горное обрамление впадин и обводненные разломы. Становление и развитие структур происходит в уникальной геодинамической обстановке – континентальном рифтогенезе, что создает специфические гидрогеологические, гидрогеохимические и гидрогеотермические условия формирования состава и свойств гидросферы. В результате формирование ресурсов и состава природных вод региона обусловлены не только процессами преобразования атмогенных вод, но и привлечением компонентов, а также продуктов генерации восходящего эндогенного флюида.

- 3. Обоснованы критерии (классификационные признаки) и выделены гидрогеологические структуры более высокого порядка.
- 4. Выполненное структурно-гидрогеологическое районирование и картографирование региона в различных масштабах позволяет определять перспективные участки локализации подземных вод разного состава и целевого использования и результативно осуществлять поисково-разведочные работы.
- 5. Кластерный анализ микрокомпонентного состава гидротерм Байкальского региона свидетельствует о необходимости корректировки существующих классификаций термальных вод, опирающиеся только на их газовый и анионный состав.

Литература

- 1. Диденков Ю.Н., Склярова О.А., Чернышова З.В., Брензей В.И., Вергун А.В. Анализ микрокомпонентного состава природных вод Байкальской рифтовой зоны//Геология, поиски и разведка полезных ископаемых и методы геологических исследований. Материалы Всерос. науч.-техн. конф. «ГЕОНАУКИ». Вып. 10. Иркутск: Изд-во ИрГТУ, 2010. С. 167 172.
- 2. Диденков Ю.Н., Вергун А.В., Проскурякова З.В. Микрокомпонентный состав лечебных гидротерм Хубсугульского региона (северная Монголия)//Курортная база и природные лечебно-оздоровительные местности Тувы и сопредельных регионов (материалы I международной научно-практической конференции). Кызыл, типография КЦО «Аныяк», 2013. С. 179-184.
- Проскурякова З.В. Диденков Ю.Н. Результаты поинтервального изучения макро- и микро-компонентного состава воды рифтового озера Хубсугул// Электронный сборник «Геология, поиски и разведка полезных ископаемых и методы геологических исследований» (мате-риалы Всероссийской научно-технической конференции «ГЕОНАУКИ»). Иркутск: Изд-во ИрГТУ, 2016. С. 98-103.
- 4. Лысак С.В. Тепловой поток континентальных рифтовых зон. Новосибирск: изд-во «Наука». Сибирское отлеление. 1988. 200 с.
- 5. Мац В.Д., Уфимцев Г.Ф., Мандельбаум М.М. и др. Кайнозой Байкальской рифтовой впадины. Новосибирск, Изд-во СО РАН, 2001, 249 с.
- 6. Степанов В.М. Введение в структурную гидрогеологию. М.: Недра, 1989 г. 229 с.

АНАЛИЗ ЭКСПЛУАТАЦИИ ВОДОХОЗЯЙСТВЕННЫХ СИСТЕМ НА ТЕРРИТОРИИ НИЖНЕГО ТЕЧЕНИЯ Р.ТОМИ

П.И. Проценко

Научный руководитель профессор В.К. Попов

Национальный исследовательский Томский политехнический университет, г.Томск, Россия

Споры вокруг Томского водозабора начались еще до его строительства. В 60-х годах очень остро встал вопрос качества речной воды в районе г.Томска. Это было связано с тем, что стали развиваться большими темпами промышленный гиганты: Новокузнецк, Кемерово и Юрга. Проблема качества речной воды стала обсуждаться в научных кругах. Анализы, выполненные в проблемной геологической лаборатории ТПИ, говорили о загрязнении воды органическими отбросами, в том числе в воде постоянно находились азот, аммиак и фенол. Одной из возможностей быстрого решения проблемы водоснабжения города стало использование подземных вод, И.В. Торопцев, А.А. Воробьев и Б.В. Плотников, опираясь на работы сотрудников ТПИ и материалы изысканий Томской комплексной экспедиции доказали необходимость и экономическую выгодность использования артезианских вод. Н.М. Рассказов подготовил проект предварительной разведки подземных вод на территории Обь-Томского междуречья, который был поддержан учеными ТПИ. Томская комплексная экспедиция выполнила детальную разведку, утвержденные запасы пресной воды оказались выше расчетных и составили 500 тысяч м³/ сут [1].

В апреле 1972 года вышло распоряжение о строительстве Томского водозабора. В ноябре 1973 года были готовы и опробованы первые 45 скважин. 13 декабря 1973 года была запущена в эксплуатацию первая часть подземного водозабора. Строительство водозабора было завершено в октябре 1974 года.

Основной вклад в исследования гидрогеологии и гидрогеохимии района Томского водозабора внесли П.А. Удодов, Н.М. Рассказов, Н.А. Карлсон, Т.Н. Филиппова, В.А. Коробкин, С.Л. Шварцев, В.К. Попов, В.П. Шинкаренко, В.А. Льготин, Ю.В. Макушин, Г.М. Рогов, В.А. Зуев и другими.

После загрязнения рек для человека остался, по сути, единственный источник водоснабжения – пресные подземные воды, месторождения которых, к сожалению, в процессе эксплуатации почти всегда в той или иной

мере истощаются, качество воды в них ухудшается, под влиянием водоотбора изменяется окружающая среда. Это обстоятельство вызывает особое беспокойство во всем мире, и поэтому проблема чистой воды относится к разряду мировых. Тем самым изучение характера и качества изменения подземных вод, масштаба и темпов преобразования окружающей среды на любом водозаборе представляет огромный научный интерес. Также изучение устойчивости к техногенным воздействиям гидросферы Обь-Томского междуречья интересно с позиции повышения надежности эксплуатации подземных водозаборов.

В связи с этим практический и научный интерес имеют данные об изменении гидрогеологических условий и химического состава подземных вод в зоне влияния крупного площадного водозабора, который обеспечивает водой областной центр г.Томск и расположен на территории Обь-Томского междуречья [2].

Обь-Томское междуречье по свои физико-географическим, гидрогеологическим и экологическим условиям является районом, благоприятным для формирования и сохранности вод хозяйственно-питьевого назначения. На данный момент — это территория, на которой сложилась непростая экологическая ситуация, являющаяся результатом многолетнего интенсивного антропогенного воздействия, более 45 лет [3].

На территории Обь-Томского междуречья (ОТМ) расположены 45 населенных пунктов. Большая их часть (65%) сосредоточена в долинах рр. Томи и Оби. В них проживает почти 70% населения междуречья. В двух наиболее крупных населенных пунктах (Тимирязевский, Моряковка) сосредоточена почти треть населения Обь-Томского междуречья.

Многолетняя эксплуатация Томского подземного водозабора привела к образованию депрессионной воронки в эксплуатируемом водоносном комплексе. Границы депрессионной воронки : юг - р. Черная; юго-восток - 4-8 км от линии водозабора; запад - 15-25 км от линии водозабора вглубь междуречья; восток - левобережье реки Томи. Воронка обусловливает «подтягивание» некондиционных вод, влияет на изменения в гидрогеологии водоносных горизонтов, смежных с эксплуатационным. В колодцах у местного населения снижается уровень воды [2].

Также вблизи Томского водозабора на северо-востоке расположены объекты Сибирского химического комбината г. Северска, на которых происходит переработка и утилизация радиоактивных веществ. Здесь производится закачка жидких радиоактивных отходов в водоносные горизонты меловых отложений на глубину от 280 до 400 м.

Это создает угрозу для систем жизнеобеспечения г. Томска и г. Северска, так как на расстоянии менее 20 км от места глубинного захоронения находятся скважины Томского подземного водозабора, а еще ближе — двух Северских водозаборов, эксплуатирующих запасы одного и того же водоносного комплекса палеогеновых отложений.

Подавляющая масса населения ОТМ рассредоточена по малым населенным пунктам, что создает определенные сложности в решении проблемы организации и обеспечения централизованного водоснабжения из подземных источников, так как воды поверхностных водотоков не соответствуют санитарным нормам.

Водоснабжение населенных пунктов на ОТМ осуществляется как централизованным путем, так и одиночными скважинами.

- 80,3% населения Обь-Томского междуречья пользуются водой из артезианских скважин, подаваемой специализированными предприятиями, ориентированными на обеспечение населения питьевой водой.
- 19,7% населения имеют индивидуальные источники водоснабжения. Каптажными сооружениями являются колодцы и забивные скважины индивидуального пользования.

Низкое качество подаваемой населению воды связано не только с отсутствием должной водоочистки, но и с вторичным загрязнением в разводящих водопроводных сетях. Большинство водопроводных сетей имеет более 50% износа, а некоторые полностью выработали сроки эксплуатации.

Также на территории ОТМ угрозу подземным водам несет нарушение поверхностного слоя почвы, добыча гравия и песка, сбросы неочищенных коммунальных стоков, вырубка лесов, эксплуатация транспортных систем (дороги, мосты) изменение гидрологических режимов грунтовых вод и поверхностных водных объектов (реки, озера, болота). Таким образом, население ОТМ должно учитывать, что в зонах санитарной охраны многие виды деятельности ограничены.

Территория ОТМ активно используется как местными жителями, так и горожанами как источник дикоросов. Сосновые леса, широко распространенные в междуречье, богаты грибами, черникой, здесь же расположено несколько припоселковых кедровников, которые являются орехопромысловыми зонами. В результате неконтролируемого наплыва сборщиков дикоросов возникает другая проблема — захламление лесов. Этому способствует также отсутствие в некоторых населенных пунктах организованной системы сбора бытовых отходов у населения, что приводит к возникновению стихийных свалок прямо в лесах ОТМ. Такая ситуация на протяжении многих лет наблюдается возле пос. Тахтамышево, Кафтанчиково и других. Учитывая песчаные грунты, слагающие данную территорию и наличие здесь воронки депрессии в результате эксплуатации водозабора, все эти загрязнения вполне могут сказаться как на состоянии воды в реке Томи, так и на качестве питьевой артезианской воды [4].

В последние годы многократно обсуждается вопрос о расширении города и застройке ОТМ. Противники этого проекта справедливо считают, что это лишит ОТМ его уникальности.

Из материалов, представленных администрацией Томского района, следует, что в пределах третьего пояса зоны санитарной охраны водозабора определены перспективные зоны для индивидуального жилищного строительства, производственных зон и зон для развития дачных товариществ.

Необходимо также учитывать, что большая часть территории планируемой застройки левобережья р. Томи находится на площади, где подземные воды, используемые для питьевого водоснабжения, по геолого-

гидрогеологическим условиям являются недостаточно защищенными от поверхностного загрязнения. Слабая защищенность подземных вод требует строжайшего соблюдения санитарных правил и норм по размещению планируемых объектов, правил по их сооружению и эксплуатации.

Таким образом установлены общие проблемы эксплуатации Томского водозабора, которые приводят к негативным последствиям в виде процессов и явлений, протекающих, часто необратимо, в сторону ухудшения практически всех составных частей окружающей среды.

Литература

- 1. Зиновьева В.П., Порядина А.Ф. От чистого истока. Век томского водопровода. Томск: ГАЛАПресс, $2005 \, \mathrm{r.} 304 \, \mathrm{c.}$
- Зуев В.А., Картавых О.В., Шварцев С.Л. Обской вестник: научно-практический журнал / Комитет России по водному хозяйству; Сибирское соглашение; Обской бассейновый совет; Российская академия наук (РАН), Сибирское отделение (СО), Институт водных и экологических проблем (ИВЭП); Водоканал Барнаула; Ноосфера. - 1999. - № 3/4. - С. 137.
- 3. Попов В.К., Корбкин В.А., Рогов Г.М., Лукашевич О.Д. и др. Формирование и эксплуатация подземных вод Обь-Томского междуречья. Томск. Изд-во Томского архитектурно-строительного университета, 2002г. 143 с.
- 4. Попов В.К., Лукашевич О.Д., Коробкин В.А., Золотарева В.В., Галямов Ю.Ю. Эколого-экономические аспекты эксплуатации подземных вод Обь-Томского междуречья. Томск. Изд-во Томского архитектурностроительного университета, 2003. 174 с.
- 5. Лукашевич О.Д., Мударисова Г.Р. Обь-Томское междуречье: сохранять нельзя использовать // Материалы IX Международной конференции «Реки Сибири и Дальнего Востока» (гг. Иркутск, Байкальск; 10-12 ноября 2015 г.). Иркутск: ИРОО «Байкальская Экологическая Волна», 2015. 165 с.

ИССЛЕДОВАНИЕ ФИЗИКО МЕХАНИЧЕСКИХ СВОЙСТВ КЛЮЧЕВСКОГО ЗОЛОТОРУДНОГО МЕСТОРОЖДЕНИЯ С ЦЕЛЬЮ ОЦЕНКИ ИХ УСТОЙЧИВОСТИ В БОРТАХ КАРЬЕРА.

Е.Г. Прянишников

Научный руководитель профессор В.Е. Ольховатенко Томский государственный архитектурно-строительный университет, г. Томск, Россия

Ключевское золоторудное месторождение является одним из крупнейших, разработка которого ведется открытым способом. К настоящему времени глубина действующего карьера достигла 160 м. В ближайшие годы планируется увеличение добычи руды за счет расширения и углубления карьера. На конечный период отработки карьера его глубина составит 475 м. Для обоснования проекта разработки месторождения на больших глубинах потребовалось проведение специальных инженерно-геологических исследований. В процессе исследований были детально изучены физико-механические свойства пород, обобщенные характеристики которых приводятся в таблице 1.

По данным геолого-разведочных работ Ключевское золоторудное месторождение является составной частью одноименного рудного поля, сложенного преимущественно интрузивно-субвулканическими и жильными образованиями юрского возраста: гранитами и гранодиоритами первой фазы амананского комплекса, прорванными штоками гранодиорит-порфиров амуджикано-сретенского комплекса и дайками диоритовых порфиритов, гибридных порфиров.

В разрезе Ключевского месторождения выделено 11 инженерно-геологических типов пород.

Гранит среднезернистый калишпатизированный пользуется довольно широким распространением и имеют мощность от 0,5 до 125,3 м. Средняя плотность пород составляет -2,59 г/см³. Среднее значение угла внутреннего трения 34° , а удельного сцепления 10,5 МПа.

Гранит среднезернистый биотит-роговообманковый калишпатизированный. Характеризуется близкими значениями физических свойств с описанными выше гранитами, имея среднюю плотность 2,59 г/см³, предел прочности на одноосное сжатие -43,07 МПа, растяжение -6,02 МПа, угол внутреннего трения -37° , удельное сцепление -7,5 МПа.

Гранит среднезернистый аргиллизированный по своим физическим свойствам мало отличается от предыдущих типов пород. Так, плотность составляет $2,59\,$ г/см 3 , угол внутреннего трения - $36\,$ °, а удельное сцепление - $9,25\,$ МПа.

Гранит среднезернистый хлоритизированный имеет более высокое значение плотности по сравнению с другими типами пород, которая в среднем составляет 2,64 г/см³. Предел прочности на одноосное сжатие составляет 43,21 МПа, угол внутреннего трения 34°, удельное сцепление 11,0 МПа.

Гранодиорит-порфир мелкозернистый самые высокие прочностные показатели. Так предел прочности на сжатие составляет в среднем 60,18 МПа, на растяжение 11,40 МПа, а удельное сцепление 16,88 МПа.

Гранодиорит-порфир мелкозернистый аргиллизированный отличается более низкими значениями предела прочности на одноосное сжатие (28,17 МПа) и удельного сцепления (8,0 МПа). Угол внутреннего трения составляет в среднем 32°.