных водах методом концентрирования. ИЯФ НЯЦ РК регистрационный №0307/3 от 5.04.2001.

ГЕОХИМИЧЕСКАЯ ЗОНАЛЬНОСТЬ ПОДЗЕМНЫХ ВОД КАМЕННОУГОЛЬНЫХ ОТЛОЖЕНИЙ В ВОСТОЧНОМ ДОНБАССЕ

Е. С. Торопова, В. Е. Борисова

Научный руководитель профессор А.И.Гавришин Южно-Российский Государственный Политехнический Университет (НПИ) имени М.И.Платова, г. Новочеркасск, Россия

Воды каменноугольных отложений в Восточном Донбассе отличаются высокой неоднородностью химического состава: они изменяются от гидрокарбонатных кальциевых до хлоридных натриевых, минерализация колеблется от 0,2 до 57,2 г/л, содержания $Cl^- - 0,012$ -35,6, $Na^+ - 0,002$ -17,6 г/л и т.д. (таблица 1). Распределение содержаний компонентов не соответствует нормальной модели, и корреляционные связи могут быть криволинейными [1].

Химический состав подземных вод каменноугольных отложений Таблица 1

Компонент	X	Me	X	X	S
pН	7.7	7.7	6.4	8.6	0.5
HCO,	358	352	77	947	135
SO ₄ ^{2st}	485	400	15	1427	405
Cl	2366	243	12	35636	7086
Ca ²⁺	337	153	20	4084	716
Mg^{2+}	140	82	4	11145	227
Na ⁺	1237	252	2	17582	3316
M	4729	1611	178	57419	11149
Н	124	75.5	3	922	163

Примечание: во всех аналогичных таблицах X — среднее арифметическое, Me - медиана, X_{\min} и X_{\max} минимальное и максимальное значения, S - стандартное квадратичное отклонение (компоненты в мг/л,

Н - глубина в м).