УДК 621.313.12

ИНДУКТИВНО-ЕМКОСТНЫЙ ГЕНЕРАТОР МОЩНЫХ ИМПУЛЬСОВ ТОКА ДЛЯ ПИТАНИЯ ЭЛЕКТРОФИЗИЧЕСКИХ УСТАНОВОК В ЧАСТОТНОМ РЕЖИМЕ

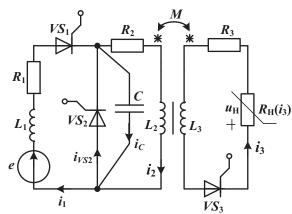
Г.В. Носов, С.В. Пустынников

Томский политехнический университет E-mail: nosov@elti.tpu.ru

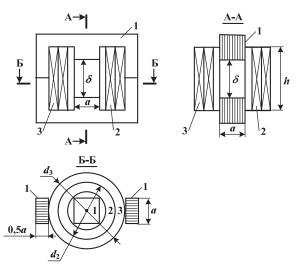
Рассмотрено применение индуктивно-емкостного генератора мощных импульсов тока для питания электрофизических установок в частотном режиме. Индуктивно-емкостный генератор состоит из питающего синхронного электромашинного генератора, работающего в кратковременно-ударном режиме, обмотка которого с переменной ЭДС и с двумя группами тиристоров используется для накопления энергии в магнитном поле первичной обмотки трансформатора. Параллельно первичной накапливающей энергию обмотке трансформатора подсоединяется конденсаторная батарея. Вторичная обмотка этого трансформатора подключается посредством третьей группы тиристоров к электрофизической установке. Приведены уравнения и результаты расчена в виде временных зависимостей и таблиц. Величина емкости батареи оптимизируется в диапазоне от одного до десяти значений резонансной емкости первичной обмотки трансформатора. Наличие конденсаторной батареи в 5...10 раз повышает мощность генератора, причем максимальная энергия в батарее до 10 раз меньше максимальной запасаемой энергии в магнитном поле первичной обмотки трансформатора. При длительной работе генератора частота следования импульсов тока в нагрузке может превышать одну десятую частоты изменения синусоидальной ЭДС электромашинного генератора.

Ключевые слова:

Генератор, импульс тока, частотный режим, электрофизическая установка, синхронный электромашинный генератор, переменная электродвижущая сила, тиристор, накопление энергии, трансформатор.


Kev words:

Generator, pulse current, frequency mode, electrophysical installations, synchronous electric machine generator, a variable electromotive force, thyristors, energy storage, transformer.

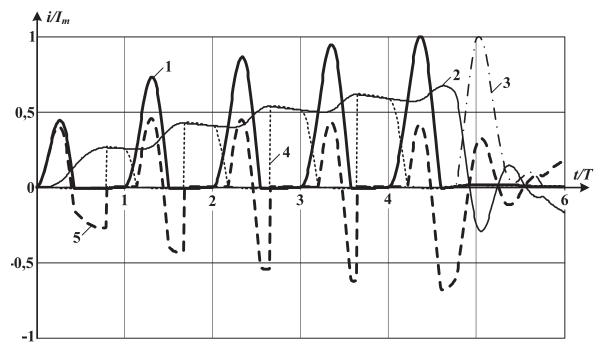

В настоящее время для питания рельсотронов, лазеров, плазмотронов, ускорителей заряженных частиц и других электрофизических установок применяются источники мощных импульсов тока, такие как электромашинные генераторы, аккумуляторные батареи, емкостные и индуктивные накопители, магнитокумулятивные и магнитогидродинамические генераторы [1-5]. Импульсные источники с резистивными («теплыми») индуктивными накопителями электромагнитной энергии и с размыкающимися (взрывными) коммутаторами являются одними из наиболее мощных генераторов импульсов тока с удельной запасаемой энергией в индуктивном накопителе до 5 Дж/см³ и более. Однако взрывные коммутаторы затрудняют реализацию частотного (многократного) режима работы такого генератора и дают значительные перенапряжения [2, 3, 5]. Поэтому разработка и расчет генератора мощных импульсов тока с резистивным индуктивным накопителем для частотного режима питания электрофизических установок является актуальной задачей.

В качестве источника мощных импульсов тока для частотного питания электрофизических установок можно использовать индуктивный генератор с тиристорными коммутаторами, трансформатором и однофазным синхронным электромашинным генератором кратковременно-ударного действия для накопления энергии в первичной обмотке трансформатора [1, 6]. Однако при многих параметрах этих генераторов и их нагрузок невозможно добиться перехода токов тиристоров через нулевые значения для их запирания, а также получить приемлемую скорость нарастания тока во вторичной обмотке трансформатора, что ограничивает применение и генерируемую мощность указанных индуктив-

ных генераторов. Для расширения используемых параметров генераторов и их нагрузок, а также для увеличения генерируемой мощности был предложен индуктивно-емкостный генератор с конденсаторной батареей [7], включенной параллельно накапливающей энергию первичной обмотке трансформатора (рис. 1). Трансформатор может быть воздушным [1] или с шихтованным ферромагнитным сердечником, имеющим зазор, где в магнитном поле накапливается основная энергия генератора (рис. 2).

Рис. 1. Электрическая схема индуктивно-емкостного генератора: $e=E_m sin\omega t$, L_1 , R_1 — переменная ЭДС, индуктивность и сопротивление обмотки синхронного электромашинного генератора; VS_1 , VS_2 , VS_3 — группы тиристоров; C — емкость конденсаторной батареи; L_2 , L_3 и R_2 , R_3 — индуктивности и сопротивления первичной и вторичной обмоток накапливающего энергию трансформатора; M — взаимная индуктивность обмоток трансформатора; u_H и $R_H(i_3)$ — напряжение и нелинейное сопротивление нагрузки; i_1 , i_2 , i_3 , i_4 , i_5 , i_5 — токи генератора

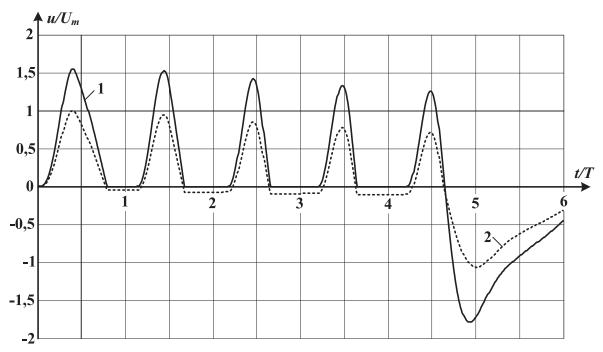
Рис. 2. Трансформатор с разъемным ферромагнитным шихтованным сердечником: 1) сердечник; 2) первичная обмотка с числом витков w_2 и индуктивностью L_2 ; 3) вторичная обмотка с числом витков w_3 и индуктивностью L_3 ; a — ширина сердечника; d_2 , d_3 — внешние диаметры первичной и вторичной обмоток; h — высота обмоток; S — воздушный зазор

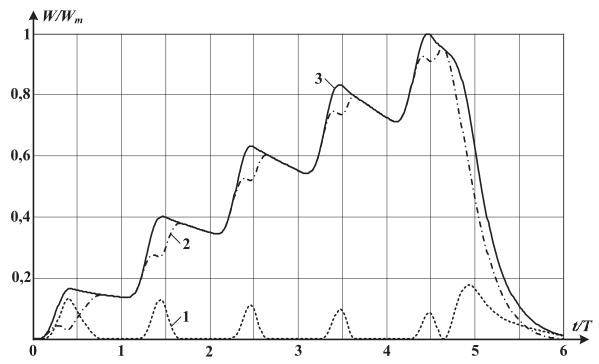

При определенных параметрах генератора в момент времени t=0, когда ЭДС e равна нулю, управляющим импульсом включается группа тиристоров VS_1 , токи i_1 , i_2 и i_C начинают изменяться: токи i_1 и i_C нарастают от нуля до первых максимальных значений и затем уменьшаются до нуля, а ток i_2 увеличивается. Напряжение на конденсаторах u_C увеличивается от нуля до первого максимального значения. При переходе тока i_1 через нулевое значение группа тиристоров VS_1 запирается. Ток конденсаторов i_C переходит через нулевое значение

и меняет направление. Напряжение на конденсаторах u_C уменьшается от первого максимального значения до нуля. Все это время ток i_2 растет до первого максимального значения.

В момент времени, когда напряжение u_{c} становится равным нулю и ток i_2 максимален, управляющим импульсом включается группа тиристоров VS_2 и их ток i_{VS2} = i_2 немного снижается за счет потерь энергии в R_2 . В момент времени $t=2\pi/\omega$ включается группа тиристоров VS_1 , и ток i_1 нарастает, а i_{VS2} уменьшается. При переходе тока i_{VS2} через нулевое значение группа тиристоров VS_2 запирается. Токи i_1 и i_2 нарастают до вторых максимальных значений и затем уменьшаются до нуля, а ток i_2 увеличивается. Напряжение $u_{\mathcal{C}}$ увеличивается от нуля до второго максимального значения. При переходе тока i_1 через нулевое значение группа тиристоров VS_1 запирается. Ток конденсаторов i_C меняет направление. Напряжение u_{c} уменьшается от второго максимального значения до нуля. Все это время ток i_2 растет до второго максимального значения.

В момент времени $t=4\pi/\omega$ вновь включается группа тиристоров VS_1 и т. д. С каждым последующим периодом изменения ЭДС e максимальные значения тока i_2 возрастают, происходит накопление энергии в магнитном поле первичной обмотки трансформатора с индуктивностью L_2 .


В момент времени $t \approx 2n\pi/\omega$ (n = 0,5;1,5;2,5...), когда группы тиристоров VS_1 и VS_2 заперты ($i_1 = i_{V\Sigma} = 0$), а ток $i_2 = -i_C$ максимален, управляющим импульсом включается группа тиристоров VS_3 , и ток i_3 нарастает от нуля до максимума и затем снижается до нуля. При возможном переходе тока i_3 через нулевое значение группа тиристоров VS_3 за-


Рис. 3. Относительные временные зависимости токов (i/l_m) при максимальных значениях l_m тока i_1 и l_{m3} тока i_3 : 1) i_1/l_{m1} ; 2) i_2/l_m ; 3) i_3/l_{m3} ; 4) i_5v_2/l_{m1} ; 5) i_c/l_m

пирается, т. е. в нагрузке формируется импульс тока i_3 . За счет потерь энергии в R_2 , R_3 и нагрузке токи i_2 = $-i_C$ и i_3 снижаются до нулевых значений. Индуктивно-емкостный генератор готов к генерированию следующего импульса тока i_3 .

На рис. 3–5 приведены характерные расчетные зависимости при $T=2\pi/\omega$ и n=4,5, которые получены при помощи разработанного алгоритма вычислений в системе Mathcad [8] на основании следующих уравнений:

Рис. 4. Относительные временные зависимости напряжений u/U_m на зажимах обмоток трансформатора при максимальных значениях E_m ЭДС е и U_{m3} напряжения u_3 . Напряжения на обмотках: 1) первичной – u_2/E_m ; 2) вторичной – u_3/U_{m3}

Рис. 5. Относительные временные зависимости энергий W/W_m при максимуме суммарной накапливаемой энергии W_m . Энергия: 1) в конденсаторной батарее W_c/W_m ; 2) в магнитном поле всех обмоток генератора W_L/W_m ; 3) суммарная $(W_c+W_L)/W_m$

$$\begin{split} L_{1} \frac{di_{1}}{dt} + (R_{1} + R_{VS1})i_{1} + L_{2} \frac{di_{2}}{dt} + M \frac{di_{3}}{dt} + R_{2}i_{2} &= e; \\ L_{2} \frac{di_{2}}{dt} + M \frac{di_{3}}{dt} + R_{2}i_{2} + R_{VS2}i_{VS2} &= 0; \\ L_{3} \frac{di_{3}}{dt} + M \frac{di_{2}}{dt} + R_{3}i_{3} + R_{VS3}i_{3} + u_{H} &= 0; \\ u_{C} + R_{VS2}i_{VS2} &= 0; \\ i_{C} &= C \frac{du_{C}}{dt}; \\ i_{1} + i_{VS2} &= i_{2} + i_{C}, \end{split}$$

где R_{VS1} , R_{VS2} и R_{VS3} — сопротивления тиристоров VS1, VS2 и VS3 в открытом и закрытом состояниях; напряжение на нелинейной активной нагрузке (α и m — постоянные параметры):

$$u_{\rm H} = \alpha \, i_3^m. \tag{*}$$

В табл. 1, 2 приведены расчетные параметры генераторов с трансформатором (рис. 2), когда n=4,5 и нелинейная активная нагрузка имеет напряжение (*), причем: B — магнитная индукция в сердечнике; c_2 , c_3 и b_2 , b_3 — толщина и ширина медных шин первичной и вторичной обмоток тран-

сформатора при толщине их изоляции 0,1 мм; $M_{\rm TP}$ — масса трансформатора; $I_{\rm m2}$ — максимум тока i_2 в первичной обмотке трансформатора; $U_{\rm mH}$ — максимальное напряжение на нагрузке; $U_{\rm mC}$ — максимальное напряжение на конденсаторах; W_e — поступившая от внешнего источника энергия в генератор; $W_{\rm H}$ — переданная за импульс энергия в нагрузку; η = $W_{\rm H}/W_e$ — эффективность генератора; $P_{\rm m}$ — максимальная мощность нагрузки; P_e — средняя мощность, потребляемая от электромашинного генератора.

Величина емкости конденсаторной батареи,

определяемая в диапазоне
$$\frac{1}{\omega^2 L_2} < C < \frac{10}{\omega^2 L_2}$$
, су-

щественно влияет на токи, напряжения, энергию, мощность и эффективность генератора. В свою очередь параметры нагрузки совместно с емкостью C определяют ток i_3 , напряжение $u_{\rm H}$, мощность $P_{\rm m}$, энергию $W_{\rm H}$ и эффективность η .

Индуктивно-емкостные генераторы имеют эффективность преобразования энергии до 50 % и могут использоваться для частотного питания мощными импульсами тока электрофизических установок на автономных и промышленных объектах.

Таолица 1. Параметры повышающего ток индуктивно-емкостного генератора															
В	W ₂	W ₃	δ		а	d ₂	d ₃	h	<i>C</i> ₂		C ₃	b_2	<i>b</i> ₃		M _{TP}
Тл	-	-	MM	1	MM	MM	MM	MM	MM	1 MM		MM	M MM		КГ
1,5	300	30	40		189	320	397	200	1		4,4	10		50	310
E_m	P _e	0	0	L	L ₁	L ₂	L ₃	М	R_1		R ₂		R_3		С
В	кВт	1/	′c	М	ιΓн	мГн	мГн	мГн	N	Ом	М	Ом	мОм		мкФ
380√2	11	31	14	1	10	100	1	9,6	126		6	28	3,14		500
m	α	I _{m1}	I _{m2}		I _{m3}	U _{mH}	U _{mC}	U _{m3}	W _e		W _m	W _H	η		P _m
-	B/A ^m	Α	А		Α	В	В	В	Дж		Дж	Дж		-	кВт
0	70				1708	70	841	79				880	0,428		120
0,5	2				1310	72						1014		0,492	95
1	61·10 ^{-₃}	235	160		1192	73			2061	1	332	1008 985		0,489	87
2	61·10 ⁻⁶				1100	74								0,478	81
4	62-10-12				1048	75						952		0,462	78

Таблица 1. Параметры повышающего ток индуктивно-емкостного генератора

Таблица 2. Параметры повышающего напряжение индуктивно-емкостного генератора

В	W ₂	W ₃		δ		а	d ₂	d ₃	h	<i>C</i> ₂		C ₃	b_2	,) ₃	M_{TP}
Тл	-	-		MN	N	MM	MM	MM	MM	MM		MM	MM	N	M	КГ
1,5	300	300	0	40)	189	320	414	200	1	1 0,6		10		4	320
E _m	Pe		ω	,		L ₁	L ₂	L ₃	М		R ₁		R_2	R ₃		С
В	кВт		1/	С		иΓн	мГн	Гн	Гн		иОм	М	Ом	Ом		мкФ
380√2	11		314	4		10	100	10	0,96		126	628		31,4		500
m	α	I_{m1}		Imi	2	I _{m3}	U _{mH}	U _{mC}	U _{m3}	W_e		W _m	$W_{\rm H}$:	η	P _m
-	B/A^m	Α		Α		А	В	В	В	Дж		Дж	Дж		-	кВт
0	7000			160		20	7000						855	0,	417	141
0,5	500					22	2336	9 836					989	0,4	182	51
1	100	235	5			22	2159		7845	2052	2 '	1319	918	0,4	147	47
2	10					19	3501						908	0,4	142	65
4	0,1					15	5043						884	0,4	431	76

Выводы

- 1. Предложен индуктивно-емкостный генератор мощных импульсов тока для питания электрофизических установок в частотном режиме, состоящий из конденсаторной батареи, однофазного синхронного электромашинного генератора и трансформатора, обмотки которых коммутируются тиристорными ключами и работают в кратковременно-ударном режиме.
- 2. Величина емкости конденсаторной батареи оптимизируется в диапазоне от одного до десяти значений резонансной емкости первичной обмотки накапливающего энергию трансформатора для обеспечения максимальных

СПИСОК ЛИТЕРАТУРЫ

- 1. Носов Г.В., Пустынников С.В. Индуктивный генератор импульсов тока для частотного режима питания рельсотрона // Известия Томского политехнического университета. 2010. Т. 317. N2 4. С. 84—89.
- 2. Асиновский Э.И., Лебедев Е.Ф., Леонтьев А.А. и др. Взрывные генераторы мощных импульсов электрического тока / под ред. В.Е. Фортова. М.: Наука, 2002. 398 с.
- 3. Глебов И.А., Кашарский Э.Г., Рутберг Ф.Г. Синхронные генераторы кратковременного и ударного действия. Л.: Наука, 1985.-224 с.
- Лившиц А.Л., Отто М.А. Импульсная электротехника. М.: Энергоатомиздат, 1983. – 352 с.

- значений мощности и эффективности генератора, а также перехода тока ЭДС через нулевое значение.
- Наличие конденсаторной батареи с оптимальной емкостью повышает мощность индуктивно-емкостного генератора примерно в 5...10 раз, причем максимальная энергия в батарее до 10 раз меньше максимальной запасаемой энергии в магнитном поле первичной обмотки трансформатора.
- 4. При длительной работе индуктивно-емкостного генератора частота следования импульсов тока в нагрузке может превышать одну десятую частоты изменения синусоидальной ЭДС электромашинного генератора.
- 5. Импульсные системы большой мощности / под ред. Э.И. Асиновского. М.: Мир. 1981. 248 с.
- Индуктивный генератор импульсов тока: пат. на ПМ 87847.
 Рос. Федерация. № 2009118719/22, заявл. 18.05.09; опубл. 20.10.09, Бюл. № 29. 4 с.: ил.
- Индуктивно-емкостный генератор импульсов тока: пат. на ПМ 107652. Рос. Федерация. № 2011112095/08, заявл. 30.03.11; опубл. 20.08.11, Бюл. № 23. – 4 с.: ил.
- Дьяконов В.П. Mathcad 8/2000: Специальный справочник. СПб.: Питер, 2000. – 592 с.

Поступила 24.10.2011 г.