ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДАЛЬНЕВОСТОЧНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

На правах рукописи

Оводова Елена Викторовна

ТРАНСФОРМАЦИЯ ПРИРОДНЫХ ВОД ПОД ВЛИЯНИЕМ ПРОЦЕССОВ МИНЕРАЛОГО-ГЕОХИМИЧЕСКИХ ПРЕОБРАЗОВАНИЙ В ПРИРОДНО-ТЕХНОГЕННЫХ ГЕОЛОГИЧЕСКИХ СИСТЕМАХ (НА ПРИМЕРЕ КАВАЛЕРОВСКОГО И ДАЛЬНЕГОРСКОГО РАЙОНОВ ПРИМОРСКОГО КРАЯ)

Специальность 25.00.36 – Геоэкология (науки о Земле)

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата геолого-минералогических наук

Научный руководитель: доктор геолого-минералогических наук, профессор Тарасенко Ирина Андреевна

Владивосток - 2017

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1. ПОСТАНОВКА ПРОБЛЕМЫ, СОСТОЯНИЕ ЕЕ ИЗУЧЕННОСТИ	9
2. ПРИРОДНЫЕ УСЛОВИЯ И ОСНОВНЫЕ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИЕ ОСОБЕННОСТИ РАЙОНА	
2.1. Географическое и административное положение района	
2.2. Социально-экономические условия района и их влияние на экологическое состводных ресурсов	гояние 19
2.3. Геологические и гидрогеологические условия района	24
2.3.1. Геологические условия	24
2.3.2. Гидрогеологические условия	41
3. МЕТОДИКА ПОЛУЧЕНИЯ И ОБРАБОТКИ ИНФОРМАЦИИ	
3.1. Полевые работы	
3.2. Лабораторные исследования	
3.3. Камеральная обработка результатов исследований	
4. ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ПРИРОДНЫХ И ТЕХНОГЕННЫХ ВОД	
4.1. Химический состав природных подземных вод района работ	
4.2. Химический состав природных поверхностных вод района работ	60
4.3. Микрокомпонентный состав природных вод	
4.4. Геохимия техногенных вод	64
4.5. Типизация вод района работ	92
5. ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ ХИМИЧЕСКОГО СОСТАВА ТЕХНОГЕННЫХ ВОД	
5.1. Факторы формирования химического состава вод	96
5.1.1. Геохимическая характеристика техногенных отложений	97
5.1.2. Минералогическая характеристика природно-техногенных геологических	систем 108
5.2. Физико-химическое моделирование ионного состава раствора при изменяющи объемных соотношениях «вода-порода»	іхся 149
6. ОЦЕНКА ГЕОХИМИЧЕСКИХ ПРЕОБРАЗОВАНИЙ ТЕХНОГЕННО-ЗАГРЯЗНЕ ПОВЕРХНОСТНЫХ ВОД	ННЫХ 167
6.1. Геохимия техногенно-загрязненных поверхностных вод	167
6.2. Расчет массы выноса загрязняющего вещества поверхностным стоком с террих хвостохранилища	гории 172
ЗАКЛЮЧЕНИЕ	178
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	181
ПРИЛОЖЕНИЯ	201

введение

Актуальность исследований. Промышленная эксплуатация месторождений всегда обусловливала значительное увеличение техногенной нагрузки на экологическую обстановку горнорудных районов. Интенсивное развитие горнодобывающей промышленности в Кавалеровском и Дальнегорском районах Приморского края выразилось не только в массовом изъятии полезных компонентов, но также в размещении объектов добычи и большого объема отходов обогащения.

Основными источниками загрязнения окружающей среды различными металлами рассматриваемых районах элементами И тяжелыми В являются ликвидированные горные выработки (штольни) и хвостохранилища. Попав в атмосферу, почву или водоемы, загрязнители не остаются на месте, а включаются в природный круговорот веществ, обусловливают изменение качества природной среды и ее ресурсов. В результате природные экосистемы на десятки и сотни лет попадают в зону загрязнения. Поэтому изучение качественной и количественной интенсивного характеристик минералого-геохимических преобразований в природно-техногенных геологических системах Кавалеровского и Дальнегорского районов Приморского края и их негативного воздействия на окружающую среду весьма актуально и практически значимо.

Под природно-техногенными геологическими системами здесь И далее совокупность геологических объектов (горные породы, минералы, понимается природные воды) И сооружений горнодобывающего комплекса (штольни, хвостохранилища), находящихся в тесной взаимозависимости.

Известно, что в результате минералого-геохимических преобразований рудных минералов, горных пород и природных вод, обусловленных гипергенными процессами, происходит формирование вод с повышенными (относительно «Перечня ПДК и ОБУВ», 1997 г. и СанПиН 2.1.4.1074-01) содержаниями различных компонентов. При этом влияние горнорудного техногенеза на гидрогеологическую систему не ограничивается только загрязнением воды высокотоксичными элементами. Взаимодействие дренажных нарушению потоков с природными водами приводит к естественного гидрогеохимического режима и изменению химического типа природных вод (Еделев, 2013; Лукьянова, 2013; Саева, 2015).

Физико-химические процессы преобразования пород, рудных минералов,

протекающие в техногенных объектах (отвалы вскрышной породы, хвостохранилища, горные выработки) изучены и представлены в работах И.А. Тарасенко, А.В. Зинькова (2001); Р.А. Кемкиной, И.В. Кемкина (2006; 2007); С.Б. Бортниковой с соавторами (2006); В.П. Зверевой (2008); А.М. Костиной (2011); О.П. Саевой (2015); S. Bortnikova et al. (Acid Mine Drainage Migration..., 2011); N.V. Yurkevich et al. (2012). Однако на территории Приморского края недостаточно изученными остаются вопросы, связанные с влиянием вещественного состава техногенных отходов на механизмы миграции химических элементов и определения степени их негативного воздействия на поверхностные водные объекты.

Появление новых методов геохимических и минералогических исследований позволяет значительно расширить знания в области вторичного минералообразования в районах добычи минерального сырья и складирования отходов их обогащения, изучить степень гипергенного преобразования исходных минеральных фаз, механизмы перевода токсичных элементов в раствор и их миграцию.

Объектами исследования являются рудные и породообразующие минералы, природные поверхностные, подземные и техногенные воды Кавалеровского и Дальнегорского районов Приморского края. Исследованы рудничные воды штолен, расположенные В пределах законсервированных месторождений Дубровского, Хрустального, Высокогорского и Верхнего, а также воды разведочной штольни в пос. Фабричный Кавалеровского района, двух старых и новых хвостохранилищ Центральной (ЦОФ) и Краснореченской обогатительных фабрик (КОФ), размещенных В Дальнегорском районе Приморского края.

Цель исследований. Выявить особенности трансформации химического состава природных вод под влиянием процессов минералого-геохимических преобразований в природно-техногенных геологических системах Кавалеровского и Дальнегорского районов.

Задачи исследований:

1. Определить условия формирования химического состава вод в районах горнорудного техногенеза Кавалеровского и Дальнегорского районов.

2. Изучить особенности химического состава природных и техногенных вод и формы миграции основных макро- и микроэлементов.

3. Выявить основные загрязнители поверхностных и подземных вод, установить источники токсичных элементов.

4. Изучить процессы вторичного минералообразования в зоне гипергенеза природно-техногенных геологических систем, определить количества и формы вхождения токсичных элементов в кристаллические структуры минералов.

5. Оценить масштабы влияния объектов горнорудного техногенеза на состояние поверхностных вод и их потенциальную опасность на экосистемы р. Рудной и р. Зеркальной.

Фактический материал и личный вклад автора. В основу диссертационной работы положены результаты химического анализа 119 проб воды, 36 проб лежалых хвостов обогащения, 52 образцов минеральных новообразований.

Отбор геохимических, гидрохимических и минералогических проб осуществлялся автором лично в ходе полевых исследований 2011–2015 гг. В процессе работы привлекались материалы производственных отчетов и литературные данные.

Аналитические работы (макро- и микроэлементный состав вод, пород, исследования твердых минеральных фаз) выполнялись в аналитическом центре Дальневосточного геологического института (ДВГИ ДВО РАН), а также в экоаналитической лаборатории ООО «Экоаналитика» Дальневосточного федерального университета (ДВФУ).

Достоверность научных результатов обеспечивается применением комплекса современных методов исследования, включающих рентгеноструктурный и рентгенографический анализ (более 80 определений), автором обработаны результаты электронно-микрозондового анализа (более 150 определений), изучена морфология и состав минеральных фаз на сканирующих электронных микроскопах (200 определений) и большим объемом экспериментальных данных физико-химического моделирования.

Полученные фактические материалы, положены в основу диссертационной работы. Все разделы диссертации выполнены автором лично. Основные положения и выводы диссертационной работы опубликованы.

Защищаемые положения:

1. Химический состав вод в районах горнорудного техногенеза подвержен значительной изменчивости. Геохимическая трансформация природных вод происходит по схеме HCO₃-Ca → SO₄-Ca. Процессы гипергенного преобразования определяют

формирование слабосолоноватых (M < 1,5 г/дм³), нейтральных и слабощелочных (pH = 7,26–7,63), S^{Ca}_{II-III} вод в природно-техногенных геологических системах Кавалеровского района, а также пресных (M < 0,5 г/дм³) и слабосоленых (M < 10,19 г/дм³), слабощелочных (pH = 8,48) и сильнокислых (pH = 2,33), S^{Ca}_{II-IV} вод в условиях Дальнегорского района.

2. Гидрогенное минералообразование играет важную роль в формировании химического состава вод, способствуя выводу из раствора элементов и дальнейшему растворению водовмещающих пород. Геохимические характеристики вторичных минералов указывают на кислотно-щелочные условия их формирования, насыщенность минералообразующих растворов теми или иными элементами и формы их миграции. В слабощелочных и близнейтральных водах миграция осуществляется в форме незакомплексованных ионов и комплексов-ассоциатов с участием анионов HCO₃⁻, CO₃²⁻ и OH⁻. В составе сильнокислых высокоминерализованных растворов основными формами нахождения и миграции являются простые катионные ионы, а в комплексообразовании значительная роль отводится SO₄-²-иону.

3. Воды бассейнов р. Рудной и р. Зеркальной испытывают значительную техногенную нагрузку, которая определяется воздействием дренажных стоков с хвостохранилищ и ликвидированных штолен, характеризующихся высоким содержанием токсичных элементов. Влияние носит локальный в пространстве характер и определяется объемами загрязненных вод и водностью рек-приемников. Возможен рост содержаний токсичных элементов в дренажных стоках в результате активизации геохимических процессов и увеличения времени взаимодействия воды с горной породой, что отразится на качестве вод в поверхностных водотоках.

Научная новизна работы:

1. Впервые выявлены и изучены морфологические структуры и особенности химического состава вторичных минеральных новообразований хвостохранилищ КОФ, на основе чего рассчитаны их кристаллохимические формулы и определены количества и формы вхождения различных токсичных элементов в их кристаллические структуры.

2. Изучено фракционирование РЗЭ в отложениях хвостохранилищ КОФ.

3. Получены новые данные по составу, содержанию и распределению редкоземельных элементов в природных поверхностных и подземных водах, определены концентрации РЗЭ в техногенных водах Дальнегорского района.

4. На основе результатов физико-химического моделирования определены основные формы миграции химических элементов с позиций геохимической эволюции системы «вода-порода-газ». Проведена оценка и прогноз потенциального загрязнения среднего течения р. Рудной поверхностными стоками с хвостохранилищ Дальнегорского района.

5. С помощью современных методов физико-математических расчетов была оценена степень равновесия вод с основными минералами водовмещающих горных пород.

Практическая значимость работы. Представленные в работе данные об уровнях концентраций химических элементов в водных объектах, могут быть использованы специалистами в области экологической безопасности при организации мониторинга окружающей среды.

Результаты исследований могут использоваться при создании системы требований к организации складирования отвалов горнорудной промышленности и прогноза поведения рудных хвостов обогащения.

Данные, характеризующие формы нахождения и миграции РЗЭ в природных и техногенных водах, распределения РЗЭ в отходах обогащения сульфидных руд могут быть полезны при проведении гидрогеохимических поисков полезных ископаемых.

Методология изучения особенностей и закономерностей процессов формирования состава вод, приемы оценки техногенного воздействия на окружающую среду используются в процессе обучения студентов ДВФУ.

Апробация работы. Результаты исследований и основные научные положения работы докладывались и обсуждались на различных российских и международных конференциях симпозиумах: Научная конференция И Вологдинские чтения «Техносферная безопасность» (Владивосток, 2012); XVIII Международный научный симпозиум имени академика М.А. Усова «Проблемы геологии и освоения недр» (Томск, 2014); Π научно-практическая конференция Международная Технологическая платформа «Твердые полезные ископаемые»: технологические и экологические проблемы отработки природных и техногенных месторождений (Екатеринбург, 2015); Всероссийская научно-практическая студенческая конференция «Современные исследования в геологии» (Санкт-Петербург, 2015); II Всероссийская конференция с международным участием «Геологическая эволюция взаимодействия воды с горными породами» (Владивосток, 2015); Международная научная конференция «Современные технологии и развитие политехнического образования» (Владивосток, 2015).

По тематике диссертации опубликовано более 20 работ, в том числе 4 статьи в российских изданиях, рекомендованных ВАК Минобрнауки РФ, 2 статьи индексируемые в реферативных базах данных SCOPUS.

Работа выполнена при финансовой поддержке ФЦП «Научные и научнопедагогические кадры инновационной России» на 2009-2013 годы (№ 14.132.21.1374), руководитель гранта – Оводова Е.В.

Общая структура диссертации. Диссертация изложена на 271 странице и состоит из введения, 6 глав и заключения. Содержит 266 библиографических источников, 49 таблиц, 72 рисунка и 6 приложений.

Благодарности. Автор выражает глубокую благодарность своему научному руководителю д.г.-м.н. И.А. Тарасенко за внимание, непосредственную помощь в организации и выполнении работ, советы и обсуждения. Автор искренне признателен и благодарен к.г.-м.н. Р.А. Кемкиной за ценные замечания и рекомендации, д.г.-м.н. И.В. Кемкину за оказанную помощь при решении задач физико-химического моделирования, обсуждение рукописи и высказанные критические замечания. Автор благодарит к.г.-м.н. А.В. Зинькова за консультации и обсуждение полученных результатов. Автор благодарен сотрудникам аналитического центра ДВГИ ДВО РАН Г.Б. Молчановой, А.В. Поселюжной, Е.В. Елохиной, Н.С. Зарубиной, Г.И. Горбач, Е.А. Ткалиной, Н.В. Хуркало, заведующей ЭАЛ ООО «Экоаналитика» ДВФУ И.Г. Лисицкой, а также Е.О. Хвост и С.М. Олесик, при содействии которых была произведена аналитическая обработка первичного материала. За конструктивную критику и ценные рекомендации автор признателен д.г.н. С.М. Говорушко, к.г.-м.н. А.С. Ваху, д.т.н. Н.Г. Шкабарне, к.г.м.н. С.П. Гарбузову. Автор благодарен к.х.н. А.М. Костиной и А.Д. Пятакову за консультации и помощь при освоении программного комплекса «Селектор-С».

1. ПОСТАНОВКА ПРОБЛЕМЫ, СОСТОЯНИЕ ЕЕ ИЗУЧЕННОСТИ

Гидрогеохимические исследования в Приморском крае начались в 1955 г., когда в Лаборатории гидрогеологических проблем под руководством С.И. Смирнова изучались критерии применения гидрогеохимического метода поисков в условиях Тетюхинского (Дальнегорского) и Кавалеровского рудных районов. Данные исследования позволили рассеяния вокруг установить водные ореолы крупных полиметаллических месторождений, а впоследствии на перспективных участках были обнаружены рудные тела с промышленным содержанием полезных компонентов (Киселева и др., 1973). К настоящему времени накоплен весьма обширный фактический материал, отражающий геохимические особенности края, в частности, химический и газовый состав водоносных горизонтов и литосубстратов Приморского края.

В 1956–1958 гг. Ю.Ю. Бугельским проводились исследования, связанные с вопросами формирования водных ореолов рассеяния на Довгалевском и Смирновском месторождениях с целью изучения условий миграции рудных компонентов в растворенном и во взвешенном состоянии в природных водах полиметаллических и олово-полиметаллических месторождений Южного Приморья (Лосив, 2002).

В 1958 г. Б.А. Колотовым были начаты широкомасштабные гидрогеохимические исследования экспериментального и методического характера, а в 1970 издана монография «Гидрогеохимические поиски в условиях Приморского края». В работе систематизированы и обобщены материалы десятилетних гидрогеохимических работ Приморского геологического управления, приведены общие положения теории гидрогеохимических поисков, дана геохимическая характеристика подземных и поверхностных вод Приморья (Гидрогеохимические поиски..., 1970).

Под руководством С.Р. Крайнова в 1959 г. изучались водные ореолы рассеяния бора на борных проявлениях Тетюхинского рудного района. В результате было установлено, что наиболее яркие ореолы в водах формирует датолитовая минерализация (Дубровин, 2007).

В 1960–1962 гг. П.В. Маркевич провел геолого-съемочные работы масштаба 1:50000 с гидрогеохимическим опробованием в бассейне р. Тетюхе (р. Рудная) и р. Ахобе (р. Лидовка). В результате работ выделены 4 гидрогеохимические аномалии с учетом таких гидрогеохимических поисковых критериев, как низкий рН вод, высокое содержание сульфат-иона, повышенное содержание в водах суммы металлов (Гаврилов, 1969).

Значительный вклад в геохимические исследования на территории Дальнего Востока, в том числе Приморского края, внес И.Н. Говоров (Говоров, 1970; 1977). Под его руководством проведены исследования по распространенности и геохимии микроэлементов в пределах различных по геологическому строению зон и комплексов Дальнего Востока. Показано, что рудные районы Приморского края группируются в четыре типа: олово-флюоритовый, оловоносный, полиметалльный и вольфрамовый.

В 70-х – первой половине 80-х гг. прошлого столетия начался следующий этап геохимических исследований. Именно эти годы широкой общественностью признаются периодом огромной роли техногенного воздействия на литосферу и биоту. По представлениям С.Н. Елохиной (Елохина, 2014), комплексность техногенных процессов в литосфере, с точки зрения синергетики, определяется ее многокомпонентностью, поэтому техногенное воздействие испытывают все компоненты, что проявляется в изменении гидрогеологических, инженерно-геологических и других условий и систем. Воздействие техногенеза стало сопоставимо с протекающими геологическими процессами. Несмотря на то, что понятие «техногенез» было введено в научный оборот еще в 1922 г. А.Е. Ферсманом (Ферсман, 1934), активно использоваться оно стало лишь в конце XX столетия. В государственном стандарте (ГОСТ 17.5.1.01-83), техногенез трактуется как «...процесс изменения природных комплексов под воздействием производственной деятельности человека. Заключается в преобразовании биосферы, вызываемом совокупностью геохимических процессов, связанных с технической и технологической деятельностью людей по извлечению из окружающей среды, концентрации и перегруппировке целого ряда химических элементов, их минеральных и органических элементов».

Современные представления о техногенезе и техногенных системах приведены в многочисленных работах, наибольший интерес представляют работы М.А. Глазовской (1988); В.С. Аржановой (1990); Э.Ф. Емлина (1991); А.Я. Гаева (1996); П.В. Елпатьевского с соавторами (1996; 2000); А.Б. Макарова (2000); С.М. Говорушко (2002); Ю.А. Макаровой (2004); А.А. Кроик (2004); С.Б. Бортниковой с соавторами (2006); В.П. Зверевой (2008); Р.Х. Сунгатуллина (2010); Н.И. Грехнева с соавторами (2009); И.А. Тарасенко, А.В. Зинькова (2001; 2014); С.Н. Елохиной (2014); S. Govorushko (2016). Авторами показано, что процессы загрязнения определяются как условиями

поступления в объекты окружающей среды поллютантов, так и интенсивностью протекания физико-химичеких процессов, имеющих разнонаправленный характер. В связи с чем, по мнению большинства исследователей, в условиях техногенеза необходим учет масштабов и определение закономерностей этих процессов, что позволит не только достоверно прогнозировать, но и минимизировать и предупреждать загрязнения вод, почв, растений тяжелыми металлами за счет разработки геохимических методов, основанных на защитных свойствах геологической среды.

Только В конце XX столетия ученые в области геологии, геохимии, гидрогеологии, инженерной геологии И горного лела начали проводить широкомасштабные эколого-геохимические исследования. Главной целью таких исследований являлась разработка теоретических И практических вопросов, направленных на решение экологических проблем вызванных горнорудным техногенезом.

В настоящее время большую опасность вызывают природно-техногенные процессы, возникающие в постэксплуатационной стадии освоения месторождений полезных ископаемых. Данной проблеме посвящены работы С.Б. Бортниковой с соавторами (2006); И.А. Тарасенко (2014); Е.Н. Елохиной (2014), в которых рассматриваются закономерности трансформации подземных водоносных систем, приводятся данные о формировании природно-техногенных геологических процессов на постэксплуатационной стадии горнорудного техногенеза и осуществляется разработка научно-методических основ их гидрогеоэкологической оценки и прогноза.

На протяжении последних 40 лет российские ученые активно обсуждают в своих работах воздействие техногенеза на гидрогеологические системы. Суть проблемы, по представлениям Б.А. Колотова с соавторами (1974), А.М. Плюснина, В.И. Гунина (2001), заключается не только в том, что поверхностные и подземные воды загрязнены токсичными элементами, но и в том, что в результате миграции элементов происходит нарушение механизмов функционирования природных систем других уровней. Воздействие на подземные водоносные горизонты техногенных факторов приобрело поистине глобальные масштабы, что требует незамедлительного решения по их изучению и снижению. Названной проблеме посвящены работы В.А. Кирюхина с соавторами (1982); В.М. Гольдберг (1987); П.В. Елпатьевского с соавторами (1996; 2000; 2001); В.А. Чудаевой (2002); В.М. Шулькина (2007; 2009); В.П. Зверевой с соавторами (2012; 2014).

3a более чем вековую историю развития горнодобывающей отрасли в Приморском крае сформировался целый комплекс горнотехнических сооружений, включающий шахты, штольни, карьеры, горно-обогатительные комбинаты и связанные опасные гидротехнические с ними экологически инженерные объекты хвостохранилища. Хвостохранилища представляют собой концентрированные массивы мелкодисперсных производства, которые в отходов зависимости ОТ вида перерабатываемых руд содержат вредные для здоровья соли тяжёлых металлов, а также токсичные вещества, используемые в качестве реагентов при переработке и обогащении такие как цианиды, кислоты, силикаты, нитраты, сульфаты (Хвосты и руд, хвостохранилища..., 1996; Усупаев с соавторами, 2013). По данным Г.Г. Шматкова (Шматков, 2012), современные хвостохранилища представляют собой хранилища отходов обогащения минералсодержащей или углесодержащей породы. В мире известны примеры успешного вовлечения хвостохранилищ в эксплуатацию, так как они являются потенциальными источниками разнообразных полезных ископаемых, в частности цветных, редкоземельных, благородных металлов, а также строительных материалов. Однако в нашей стране экономическое значение хвостохранилищ явно недооценивается. В данной работе хвостохранилища рассматриваются в контексте опасного загрязнителя наземных и водных экосистем.

Геоэкологическая оценка состояния окружающей среды в зоне действия хвостохранилищ проводилась И.В. Горбачевым, С.В. Бабошкиной (2005); Е.В. Морозовой (2007); В.П. Зверевой (2008); В.Е. Глотовым с соавторами (2010); Л.Н. Липиной (2012); Д.В. Манзыревым, А.Ю. Лавровым (2016) и свидетельствует о том, что хвостохранилища оказывают существенное техногенное воздействие на окружающую среду и причиняют необратимый ущерб природным экосистемам.

Особое внимание уделено вопросам по изучению закономерностей поведения тяжелых металлов при окислительном растворении вещества складированных отходов и гипергенной миграции химических элементов с дренажными потоками. Результаты исследований отражены в работах В.А Чантурия с соавторами (2000 a, б); Н.В. Сиденко (2001); С.Б. Бортниковой (2001); В.Т. Калинникова с соавторами (2002); В.С. Аржановой (2010); Т.В. Корнеевой (2010); Н.И. Грехнева (2011); А.В. Еделева (2013); Н.А. Абросимовой с соавторами (2013); Н.В. Юркевич с соавторами (2014; 2015); R.J. Воwell et al. (1994; 1996); С.А. Сгаvоtta (1998). Показано, что взаимодействие

измельченных сульфидсодержащих отходов с природными водами приводит к образованию высокоминерализованных техногенных растворов с концентрациями химических элементов, превышающими фоновые и предельно допустимые значения. Миграция химических элементов с техногенными водными потоками приводит к формированию разнообразных геохимических аномалий в подземных водах и поверхностных водоемах.

С.Б. Бортниковой с соавторами (Бортникова и др., 2006), на примере хранилищ разного минерального состава рассмотрены закономерности поведения тяжелых металлов (Zn, Pb, Cu, Cd) при окислительном растворении вещества складированных отходов, выявлена структурная вертикальная зональность техногенных тел, определены основные геохимические барьеры, осаждающие тяжелые металлы. Данные о гидрогеохимических особенностях вод ореола рассеяния хвостохранилищ отходов высокосульфидных руд представлены в работах Т.С. Папиной (2001); С.И. Мазухиной (2002); Н.В. Юркевич с соавторами (2014; 2015); С.N. Alpers et al. (1991); Ј.М. Наттагstrom et al. (2005). На основании экспериметальных данных и моделирования геохимических процессов показано, что на интенсивность выноса вещества из сульфидсодержащих отходов влияет проницаемость горных пород. Большие скорости фильтрации благоприятствуют значительному выносу элементов в растворенном состоянии. При малых скоростях фильтрации происходит интенсивное образование вторичных минералов и значительного выноса токсичных веществ не наблюдается.

Появление нового метода анализа редкоземельных элементов (РЗЭ) – массспектрометрии с индуктивно связанной плазмой, сделало возможным определять все РЗЭ во многих природных и техногенных объектах. Исследования в области распределения РЗЭ в водных объектах, в минеральных образованиях, в толще техногенных объектов представлены в работах М.Н. Римской-Корсаковой с соавторами (2003); Е.А. Вах (2010; 2012); В.П. Зверевой с соавторами (2014); Н. Elderfield et al. (1990); G. Protano et al. (2002); L. Lei et al. (2008). В результате исследований определены концентрации РЗЭ в различных геохимических средах, изучено поведение РЗЭ в зоне смешения двух неравновесных растворов, установлены основные закономерности фракционирования РЗЭ в системе «вода-порода».

В последние годы, благодаря появлению современных геохимических и минералогических методов исследований вещества, позволяющих проводить

высокоточные измерения и получить новую информацию о структуре, составе, свойствах, природе и генезисе минералов, возрос интерес к проблеме вторичного минералообразования в техногенных геосистемах. Пристальное внимание к данной проблеме обусловлено как необходимостью научного исследования и последующего использования минерально-техногенного сырья, так и решением проблем, связанных с экологической ситуацией в горнопромышленных районах. Среди отечественных публикаций следует отметить работы Б.В. Чеснокова (1983); В.Н. Авдонина, Т.В. Федоровой (1986); Э.Ф. Емлина (1991); Л.К. Яхонтовой с соавторами (1991; 2000); Г.Г. Кораблева с соавторами (1995); Е.П. Щербакова с соавторами (1995; 2002); Е.В. Белогуб с соавторами (2007; 2009). Этими исследователями открыты новые, ранее неизвестные минералы, определены условия их формирования. Показано, что при окислении сульфидов на поверхности отвалов и стенок горных выработок формируются техногенные кислотные растворы, при испарении которых образуются минералы группы сульфатов (мелантерит, эпсомит, халькантит, копиапит и др.).

Процессы вторичного минералообразования активно протекают не только в пределах хвостохранилищ отходов обогащения сульфидных руд, но и на поверхности горелых угольных отвалов. Так, в Челябинском угольном бассейне техногенное минералообразование изучалось Б.В. Чесноковым (1988), а в пределах Кизеловского угольного бассейна С.С. Потаповым (2006). Показано, что минералы образуются путем возгонки угольного вещества и сульфидов (сера); при интенсивном биогенном и абиогенном окислении (мелантерит, гётит); в результате абиогенного окисления при высоких температурах (гематит); пнематолито-гидротермальным путем (копиапит, билинит, кокимбит, алуноген); при дегидратации водных минералов (кокимбит, роценит, ссомольнокит, ангидрит); в результате обжига и перекристаллизации минералов (муллит, кристобалит, тридимит, маггемит, гематит); при ионных замещениях (галотрихит, пиккерингит, ярозит, алунит).

Данные экспериментальных исследований вторичного минералообразования в техногенных объектах и зональности техногенных сульфатных выцветов в пределах колчеданных месторождений Урала представлены в работе И.А. Блинова (2013). Установлено, что зональность зависит от состава сульфатных растворов обусловленного составом руд и вмещающих пород, гидродинамическим режимом и сроком экспозиции сульфидосодержащих пород на поверхности. Среди зарубежных авторов следует

отметить работы J.L. Jambor et al. (1963); E. Posnjak et al. (1922); E.L. Zodrow et al. (1978; 1979; 1980); J. Parafiniuk (1991); C.N. Alpers et al. (1991); L.C. Basciano et al. (2008; 2010); M.C. Moncur et al. (2009); N. Zidarov et al. (2009).

По данным J.L. Jambor et al. (1963), при экспериментальных методах исследования дегидратации мелантерита (Монитоба, Канада) установлено, что в течение нескольких часов при температуре 22 °C и относительной влажности воздуха 50 %, обезвоживание Cu-содержащего мелантерита протекает по схеме (Fe,Cu)SO₄ 7H₂O – (Fe,Cu)SO₄ 5H₂O – (Fe,Cu)SO₄·H₂O – anhydrous.

N. Zidarov et al. (2009), проводившие экспериментальные исследования на минералах Маданского рудного поля (Болгария) показали, что Zn-содержащий мелантерит при снижении температуры до 18–30 °C и относительной влажности воздуха до 70 %, преобразуется в Zn-розенит (бойлеит ZnSO₄·4H₂O), а образованию бойлеита предшествует формирование гексагидратной фазы – бианкита ZnSO₄·6H₂O.

С начала XX века многие исследователи пытались синтезировать трехвалентный сульфат железа – кристаллический фиброферрит. Наиболее часто в литературе упоминаются эксперименты Е. Posnjak et al. (1922), которые синтезировали фиброферрит при 25 °C в течение 4-х месяцев, а впоследствии при более высоких температурах 50, 75, 110, 140 и 200 °C. В результате было получено аморфное вещество и всего 12 кристаллических фаз, причиной неудачного эксперимента, по словам Е. Posnjak и H.E. Merwin, является то, что по своей природе фиброферрит растет при более низких температурах. Эксперименты синтеза ярозита и плюмбоярозита описаны в работе L.C. Basciano et al. (2008), проводимые в Кингстоне (Канада). Результаты экспериментальных исследований по замещению Fe^{3+} на Al^{3+} в фиброферрите приводятся в работах J. Parafiniuk (1991), J.K. Jerz et al. (2003).

Геохимические исследования М.С. Moncur (Moncur et. al., 2009) на объектах складирования шахтных отходов (Манитоба, Канада) направлены на изучение устойчивости минералов (пирита, пирротина, сфалерита и магнетита) и формирование дренажных стоков. Установлено, что устойчивость сфалерита выше, чем пирротина, но меньше чем пирита. Магнетит, который является потенциальным источником Cr, достаточно устойчив, кроме условий с низкими значениями pH-фактора. В окислительной обстановке Pb, Zn, Ni, Cr становятся подвижными и включаются в миграционные циклы.

В настоящее время все чаще используются новые методические основы расчета и термодинамических свойств веществ, позволяющие согласования рассчитывать равновесный состав гетерогенных многокомпонентных и многоагрегатных систем, исследовать преобразование веществ и давать прогнозную оценку геохимических преобразований с помощью физико-химического моделирования (Абрамова, 2015). Основные понятия термодинамики, принципы методов физико-химического моделирования природных и техногенных процессов, основанные на минимизации свободной энергии Гиббса, представлены в работах В.А. Бычинского с соавторами (2004 а, б); О.В. Авченко с соавторами (2009), К.В. Чудненко (2010).

Моделирование физико-химических процессов в природных и техногенных системах осуществлялось многими учеными, что отражено в публикациях и монографиях И.А. Тарасенко, А.В. Зинькова (2001); Р.А. Кемкиной, И.В. Кемкина (2007); Б.Н. Рыженко с соавторами (2012; 2015); В.П. Зверевой с соавторами (2013); С.И. Мазухиной (2016). Значительный вклад в моделировании процессов физикохимического преобразования вещества в хвостохранилищах внесли ученые под руководством С.Б. Бортниковой (Гаськова и др., 2007; Еделев А.В., 2013; Абросимова и др., 2013).

Компьютерное моделирование физико-химического преобразования рудных минералов Прасоловского месторождения (о. Кунашир) в условиях гипергенеза проведено Р.А. Кемкиной, И.В. Кемкиным (2007). Показано, что руды, извлеченные на поверхность, представляют серьезную экологическую опасность для окружающей среды. При окислении рудного вещества с дренажными стоками в местную гидросеть возможен вынос ионных и комплексных форм тяжелых металлов: Cd^{+2} , $CdOH^+$, Cu^{+2} , $CuCl^+$, Fe^{+3} , Fe^{+2} , $FeCl^{+2}$, $PbCl^+$, а также SO_4^2 и др.

О.Л. Гаськовой с соавторами (2007), исследована термодинамическая модель богатых сульфидами окислительного вышелачивания хвостов обогащения золотосодержащих руд (Берикульское месторождение, Западная Сибирь). При расчете взаимодействий приведено обоснование «вода-порода» нескольких этапов формирования техногенной системы во времени и пространстве, отражающих ее приближение к равновесию с окружающей средой.

При моделировании системы «вода-порода», открытой к газам атмосферы Б.Н. Рыженко с соавторами (2012), выполнено исследование выщелачивания

породообразующих и нормируемых (As, Mo, W) элементов из хвостохранилища и загрязненного грунта промплощадки металлургического предприятия. Показано, что с ростом отношения масс реагирующих породы и воды (снижением водообмена) интенсивность выщелачивания поллютантов из загрязненного грунта убывает: 0,067–0,00009 мг As/кг воды из 1 кг грунта, 16,5–0,84 мг Мо/кг воды из 1 кг грунта, 79–0,037 мг W/кг воды из 1 кг грунта; экологическая опасность выщелачивания вещества хвостохранилища дождевыми осадками снижается со временем.

С помощью физико-химического моделирования в 2016 г С.И. Мазухина (Мазухина с соавторами, 2016), изучила формирование химического состава вод системы «вода-порода» Хибинского массива на Кольском полуострове. Показано, что время взаимодействия «вода-порода» и температура оказывают основное влияние на изменение окислительно-восстановительных условий, которые способствуют повышению значений рН, увеличению концентраций НСО₃, F, Al, переходу в раствор Fe, Mn и других поливалентных элементов.

Таким образом, анализ опубликованной литературы показывает, несмотря на то, что уже имеется значительное количество работ, направленных на выявление и определение степени влияния горнопромышленного техногенеза на природные экосистемы, исследования в Приморском крае имеют локальный характер, и свидетельствуют о неравномерной изученности территории. Постоянно усиливающееся геохимическое преобразование ландшафтов, накопление токсичных веществ и формирование ореолов загрязнения дают основания для дальнейшего исследования и изучения особенностей горнорудных районов Приморского края.

2. ПРИРОДНЫЕ УСЛОВИЯ И ОСНОВНЫЕ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИЕ ОСОБЕННОСТИ РАЙОНА

2.1. Географическое и административное положение района

Район исследований расположен в восточной части Приморского края на побережье Японского моря. Территориально он объединяет Кавалеровский муниципальный район и Дальнегорский городской округ, граница между которыми протягивается в юго-восточном направлении примерно на 107,2 км (рисунок 2.1).

Рисунок 2.1 – Схема местоположения территории исследования

Общая площадь территории Дальнегорского городского округа (ГО) составляет 5342,3 км², численность постоянного населения на 01.01.2013 г. 44924 чел (Бакланов, 2014). Дальнегорский ГО имеет общие границы с Тернейским, Красноармейским, Дальнереченским, Чугуевским и Кавалеровским районами Приморского края.

Кавалеровский район расположен южнее Дальнегорского городского округа в бассейне реки Зеркальной. Его площадь 4180 км², численность населения на 01.01.2013 г. 25281 чел. Кавалеровский район граничит с Дальнегорским, Чугуевским и Ольгинским районами Приморского края (О Кавалеровском муниципальном районе..., 2004).

2.2. Социально-экономические условия района и их влияние на экологическое состояние водных ресурсов

В настоящее время в Дальнегорском районе ведущими отраслями промышленности являются горно-химическая, представленная ЗАО «ГХК «Бор» и горно-металлургическая, основу которой составляет АО «ГМК «Дальполиметалл». Значительное место в экономике занимает лесоперерабатывающая промышленность и предприятия малого бизнеса.

Основу экономики Кавалеровского района до недавнего времени составляла в основном оловодобывающая промышленность. ООО «Станум», являющееся дочерним предприятием ОАО «Хрустальненская оловодобывающая компания», до 2001 г. разрабатывало месторождение Искра. На сегодняшний день в Кавалеровском районе добыча олова приостановлена, однако ведутся работы по добыче угля ООО «Диорит». Из других отраслей наибольшее развитие получила лесная и лесоперерабатывающая промышленность.

К сожалению, с началом социально-экономических реформ в Дальнегорском и Кавалеровском районах, отмечается серьезный спад производства. Но, несмотря на снижение роста промышленного производства, в районе продолжают формироваться техногенные ландшафты. По результатам геолого-геохимических данных, полученных ТОО МИФ «Экоцентр» и ИМГРЭ в 1991-95 гг. в пределах южных территорий Приморского края и исследуемой площади выделены природные, природные нарушенные (около 15 % территории) и техногенные ландшафты. Техногенные ландшафты занимают около 10-15 % площади, они представлены агроландшафтами и промышленно-селитебными территориями, включающими пос. Рудный И Г. Дальнегорск, а также объекты и предприятия горнодобывающей промышленности и площадь территории, прилегающая к бассейну р. Рудная (Лосив, 2002).

2.2.1. Горнопромышленные техногенные объекты Дальнегорского района

История развития горного производства в Дальнегорском районе началась в конце XIX века. За более чем столетнюю историю развития горнопромышленного производства в Дальнегорском районе были разведаны, отработаны и выведены из

эксплуатации месторождения Монастырское, Смирновское, Ахобинское, Лысогорское, Дальнее, Садовое и др. Введены в эксплуатацию Краснореченская (1959–1994 гг.) и Центральная (1914 г.) обогатительные фабрики (рисунок 2.2).

Рисунок 2.2 – Краснореченская обогатительная фабрика (КОФ)

Краснореченский горно-обогатительный комбинат с 1963 г. выпускал оловянный, свинцовый и цинковый концентраты, обогащая руды комплексных оловянносеребро-свинцовополиметаллических И Смирновского цинковых И Южного руд месторождений. Отходы обогашения складировались в старом (заполнялось с 1956 по 1972 г., площадь 27,2 га, объем эфельных песков 2,9 млн. т) (рисунок 2.3) и новом (заполнялось с 1972 по 1995 г., площадь 2,7 га, 3,9 объем эфельных песков млн.т.)

хвостохранилищах, которые располагались недалеко от фабрики. Краснореченский ГОК в 1970 г. передан в состав комбината «Сихали», который в 1972 г переименован в

Рисунок 2.3 – Техногенные отложения старого хвостохранилища КОФ

Дальневосточный горно-металлургический комбинат, который в свою очередь в 1976 г был реорганизован в Дальневосточное производственное горно-металлургическое объединение «Дальполиметалл».

Центральная обогатительная фабрика перерабатывала сульфидные полиметаллические руды Верхнего, Партизанского, Садового, Николаевского, Первого Советского месторождений, выпуская свинцовый и цинковый концентраты. Отходы складировались в старом (заполнялось с 1914 до 1978 г., площадь 36,0 га, объем песков 10,6

млн. т) и новом хвостохранилище (введено в эксплуатацию в 1978 г., площадь примерно 54,0 га, объем эфельных песков на 1989 г 11,6 млн. т) (Тарасенко с соавторами, 2001).

По данным официального сайта АО «ГМК «Дальполиметалл», на сегодняшний день минерально-сырьевая база компании сосредоточена на территории Дальнегорского и Кавалеровского районов, в составе предприятия пять рудников: «Верхний» (месторождения Верхнее и Майминовское), «2-й Советский» (месторождение Партизанское), «Николаевский» (месторождение Николаевское), «Южный» (месторождение Южное) и «Силинский» (месторождение Силинское).

Руда добывается открытым и подземным способами. Предприятие отрабатывает два типа разных, но близких по составу месторождений: свинцово-цинк-серебряное оруденение в известковых скарнах и серебро-цинк-свинцовое оруденение в жильных структурах.

В г. Дальнегорске расположена Центральная обогатительная фабрика, на которой осуществляется обогащение руд вышеперечисленных месторождений с получением свинцового концентрата, в который попутно извлекается серебро, золото, висмут и цинкового концентрата с кадмием и серебром. В 16 км от фабрики расположено новое хвостохранилище, в которое поступают отходы обогащения ЦОФ до настоящего времени.

Добыча руды и её переработка является основной деятельностью предприятия, но в системе ГМК «Дальполиметалл» есть и вспомогательные производства: цех лесопиления, кислородный цех, карьер известняка, песчано-гравийный карьер. Кроме этого, в среднем течении р. Рудной расположены объекты ЗАО «ГХК «БОР»: карьеры, хвостохранилища, завод по производству борной кислоты и другие предприятия, задействованные в освоении крупного месторождения боросиликатов.

В процессе развития горнодобывающей и сопутствующей ей деятельности оказывается значительное воздействие техногенных процессов на окружающую среду, что приводит к формированию горнопромышленных техногенных систем. В результате антропогенного воздействия горного производства на природные ландшафты в пределах горного отвода сформировались различные техногенные объекты: терриконы, заброшенные горные выработки (шахты, штольни, карьеры), хвостохранилища, карьерные и подотвальные озера. Вследствие изъятия руды в горном массиве образуются десятки тыс. м³ пустого пространства, при этом вышележащие массивы горных пород деформируются, нарушая дневную поверхность, образуя техногенные провалы. Вскрышные породы и переотложенные грунты отвалов образуют так

называемый «техногенный рельеф», для которого характерен высокий динамизм рельефообразующих процессов (эрозия, оползни, обвалы). В итоге, данные территории, без проведения специальных рекультивационных мероприятий, не могут быть вовлечены в хозяйственный оборот.

Основным источником техногенного загрязнения приземной атмосферы в районе г. Дальнегорска, являются хвостохранилища, а также карьеры по добыче датолитовых руд Дальнегорского скарново-боросиликатного месторождения. Существенное воздействие хвостохранилищ на экосистему проявляется, прежде всего, в пылевой нагрузке, которая возникает во время сильного ветра и пыль, содержащая тонкодисперсные массы Pb, Zn, As, Sn, Cd и др. разносится по населенным пунктам. В результате действия хвостохранилищ происходит коренное преобразование ландшафта, изменение гидрогеологических условий поверхностных и подземных вод. Отвальные продукты обогащения подвергаются интенсивному гипергенезу с переходом в водорастворимые формы, что приводит к их миграции, и тем самым обусловливает высокую агрессивность техногенных и природных вод.

Таким образом, в Дальнегорском районе проявлены процессы деградации и нарушение экологического равновесия в природных экологических системах, вследствие накопления токсичных элементов в воздухе, водных объектах и почве. Данная территория характеризуется как территория с неблагоприятной экологической обстановкой, требующей регулярных экологических наблюдений и исследований, с целью снижения последствий горнорудного техногенеза.

2.2.2. Горнопромышленные техногенные объекты Кавалеровского района

Кавалеровская горнодобывающая промышленность начала свое развитие в 1941 году и связана с рождением и развитием Хрустальненского горно-обогатительного комбината. Комбинат разрабатывал восемь рудников: Центральный (п. Рудный), Хрустальный (п. Хрустальный), Силинский, Высокогорский (п. Высокогорск), Юбилейный, Арсеньевский, Таёжный и Молодёжный. Основным элементом, определяющим рудно-металлогенический и, следовательно, геохимический профиль района, является олово, с попутным извлечением индия и серебра (Финашин, 1986).

В общей сложности отрабатывалось 15 месторождений в основном подземным

способом. Обогащение сырья велось методом флотации и гравитационным способом на Центральной обогатительной фабрике № 1, обогатительной фабрике № 2 в п. Фабричный и обогатительной фабрике № 2 в п. Рудный.

К настоящему времени большая часть запасов отработана, а рудники и горнообогатительные фабрики закрыты. Как следствие их активной деятельности, на этих территориях остались целые системы горных выработок – канав, расчисток, карьеров и штолен (рисунок 2.4).

Настоящим экологическим бедствием для района являются хвостохранилища, которые представляют собой скопление отходов обогащения руд с низкими

Рисунок 2.4 – Рудничные воды штольни 6 (рудник Верхний)

концентрациями добываемых рудных элементов, но с высоким содержанием попутных компонентов. По данным В.П. Зверевой (Зверева, 2008), в пос. Фабричный находится три крупных хвостохранилища. На первом складировались отходы с 1948 по 1968 г, его площадь 4 га, объем 8 млн. т. Второе хвостохранилище действовало с 1968 по 1988 г и по размерам оно превосходит первое, его площадь 7 га, объем 21,6 млн. т. Отходы третьего накапливались с 1989 по 1997 г, его

площадь 4 га, объем 5,2 млн. т. В настоящее время первое хвостохранилище осушено, а 2 и 3 закрыты сверху шламовыми озерами менее чем на ¹/₄ часть.

Разработка рудных месторождений сопровождалась разрушением и изменением всех природных компонентов на площади горного объекта: растительности, животного мира, почв, подземных вод. Но, как показали проведенные исследования, наиболее масштабные изменения произошли в химическом составе поверхностных вод, вызванные стоком техногенных вод (рудничных и шламовых). Поступление загрязненных вод в природные водотоки приводит к разрушению существующих водных биоценозов, снижению способности вод к самоочищению. Большинство рудных элементов токсично, и попадая в организм человека по трофическим цепочкам, вызывает ряд тяжелых заболеваний различных органов: дыхания, нервной системы и др.

Таким образом, нарушение природного равновесия в экосистемах Дальнегорского и Кавалеровского районов связано с развитием горнорудного производства: поисками, разведкой, эксплуатацией месторождений и переработкой добытых руд. Нарушение почвенно-грунтового покрова при проведении горнодобычных работ и размещение отходов обогащения в хвостохранилищах, не прошедших надлежащих рекультивационных мероприятий, привело к резкому усилению окислительных процессов, переводу в легкорастворимые соединения ряда вредных веществ и как результат – к химическому загрязнению поверхностных вод и изменению природного геохимического фона.

2.3. Геологические и гидрогеологические условия района

В данном разделе рассматриваются геологические и гидрогеологические условия Кавалеровского и Дальнегорского районов Приморского края, в пределах которых располагаются Кавалеровский, Дальнегорский и Верхне-Уссурский рудные районы.

2.3.1. Геологические условия

Исследуемые рудные районы приурочены к мезозойской Сихотэ-Алинской аккреционной системе и располагаются в пределах Таухинского террейна (рисунок 2.5), являющегося фрагментом неокомской аккреционной призмы и Журавлевского террейна – раннемелового приконтинентального синсдвигового турбидитового бассейна (Геология и полезные ископаемые..., 1995).

Таухинский террейн располагается в юго-восточной прибрежной части Приморья и является фундаментом для толщи позднемеловых и палеоценовых вулканитов и вулканогенно-осадочных пород. По представлениям И.В. Кемкина (Кемкин, 2006), Таухинский террейн представляет собой фрагмент позднеюрско-раннемеловой аккреционной призмы, сформировавшейся в результате последовательной аккреции (причленения) к восточной окраине Азиатского континента в ходе субдукции океанической литосферы под континент и последующей его транспортировке в северосеверо-восточном направлении вдоль разломов системы окраинно-континентальных сдвигов Тан-Лу. От соседних террейнов, Самаркинского и Журавлевского, он отделен Центральным Сихотэ-Алинским и Фурмановским разломами, представляющими собой левые сдвиги, а юго-восточная граница скрыта под водами Японского моря. По данным В.В. Голозубова (Голозубов, 2004), Таухинский террейн образован тремя перекрывающими друг друга субтеррейнами (снизу вверх): Силинским, Горбушинским и Устиновским.

Рисунок 2.5 – Схема тектонического районирования Приморского края (Геология полезных ископаемых..., 1995)

Условные обозначения: 1 – докембрийские – раннепалеозойские террейны (ХН – Ханкайский); 2 палеозойские террейны (ЛГ – Лаоэлин-Гродековский); 3 – юрские террейны (СМ – Самарский); 4 – СР - Сергеевский; 5 – 7 – раннемеловые террейны (ТУ – Таухинский; ЖР – Журавлевский; КМ – Кемский); 8 – рудные районы (1 – Кавалеровский; 2 – Дальнегорский; 3 – Верхне-Уссурский); 9 – левые сдвиги (ЦСА – Центральный Сихотэ-Алинский; ФР – Фурмановский).

Силинский субтеррейн, по представлениям большинства исследователей В.В. Голозубова (2004), И.В. Кемкина с соавторами (2004; 2006), образован сдвоенным разрезом средней - верхней юры и берриас-валанжина. Юрские отложения, мощностью до 170 м (эрдагоуская свита), представлены базальтами, и перекрывающими их кремнисто-глинистыми породами, кремнистыми туффитами и пепловыми туфами. Берриас-валанжинские образования (силинская толща) общей мощностью 3500 м, представлены аркозовыми песчаниками и преимущественно алевролитовыми турбидитами, в кровле которых - валанжинская олистостромовая толща (до 1050 м) с глыбами и пластинами палеозойских и раннемезозойских известняков, кремней, базальтов и терригенных пород.

Горбушинский субтеррейн образован кремнистыми породами (до 70 м) триаса и юры, они согласно перекрыты песчаниковыми турбидитами мощностью до 700 м берриас-валанжина. Олистостромовая толща (1100 м) горбушинского субтеррейна согласно перекрывает песчаниковую толщу и сложена позднепермскими известняками и верхнетриасовыми песчаниками, кремнями, редко базальтоидами.

Устиновский субтеррейн образован одноименной толщей терригенных пород берриас-валанжинского возраста. В основании толщи залегает горизонт слоистых алевролитов, перекрытых пачкой грубообломочных пород – конгломератов и гравелитов (250 м). Выше по разрезу они сменяются переслаивающимися аркозовыми песчаниками и алевролитами, суммарной мощностью до 300 м. Эти отложения согласно перекрываются олистостромовой толщей, состоящей из микститов-алевролитов с линзами и глыбами песчаников, кремнистых пород, реже гравелитов и конгломератов, общей мощностью более 500 м.

В результате совмещения перечисленных субтеррейнов получена тектоностратиграфическая последовательность мощностью около 13000 м.

Журавлевский террейн, занимает большую часть Сихотэ-Алиня и представляет собой полосу северо-восточного простирания, протяженностью около 800 м при ширине 80 км. На западе и северо-западе он ограничен Центральным Сихотэ-Алинским разломом. На востоке к Журавлевскому примыкают Кемский и Таухинский террейны. Согласно представлениям В.В. Голозубова (Таухинский и Журавлевский..., 1992), Журавлевский террейн сложен терригенными породами раннемелового возраста, преимущественно аркозовыми песчаниками и алевролитами, мощностью около 15000 м. Наиболее образованиями древними являются кремнисто-глинистые сланцы, верхнеюрские В строении содержащие радиолярии. Журавлевского террейна выделяется берриас-валанжинская часть разреза (около 5600 м) и готерив-альбская (9000 м). Нижняя, берриас-валанжинская часть (журавлевская и ключевская свиты), характеризуется преобладанием в разрезе алевролитов и наличием горизонтов эндоолистостромов - алевролитов с разлинзованными прослоями и глыбами песчаников, которые являются результатом конседиментационных деформаций и связанных с этими

процессами оползневых явлений. Редко встречаются глыбы известняков. Для готеривальбской части разреза характерна значительная роль песчаниковой составляющей и наличие горизонтов флиша.

Выявленные особенности строения Журавлевского и Таухинского террейнов имеют практическое значение. Большинство крупных скарновых месторождений полиметаллов, вольфрама, бора, в меньшей степени олова, в юго-восточной части Приморья приурочено к телам известняков, представляющих собой разновеликие блоки и глыбы в меланжевом комплексе, а также более крупные аккретированные пластины (Кемкин, 2006).

Вышеописанные отложения интенсивно дислоцированы, с угловым несогласием перекрыты породами надсубдукционного позднемелового-палеогенового Восточно-Сихотэ-Алинского вулканического пояса (ВСАВП). Вулканогенные образования по данным П.Л. Неволина (1995), представлены: сеноманским андези-базальтовым и трахиандезитовым комплексом; турон-кампанским риолитовым комплексом (покровные и экструзивные образования туфов, игнимбритов, кристалло-игнимбритов, риолитов, дацитов, туффитов с растительным детритом); палеоценовым риолитовым комплексом (псамитовые и агломератовые туфы и спекшиеся игнимбриты риолитов).

Четвертичные отложения сплошным чехлом переменной мощности перекрывают все склоны и вершинные поверхности территории, а также террасы в долинах рек.

Интрузивные образования с сопровождающей оловянной и олово-сереброполиметаллической минерализацией представлены гранитами, монцонитами, монцодиоритами, диоритами и гранодиоритами.

2.3.1.1. Дальнегорский район

Дальнегорский район пространственно объединяет Дальнегорский и Верхне-Уссурский рудные районы, в составе последнего выделен Краснореченский рудный узел. Естественной границей между рудными районами является Восточная сдвиговая зона – крупная субмеридиональная структура глубокого заложения. По данным В.В. Голозубова (Таухинский и Журавлевский..., 1992), на поверхности зона проявлена системой разломов северо-восточного простирания, имеет ширину от 5 до 15 км, и является границей между Таухинским и Журавлевским террейнами. Рудные районы объединяют проявления магматических пород двух ассоциаций: диорит-гранодиорит-В Дальнегорском рудном районе и монцодиорит-гранодиоритовой гранитной Верхне-Уссурском рудном районе. Вследствие ассоциацией в ЭТОГО районы характеризуются различными типами оруденения – скарново-полиметаллическое проявлено в Дальнегорском рудном районе, а олово-полиметаллическое в Верхне-Уссурском.

2.3.1.1.1. Дальнегорский рудный район

Дальнегорский рудный район издавна известен скарново-полиметаллическими и уникальным боросиликатным месторождениями. Изучению района посвящены труды многочисленных исследователей (Король, 1975; Говоров, 1977; Казаченко, 1979; 2002; 2006; П.С. Гарбузов, 1984; Брилев, 1984; Валуй, 1999; 2004).

Пространственно Дальнегорский район расположен в южной части Восточно-Сихотэ-Алинского вулканического пояса и приурочен к Таухинскому террейну (см. рисунок 2.5). По данным В.В. Голозубова (Голозубов, 2004), район имеет двухъярусное строение. Нижний структурный этаж представлен сложнодислоцированными кремнисто-терригенными и карбонатными породами среднетриасового-раннемелового возраста, выходящими на поверхность на западном участке и носящее название Горбушинское поднятие, и восточном, именуемом Мономаховским поднятием. Именно эти блоки осадочных пород, представленные переслаивающимися песчаниками, алевролитами с прослоями и линзами кремней и кремнисто-пепловых туффитов, с линзами триасовых известняков тетюхинской (T₃tt) и горбушинской свит (J₂gr), представляют наибольший интерес в отношении локализации свинцово-цинкового оруденения (Говоров, 1997). Горбушинская толща перекрывается отложениями таухинской свиты (K_1 *th*) берриас-валанжинского яруса. В бассейне р. Рудной развиты отложения кемской свиты (K1km) готерив-альбского яруса. Ее особенностью является флишевый облик, нижняя часть которой сложена песчаниками, верхняя в основном алевролитами. Выше по разрезу породы фундамента с угловым несогласием перекрыты пологозалегающими вулканитами верхнего мела-палеогена (рисунок 2.6).

По представлениям большинства исследователей в эволюционной схеме магматизма Дальнегорского района выделяются следующие комплексы: синанчинский

(альб-турон), приморский (турон-сантон), дальнегорский (маастрихт), богопольский (дат-палеоген). По данным Г.А. Валуй (Валуй, 1999), образования синанчинского комплекса Дальнегорского района распространены достаточно ограниченно И вулканогенно-осадочные породы петрозуевской свиты объединяют $(K_{1-2}pz)$ туфопесчаники, туфоконгломераты, туфоалевролиты, синанчинской свиты (K2sn) андезиты, андезибазальты и их туфы и экструзивные фации. Приморский комплекс объединяет арзамазовскую (K₂ar) и монастырскую свиты (K₂mn), и включает толщи туфов, риолитов с прослоями туффитов и туфоалевролитов (Михайлов, 1986, 1989). Породы приморского комплекса перекрыты отложениями дальнегорского комплекса и покровных вулканитов риодацитового, дацитового, андезитового, состоят ИЗ андезибазальтового составов их экструзивных аналогов и внежерловых экструзивных гиперстеновых базальтов. Более молодые дат-палеогеновые вулканиты богопольского комплекса, развиты локально и представлены потоками риолитов и субвулканическими телами кислого состава.

По данным (Говоров, 1977; Томсон, 1988; Пустов, 1990; Раткин, 1990; 1995) развитие магматических формаций характеризуется полицикличностью, длительностью (в интервале от 140 до 35 млн. лет), фациальной изменчивостью, неоднородностью петрографического и химического составов одновозрастных образований.

В Дальнегорском рудном районе выделено пять магматических комплексов: 1) включает наиболее ранние интрузии габброидов (по К–Аг определениям варьирует от 69 до 55 млн. лет), размещены локально; 2) приморский, объединяющий экструзии риолитов, переходящие на глубине в гранит-порфиры; 3) дальнегорский, состоящий из многофазных интрузивов диорит-гранодиорит-гранитного состава, недифференцированных массивов гранит-порфиров и гранофировых гранитов; 4) богопольский комплекс выделен в виде экструзивов гранит-порфиров, риолитов и риодацитов; 5) комплекс малых интрузивов основного состава. Это преимущественно дайковые пояса долеритов, андезибазальтов, андезитов, трахиандезито-базальтов, эссексит-долеритов, шошонитов (Михайлов и др., 1987).

Металлогению Дальнегорского рудного района определяют раннемеловые доаккреционные колчеданные руды и месторождения прожилково-вкрапленных оловополиметаллических руд, не представляющие практического интереса.

Рисунок 2.6 – Геологическая схема Дальнегорского рудного района (по В.А. Михайлов, 1989)

Условные обозначения: 1 – четвертичный аллювий; 2 – верхнемеловые кислые и средние вулканиты; 3 – готерив-альбские терригенные отложения кемской свиты (K₁*km*); 4 – берриас-валанжинские терригенные отложения таухинской свиты (K₁*th*); 5 – терригенная толща горбушинской серии (J₂*qr*); 6 – кремневая толща горбушинской свиты (T₁-J₃*qr*); 7 – известняки тетюхинской свиты (T₂₋₃*tt*); 8 – дайки и силлы альбских, верхнемеловых и палеоценовых базальтов; 9 – верхнемеловые интрузивы: а – граниты, б – гранодиориты (1 – 27-го Ключа, 2 – кл. Больничный, 3 – Николаевкий, 4 – Араратский); 10 – скарны; 11 – зоны ороговикования и метасоматоза; 12 – риолиты, дациты и их туфы; 13 – андезиты и андезибазальты; 14 – песчаники, алевролиты и аргиллиты; 15 – разрывные нарушения; 16 – месторождения: 1- Николаевское; 2 – Первое Советское; 3 – Верхнее; 4 – Партизанское; 5 – Светлый Отвод; 6 – Дальнегорское боросиликатных скарнов; 7 – Садовое; 8 – Майминовское.

Промышленный интерес представляют скарновые борные месторождения раннего (приморского) этапа и свинцово-цинковые месторождения скарнового и

жильного типов, их возникновение связано с маастрихт-датским (дальнегорским) этапом вулканизма. С палеоцен-эоценовым (богопольским) этапом связано формирование специфического рудного комплекса, проявленного большей частью в форме зон наложения серебро-сульфосольной минерализации на полиметаллические руды.

Скарново-полиметаллические месторождения по данным Л.Ф. Симаненко (Симаненко и др., 2008), локализуются в краевых частях палеовулканических депрессий кальдерного типа на участках, где ограничивающие такие депрессии разломы пересекают олистостромовые толщи, насыщенные олистолитами известняков. Большая часть скарновых тел приурочена к контактам триасовых известняков с вмещающими их песчаниками и алевролитами.

Рудные тела месторождений относятся к инфильтрационным скарнам С наложенной сульфидной минерализацией. Главные минеральные парагенезисы скарнов: геденбергит, гранат, волластонит, диопсид, данбурит, аксинит, ильваит. Сульфиды свинца, цинка, меди, мышьяка и железа образуют вкрапленность или гнездообразные Особую скопления, замещая скарновые минералы. группу составляют серебросодержащие минералы: джемсонит, буланжерит, пираргирит, фрейбергит и др. Примерами месторождений скарново-полиметаллического типа являются Николаевское, время Партизанское, AO «ГМК Верхнее, В настоящее эксплуатируемые «Дальполиметалл», а также Светлый отвод, Первое Советское, Садовое (таблица 2.1).

карбонат-кварц-хлоритовых Жильные полиметаллические руды В виде метасоматитов с пирит-пирротин-халькопирит-сфалерит-галенитовой минерализацией, либо входят в состав скарново-полиметаллических месторождений (Малышевское), образуют самостоятельные рудные тела (Майминовское). Месторождение либо Майминовское является типичным примером жильных полиметаллических, с высоким содержанием олова, меди и серебра. Данный тип месторождений формировался в толще вулканитов, агломератовых туфов и эксплозивных брекчий жерловых аппаратов Восточно-Сихотэ-Алинского вулканического (Король, 1970). пояса

	1						A
Формацион-		рожде- ие Типы руд	Ассоциация минералов				
ный тип	Месторожде- ние		Гипогенные			-	Вмешающие поролы
месторожде- ния			Рудные	Нерудные	Акцессорные	Гипергенные	P ***
Скарновый свинцово-цинковый (полиметаллический)	Николаевское	 скарново- сульфидный, кварц- кальцит- сульфидный, кварц- карбонатно- сульфидно- сульфосольный 	Сфалерит (марматит), галенит, пирротин, халькопирит, пирит, арсенопирит. Серебросодержащие: джемсонит, буланжерит, пираргирит, фрейбергит	Геденбергит, кальцит, кварц, датолит, ильваит, гранат, гизингерит, флюорит, волластонит, аксинит, сидерит, эпидот, цоизит, апофиллит, диккит	Ильменит, анатаз, касситерит	Гетит, гидрогетит, лимонит	Олистостромовая толща таухинской свиты на границе триасовых известняков с нижнемеловыми вулканитами кислого состава
	Партизанское	 галенит- сфалеритовые; сульфосольно- галенит- халькопиритовые 	Сфалерит, галенит, халькопирит, арсенопирит, пирит, марказит, люцонит СизAsS4, блеклые руды, пираргирит, стефанит, аргентит, кубанит, акантит Ag ₂ S, фрейбергит, реже магнетит, гематит	Геденбергит, стильпномелан, гранат, аксинит, ильваит, волластонит, везувиан, флюорит, кальцит, кварц, эпидот и др.	Апатит, рутил	Гетит, гидрогетит, лимонит	Рудные тела размещаются большей частью на контакте известняков с облекающими их алевролитами и песчаниками тетюхинской свиты, а также встречаются на контакте известняков, вулканических пород и субвулканических тел кислого состава
	Первое Советское	1) галенит- сфалеритовые;	Сфалерит, галенит, халькопирит, арсенопирит, пирротин, редко – самородное серебро	Геденбергит, гранат (андрадит), аксинит, кальцит, ильваит, кварц, эпидот, хлорит и др.			Олистостромовая толща, представленная алевролитами и песчаниками, содержащими пластины известняков. Возраст толщи датируется средним и поздним триасом
	Верхнее	1) галенит- сфалеритовые;	Галенит, содержащий висмут и серебро, сфалерит, халькопирит, пирротин, арсенопирит, пирит	Мангангеденбергит, ильваит, датолит, аксинит, данбурит и гранат, волластонит, кварц, кальцит, серицит, хлорит, диккит	Касситерит	Смитсонит, каламин, гидроцинкит, лимонит, гипс	Блок триасовых известняков, перекрытых верхнемеловыми- палеоценовыми туфобрекчиями риолитов и зона разломов северо-западного и меридианального простирания
	Садовое	 скарново- сульфидный; вкрапленные галенит- сфалеритовые; 	Сфалерит, галенит, халькопирит, пирит, магнетит, арсенопирит, пирротин, гематит, сульфосоли Ag, Pb, Bi	Геденбергит, гранат, аксинит, волластонит, ильваит, родонит, КПШ, альбит, актинолит, хлорит, мусковит, серицит, цеолит (ломонтит), кварц, кальцит, флюорит, эпидот.			Скарново-сульфидные залежи в известняках, жило- и линзообразные зоны с полиметаллической минерализацией в кремнистых и алюмосиликатных породах

Таблица 2.1 – Характеристика месторождений Дальнегорского района (по: Говоров, 1977; Гробов, 1989; Потапенко и др., 1995; Казаченко и др., 2002; 2006; Рогулиной и др., 1984; 2003; 2007; 2011; Василенко и др., 2006; Симаненко и др., 2008)

]	Продолжение таблицы 2.1
Жильный серебро-свинцово- цинковый	Южное	 сфалерит- галенит- карбонатные; галенит- сульфосольно- карбонатные 	Сфалерит, галенит, пирротин, реже арсенопирит, халькопирит, джемсонит, буланжерит, блеклая руда, фрейбергит, диафорит, пираргирит, акантит, аргентит, касситерит, бустамит, родонит, родохрозит, самородная сурьма, гудмундит, дискразит, овихиит	Кварц, карбонаты, ПШ, марганецсодержащий хлорит, биотит	Сфен, циркон, апатит, монацит	Церуссит, англезит, лимонит, пиролюзит, валентинит	Валанжинские и готерив- альбские терригенные отложения с линзами кремней, туффитов и глинисто-кремнмстых пород с примесью пирокластики
Жильный касситерит- сульфидный	Смирновское	 кварц - касситерит- галенит- сфалеритовые; пирротин- галенит- сфалеритовые; кварцево- арсенопиритов ые с касситеритом 	Касситерит, станнин, пирротин, пирит, сфалерит, галенит, марказит, халькопирит, тетраэдрит, арсенопирит	Кварц, карбонаты, хлорит	Циркон, апатит, монацит	Плюмбоярозит, церуссит, англезит, смитсонит, каламин, гидроксиды железа	Мезозойская песчано-сланцевая толща
Жильный полиметаллический	Малышевское	1) кварц- сульфидные	Галенит, сфалерит, арсенопирит, пирит, халькопирит, тетраэдрит, прустит, самородное серебро, висмутин	Кварц, кальцит			Верхнемеловые вулканогенные образования
	Майминовское	 кварц- сульфидные; серебро- свинцово- цинковые 	Галенит, сфалерит, арсенопирит, халькопирит, пирротин, пирит, марказит, аргентотетраэдрит, фрейбергит, пираргирит, полибазит, стефанит, акантит, Ag,Au	Кварц, кальцит			Раннемеловые терригенные отложения

Таким образом, к основным особенностям полиметаллических месторождений Дальнегорского рудного района относятся: небольшая глубина их формирования (не более 1 км); образуются в маастрихт-датское время, синхронно дальнегорскому этапу вулканизма; локализуются в поднятиях геоантиклинального типа среди терригеннокарбонатных пород фундамента, в условиях проявления аэрального вулканизма формируются скарновые полиметаллические месторождения, а на участках, где вулканизм проявлялся в водной среде (кальдерные озера) – жильные и гнездововкрапленные полиметаллические (иногда с оловом) пространственно руды, ассоциированные с кислыми вулканитами дайковых и жерловых фаций (Король, 1970; Михайлов и др., 1986; 1987; Раткин и др., 1990).

2.3.1.1.2. Верхне-Уссурский рудный район

Верхне-Уссурский рудный район расположен в центральной части Сихотэ-Алинской аккреционно-складчатой системы в пределах Журавлевского террейна (см. рисунок 2.5). Район приурочен к области развития мощных толщ интенсивно дислоцированных терригенно-осадочных пород мезозойского возраста (T₃–K₁). По данным Г.А. Валуй (1999), меловые отложения несогласно перекрыты вулканогенноосадочными образованиями и вулканитами датского возраста, интрудированными гранитами и штоками монцодиорит-граносиенитового состава (рисунок 2.7).

Нижний структурный этаж сложен комплексом терригенных и кремнистовулканогенных образований верхнетриасово-нижнемелового возраста. Отложения верхнего триаса, мощностью до 400 м, представлены породами лудьевской свиты (T₃*ld*), в составе которой преобладают рассланцованные и будинированные норийские алевролиты.

Выше по разрезу верхнетриасовые отложения сменяются юрскими ритмично переслаивающимися песчаниками, алевролитами, туфоалевролитами, включающими линзы кремнисто-пелитовых туффитов эрдагоуской свиты (J₁₋₂*er*). Мощность свиты от 900 до 2000 м. Более поздними являются валанжинские и готерив-альбские толщи, сложенные породами уктурской свиты (K₁*uk*), мощность которой составляет 3100 м. В составе свиты выделяются кремнисто-глинистые алевролиты, песчаники, линзы конгломератов, олистостромовые и флишоидные включения.

Рисунок 2.7 – Схема геологического строения Краснореченского рудного узла (по Г.А. Валуй, 1999, с незначительными изменениями)

Условные обозначения: 1 – область распространения вулканитов в структурах Восточно-Сихотэ-Алинского пояса; 2 – выходы на поверхность доверхнемелового складчатого фундамента (Журавлевский террейн); 3 – 4 – интрузивные образования: 3 – интрузивы фельзит-порфиров и гранит-порфиров; 4 – интрузивы монцодиоритгранодиоритовой ассоциации; 5 – ореолы площадной биотитизации; 6 – контактовые роговики; 7 – границы вулканотектонических структур, ограничивающих Краснореченское поднятие: I – Березовская, II – Караванная, III – Якутинская, IV – Барачная вулканотектонические структуры; 8-10 – месторождения и рудопроявления: 8 – касситеритсульфидной формации: Смирновское (1), Встречное (2), Верхне-Уссурийское (3), Южное (4), Трудное (5), Рудное (6); 9 – кварц-касситеритовой формации: Ореольное (7), Эльдорадское (8), Пихтовое (9); 10 – жильной серебро-свинцово-цинковой формации: Августовское (10), кл. Желтый (11); 11 – глубинные разломы: а) Дайковый (1), Рогатый (2), Арсенопиритовый (3), Дождевой (4), Восточный (5), и б) – прочие нарушения. Образования верхнего структурного этажа, представлены вулканогенными и вулканогенно-осадочными породами датского возраста богопольской свиты (P₁bg). Они представлены риолитами и их туфами, игнимбритами, лавобрекчиями, перлитами и обсидианами, общей мощностью 200–700 м.

Четвертичные отложения покрывают склоны сопок и широко распространены по долинам крупных рек района, и представлены элювиальными, пролювиальными, делювиальными и аллювиальными отложениями.

В Верхне-Уссурском рудном районе распространены магматические породы палеогенового возраста, включающие штокообразные интрузии гранит-порфиров, гранитов, диоритов, монцодиоритов, сиенитов и диабазов, комагматичные вулканическим образованиям, перечисленным выше. Кроме того, на площади встречаются многочисленные дайки основного и среднего состава.

В составе Верхне-Уссурского рудного района выделен Краснореченский рудный узел, который характеризуется выделением двух основных типов оруденения оловяннополиметаллическим, представленным рудами касситерит-сульфидной формации (мест-е Смирновское) и серебро-полиметаллическим с доминирующей серебро-цинк-свинцовой ассоциацией в жильных структурах (мест-е Южное) (см. таблицу 2.1).

Смирновское оловянно-полиметаллическое месторождение локализовано в мезозойских терригенных породах, собранных в крупную антиклинальную складку (Гробов, 1989).

Южное серебро-цинк-свинцовое месторождение располагается в ядре крупной синклинальной складки, сложенной валанжинскими и готерив-альбскими терригенными отложениями с линзами кремней, туффитов и глинисто-кремнистых пород с примесью пирокластики (Казаченко, 2006).

2.3.1.2. Кавалеровский рудный район

Кавалеровский рудный район, общая площадь которого около 1300 км², расположен в центральной части Сихотэ-Алинской аккреционно-складчатой системы в пределах Таухинского и Журавлевского террейнов и представляет собой трапецевидный блок (Томсон, 1988). С запада блок ограничен Центральным Сихотэ-Алинским разломом (см. рисунок 2.5), а его северная, восточная и южная границы оконтуриваются
полями верхнемеловых кислых эффузивов Сихотэ-Алинского вулканического пояса (Зональность и глубинность..., 1980).

В строении Кавалеровского рудного района принимают участие разновозрастные и разнофациальные образования (рисунок 2.8), образуя два структурных этажа (Гоневчук, 2002). Нижний этаж сложен комплексом терригенных и кремнистовулканогенных образований верхнетриасово-нижнемелового возраста. Олистостромовые образования средней юры (начиная со среднего бата) – раннего мела (берриас-валанжина), представленные туффито-алевролитовой толщей, при резко подчиненной роли песчаниковых дистальных турбидитов позднеюрской удековской свиты, выполняют роль матрикса аккреционного комплекса зоны скучивания, в котором захоронены многочисленные разноразмерные чужеродные фрагменты различных Наиболее образований аккреционно-аллохтонного комплекса. распространены фрагменты среднетриасово-позднеюрской (по ранний титон включительно) базальтовокремнистой толщи. Значительно меньше присутствует тел позднепермской кремнистобазальтовой толщи, редко встречаются глыбы каменноугольно-пермских известняков. Более поздними являются валанжин-альбские отложения ключевской $(\mathbf{K}_1 k l)$. устьколумбинской (K1uk), приманкинской (K1pm), каталаевской (K1kt), дивнинской $(K_1 dv)$, светловоднинской $(K_1 sv)$, лужкинской свитами $(K_1 lz)$, сложенные алевролитами, песчаниками, гравелитами, олистостромовыми и флишоидными образованиями. Вышеописанные отложения интенсивно дислоцированы, с угловым несогласием перекрыты слабо вулканогенными, вулканогенно-осадочными породами: петрозуевской (K₁₋₂pz), синанчинской (K₂sn), арзамазовской (K₂ar), сияновской (K₂snv) и богопольской (K₂₋₁bg) свитами, формирующими совместно с жерловыми и экструзивными фациями одноименные вулканические комплексы (Голозубов, 2004).

Формирование магматической и сопутствующей ей рудной ассоциации в Кавалеровском районе происходило в интервале от 130 до 40 млн. лет (Зональность и глубинность..., 1980; Гоневчук, 2002), и, по данным А.П. Матюнина (1988), интрузивные образования подразделяются на четыре группы. Первую представляют крупные массивы монцонитов и гранитов, в зоне Центрального разлома не имеющие вулканических аналогов (Араратский, Березовский и др.); вторую – небольшие интрузии гранодиоритов, вероятно, представляющие собой выступы скрытого массива того же состава (Новогорская, Темногорская, Яблочная, Прохладная и др.); третья группа –

37

Рисунок 2.8 – Схема геологического строения Кавалеровского рудного района (по В.В. Поповиченко, 1989, с незначительными изменениями)

Условные обозначения: 1 – 18 – магматические породы: 1 – покровы трахиандезитов, 2 – покровы трахиандезибазальтов, 3 – монцониты и монцодиориты, 4 – сиениты, 5 – дайки трахиандезитов, 6 – покровы базальтов, 7 – дайки базальтов, 8 – покровы андезитов, 9 – диоритовые порфириты, 10 – дацит-порфиры, 11 – диориты и гранодиориты, 12 – высокоглиноземистые дациты, 13 – дайки высокоглиноземистых андезибазальтов, 14 – покровы и туфы риолитов, 15 – гранит-порфиры, 16 – граниты, 17 – покровы палеогеновых базальтов, 18 – дайки палеогеновых базальтов; 19 – 24 – терригенные породы: 19 – готерив-альбские песчаники и алевролиты, 20 – альбская моласса, 21 – валанжинские песчаники и алевролиты, 22 берриас-валанжинские олистостромы, 23 – верхнеюрские-берриассовые песчаники, алевролиты, кремни, спилиты, 24 – аллохтон, содержащий терригенные породы, кремни, известняки, спилиты от карбонового до берриассового возраста; 25 – разломы: 1 – Центральный Сихотэ-Алинский, 2 – Березовский, 3 – Ивановский, 4 – Фурмановский, 5 – Хрустальный, 6 – Тигриный, 7 – Суворовский; 26 – месторождения: а – касситерит-силикатно-сульфидной формации, б – касситерит-сульфидной формации (1 – Арсеньевское, 2- Юбилейное, 3 – Дубровское, 4 – Левицкое, 5 – Хрустальное, 6 – Силинское, 7 – Высокогорское, 8 – Новогорское, 9 – Ивановское, 10 – Мутихинское, 11 – Темногорское, 12 – Диоритовое, 13 – Искра, 14 – Верхнее); 27 – интрузивы (I – Шумнинский, II – Березовский, III – Араратский) и вулканотектонические структуры (IV – Лужкинская, V – Угловская, VI – Якутинская, VII – Широкопадинская).

субвулканические интрузии и дайки, пространственно совмещенные с полями вулканитов; четвертая – дайки различного состава.

Крупными глубинными разломами Кавалеровский рудный район разбивается на несколько тектонических блоков (с запада): Шумнинский, Лужкинский, Дубровский, Силинский, Высокогорский. Основные промышленные объекты района расположены в пределах Лужкинского, Дубровского и Силинского блоков, группируясь в три рудных узла: Арсеньевский, Дубровский и Хрустальненский. В Высокогорском блоке выделяется Высокогорский рудный узел (Гоневчук, 2002).

Основным определяющим рудно-металлогенический элементом, И, следовательно, геохимический профиль района, Оловянная является ОЛОВО минерализация в Кавалеровском районе представлена рудами касситерит-сульфидной, касситерит-силикатно-сульфидной и касситерит-кварцевой формаций. Основными промышленными типами являются турмалиновый и хлоритовый касситерит-силикатносульфидной формации (Поповиченко, 1989).

Касситерит-сульфидная формация в районе представлена двумя минеральными типами: колчеданно-полиметаллическим и колчеданно-сульфосольным, пространственно и генетически связанным с диоритами и гранодиоритами сенонского этапа андезит-диоритовой ассоциации. Руды слагают жилы или метасоматические зоны на Новогорском, Темногорском и Диоритовом месторождениях (Поповиченко, 1989). Главными типоморфными минералами руд являются пирротин и станнин, реже висмутин. Станнин чаще всего разложен с образованием тонкого касситерита и халькопирита (Митрофанов, 1989). В составе руд наряду с вышеперечисленными минералами значительная роль принадлежит сульфидам: пириту, арсенопириту, сфалериту, галениту. Из жильных минералов отмечаются кварц, хлорит, реже турмалин.

Колчеданно-сульфосольный и колчеданно-полиметаллический тип оруденения в районе представлен широко, но запасы металла в нем ограничены, в результате чего он не имеет промышленного значения.

Касситерит-силикатно-сульфидная формация включает гидротермальные месторождения, в которых оловянное оруденение связано с интенсивно проявленным замещением вмещающих пород железистыми силикатами: турмалином (турмалиновый тип) и хлоритом (хлоритовый тип), и генетически связанные с андезит-диорит-гранодиоритовым вулканоплутоническим комплексом.

Руды касситерит-силикатно-сульфидной формации имеют сложный минеральный состав. Основными силикатами в них являются кварц, турмалин и хлорит. Сульфиды представлены пирротином, халькопиритом, сфалеритом, галенитом и арсенопиритом (второстепенные). Редкими являются различные сульфосоли, вольфрамит и шеелит, висмут, серебро и другие. Главный рудный минерал олова – касситерит, встречаются также станнин и франкеит.

Касситерит-турмалиновая минерализация проявлена на глубоких горизонтах Дубровского месторождения, а наиболее распространенная касситерит-хлоритсульфидного типа на месторождениях: Арсеньевское, Дубровское, Высокогорское, Смирновское, Хрустальное, Силинское и Верхнее (Поповиченко, 1989).

Рудные тела представлены жилами, штокверками, минерализованными зонами и оруденелыми эксплозивными брекчиями (Зональность и глубинность..., 1980). Минералы отлагались метасоматическим путем с образованием вкрапленного, гнездового и прожилково-вкрапленного оруденения, а также путем выполнения открытых полостей. Жильные рудные тела чаще приурочены к оперяющим крупные разломы трещинам скола, иногда отрыва с образованием кулисообразных серий. Наиболее крупные жилы сформировались во флишоидных толщах или пачках грубого переслаивания песчаников и алевролитов.

Ha основании вышеизложенного материала можно выделить основные особенности геологического строения Кавалеровского рудного района: 1) приуроченность месторождений к разломам 2-го порядка, наследующим или оперяющим глубинные разломы фундамента; 2) связь рудных образований с малыми интрузиями гранодиорит-порфиров, диорит-порфиров и порфиритов и их размещение во флишоидных терригенных породах юрского и нижнемелового возрастов; 3) многостадийность образования руд; 4) оловянная минерализация представлена касситерит-сульфидной и касситерит-силикатно-сульфидной формациями (Зональность и глубинность..., 1980; Поповиченко, 1989; Гоневчук, 2002).

Таким образом, анализ литературных данных геологического строения исследуемых районов, позволяет сделать следующий вывод. Пространственно рудные районы объединяют проявления магматических пород двух серий: известковощелочной, представленной диорит-гранодиорит-гранитной ассоциацией, и субщелочной, представленной монцодиорит-гранодиоритовой ассоциацией, имеющими

различную геохимическую характеристику и, как следствие, сопровождающиеся различными типами оруденения. Первая ассоциация широко проявлена в Дальнегорском рудном районе, вторая распространена в пределах Кавалеровского и Верхне-Уссурского рудных районов. Различный характер магматизма обусловливает различный тип оруденения – скарново-полиметаллическое проявлено в Дальнегорском рудном районе, в Кавалеровском и олово-полиметаллическое в Верхне-Уссурском рудном районе (Поповиченко, 1989; Валуй, 1999; Гоневчук, 2002).

2.3.2. Гидрогеологические условия

Для того чтобы оценить положение районов исследования в гидрогеологическом аспекте в настоящей главе рассматриваются особенности гидрогеологического районирования Кавалеровского и Дальнегорского районов.

Согласно современной схеме гидрогеологического районирования в пределах Приморского края выделяются три крупные гидрогеологические структуры (рисунок 2.9): Сихотэ-Алинский и Маньчжурский (Лаоелин-Гродековский) гидрогеологические массивы, Приморский сложный артезианский бассейн (Челноков, 1997).

Исследуемый регион входит в восточную часть Сихотэ-Алинского гидрогеологического массива I порядка, который в свою очередь состоит из Центрального, Восточного и Южно-Сихотэ-Алинского гидрогеологических массивов II порядка. В Восточно-Сихотэ-Алинском выделяется Зеркальненский артезианский бассейн III порядка.

Гидрогеологические массивы по типу коллектора содержат воды различного вида: трещинные, трещинно-жильные, порово-трещинные, карстовые. Преобладают грунтовые воды со слабой водообильностью, приуроченные к верхней зоне трещиноватости. Трещиноватость в зоне выветривания скальных пород (до 100 м) и малая мощность рыхлых склоновых образований обеспечивают инфильтрацию осадков, но сильная расчлененность рельефа (300–700 м) – их быстрый дренаж. Это приводит к тому, что в верхних частях склонов образуются только динамические запасы подземных вод, они же являются основными областями транзита. Основные запасы подземных вод приурочены к хорошо проработанным долинам рек и пологим склонам, их разгрузка происходит за счет единичных родников, в основном в виде подземного стока.

Рисунок 2.9 – Схема гидрогеологического районирования территории Приморского края (по данным А.Н. Челнокова, 1997)

Питание осуществляется за счет инфильтрации атмосферных осадков, основная период. часть которых выпадает В теплый По химическому составу воды преимущественно гидрокарбонатные натриевые И пресные кальциевые, с минерализацией до 1 г/л, а в прибрежных частях соленые и солоноватые. Границы ингрессионных засоленных вод простираются вверх по долинам рек до 6-8 км.

3.2.1. Гидрогеологическая стратификация

Исходя из общих гидрогеологических условий, литологического состава пород и их коллекторских свойств, в пределах изучаемой территории, выделяется 8 водоносных горизонтов (рисунок 2.10; таблица 2.2), их характеристика приводится по материалам (Липецкая с соавторами, 1966; Гидрогеология СССР, 1974; 1976; Лосив, 2002).

Водоносный горизонт четвертичных аллювиальных отложений (aQ) приурочен к долинам всех основных рек и залегает первым от поверхности. Водовмещающими породами являются галечники, валунники с песчаным и суглинистым заполнителем, глины, суглинки, пески поймы и первой надпойменной террасы. Глубина залегания грунтовых вод на низких террасах 0–3 м, на высоких 3–10 м. Питание вод происходит за счет фильтрации трещинных вод, частично за счет инфильтрации атмосферных осадков. Разгрузка горизонта осуществляется по тальвегам рек и ручьев. Воды пластово-поровые, грунтовые, безнапорные, пресные, слабокислые или нейтральные, по составу преимущественно гидрокарбонатно-кальциевые, реже гидрокарбонатно-натриевые.

Водоносный горизонт аллювиально-морских четвертичных отложений (amQ) развит в пределах низких морских террас и береговых валов высотой 3,5–6 м в устьевых частях речных долин. Горизонт представлен песками, галечниками и илами. Воды безнапорные. Мощность аллювиальных отложений от 2,5–6 м в местах развития береговых валов, до 40–50 м в устьевых частях долин рек. Глубина залегания вод не превышает 3 м. Водообильность комплекса очень пестрая и зависит от литологического состава (см. таблицу 2.2). Воды соленые или солоноватые хлоридно-натриево-кальциевые с минерализацией 0,3 г/л и выше из-за подтока морских вод.

Водоносный комплекс палеоген-неогеновых отложений (Р – N) имеет локальное распространение в пределах Зеркальненской впадины. Водовмещающие породы представлены галечниками, валунниками, гравелитами, конгломератами, чередующимися с линзами и прослоями глин, что обуславливает наличие ряда водоносносных горизонтов и гидравлического напора. Воды порово-трещинные, в основном слабонапорные и напорные, глубина залегания 5–20 м (первый горизонт) и 64 м (второй горизонт). Для первого горизонта величина напора составляет 9,5–23,6 м, для второго – 61 м, пьезометрический уровень устанавливается на глубине 2,6–14,4 м, дебиты скважин 4,7–6,6 л/сек при понижении 0,7–11 м, возможен самоизлив скважин.

Водоносный комплекс верхней трещиноватой зоны верхнемеловых вулканогенных пород (К₂) на значительной площади залегает первым от поверхности и представлен региональной зоной трещиноватости (кора выветривания мощностью до 100 м). Водовмещающими породами являются вулканиты кислого состава.

Рисунок 2.10 – Схема распространения основных водоносных комплексов и горизонтов (Лосив, 2002)

Условные обозначения: 1 – водоносный горизонт четвертичных аллювиальных отложений; 2 – водоносный горизонт четвертичных аллювиально-морских отложений; 3 – водоносный комплекс верхней трещиноватой зоны и зон тектонических нарушений палеоген-неогеновых отложений; 4 – водоносный комплекс верхней трещиноватой зоны и зон тектонических нарушений верхнемеловых вулканогенных пород; 5 – водоносный комплекс верхней трещиноватой зоны и зон тектонических нарушений, верхней трещиноватой зоны и зон тектонических нарушений, 6 – водоносный комплекс верхней трещиноватой зоны и зон тектонических нарушений мезозойских терригенных пород; 7 – водоносный комплекс верхней трещиноватой зоны и зон тектонических карбонатно-терригенных отложений; 8 – водоносный комплекс верхней трещиноватой зоны и зон тектонических нарушений верхнемеловых и палеогеновых гранитоидов; 9 – границы гидрогеологических структур (а), тектонические разломы (б); 10 – водозаборы поверхностных вод: а) Горбушинский, б) Дальнегорский, в) Кавалеровский.

По типу коллектора это трещинные грунтовые, безнапорные, иногда напорные (трещинно-жильного типа, приуроченные к зонам тектонических нарушений и жерловинам палеовулканов) воды. Водообильность пород зависит от состава пород, их устойчивости к процессам выветривания и коллекторских свойств (см. таблицу 2.2). Глубина залегания вод от 1–20 м (в долинах и нижних частях склонов) до 60–80 м (в верхних частях склонов), водоразделы безводны. Воды имеют гидравлическую связь с грунтовыми поровыми водами и поверхностными водотоками.

Водоносный комплекс верхней трещиноватой зоны (K_1) нижнемеловых терригенных пород на большей части площади залегает первым от поверхности. Водовмещающие породы – песчаники, алевролиты, конгломераты, гравелиты. Подземные воды приурочены к зонам выветривания, тектонической трещиноватости и интрузивных контактов. Мощность трещиноватой зоны 40-80 м. Глубина залегания подземных вод колеблется в широких пределах и зависит от рельефа местности: от первых метров в долинах рек до 40-65 м на склонах и водоразделах. Воды грунтовые, безнапорные. Водообильность комплекса зависит от литологии. мощности трещиноватой зоны и характера трещиноватости пород, дебиты скважин от 0,01 до 2,2 л/сек при понижениях до 49,7 м.

Водоносный комплекс верхней трещиноватой зоны мезозойских (T–J; J–K₁) терригенных пород на значительной части площади залегает первым от поверхности. Водовмещающие породы – песчаники, алевролиты, конгломераты, гравелиты, спилиты, глыбы известняков. Мощность трещинной зоны от 40 до 100 м, глубина уровня подземных вод от первых метров в долинах рек до 60–80 м в верхних частях склонов, водоразделы практически безводны. Воды безнапорные, имеют гидравлическую связь с поровыми водами и поверхностными водотоками. Дебиты скважин от 0,1 до 5 л/сек (в период дождей до 20 л/сек) при понижении до 41 м, коэффициент фильтрации 0,01–5,0. Воды пресные, мягкие, нейтральные, гидрокарбонатно-кальциевые (см. таблицу 2.2).

Водоносный комплекс верхней трещиноватой зоны мезокайнозойских гранитоидов залегает первым от поверхности, как правило, безнапорный. Мощность трещиноватой зоны от 30 до 120 м, в зонах тектонических нарушений и интрузивных контактов составляет 150–200 м. На водоразделах глубина залегания подземных вод достигает 30–60 м, у подножий склонов и в долинах рек – от 1,2 до 12 м. По химическому составу воды пресные, мягкие, слабокислые, гидрокарбонатно-кальциевые.

45

Водоносный комплекс верхней трещиноватой зоны и зон тектонических нарушений палеозойских (C-P)карбонатных пород имеет ограниченное распространение. Водовмещающие породы – известняки, кремни с прослоями песчаников и алевролитов. Водоносность пород связана с трещиноватой зоной выветривания мощностью до 100 м, зонами тектонических нарушений и интрузивных В контактов, карстовыми пустотами известняках. Трещинно-карстовые волы приурочены к известнякам и скарнам. Средой для их движения и накопления служат пустоты, пещеры, подземные каналы и карстовые воронки. Они вскрываются на глубине от 3 до 120 м, наличие пустот и гидротермальных продушин, заполненных водой, отмечается на глубине 700-1000 м. Водоносный комплекс хорошо обводнен, дебиты скважин 0,05-3 л/сек (в известняках до 10 л/сек), иногда отмечаются катастрофические водопритоки в горные выработки. По составу воды гидрокарбонатно-кальциевые (см. таблицу 2.2).

Трещинно-жильные воды приурочены к зонам тектонических нарушений. Питание их происходит путем дренирования вод верхней трещиноватой зоны и аллювия, а также за счет инфильтрации атмосферных осадков. Воды этого типа относятся к водам глубокой циркуляции. Глубина вскрытия 200–250 м (на Николаевском месторождении 800 м), величина напора до 350 м и более. Обычно это пресные воды с минерализацией 0,04–0,7 г/л (повышенная минерализация за счет увеличения HCO₃), мягкие (общая жесткость 0,2–3,2 мг экв/л), нейтральные (pH 6–7,2). Трещинно-жильные воды вблизи сульфидных месторождений газируются H₂S. На Николаевском месторождении скважиной № 70 вскрыты субтермальные воды, с температурой на изливе 15,5 °C. Водам свойственна сульфатная агрессивность.

Таким образом, преимущественным распространением на данной площади пользуются трещинно-грунтовые воды зоны выветривания различных литологических комплексов пород при значительном участии грунтовых поровых и трещинно-жильных вод. Сравнительно небольшая мощность зоны эффективной трещиноватости пород, не превышающая 80–100 м при глубине эрозионного вреза до 300–700 м, обусловливает интенсивный дренаж подземных вод и формирование маломощных водоносных горизонтов, отдельные крупные вершины могут быть полностью безводными.

46

Тип структуры	Зона по актив- ности водо- обмена	Типы вод	Водоносные горизонты	Режим вод	Водообильность пород, л/сек	Температура воды, ⁰С	Химический состав вод						
1	2	3	4	5	6	7	8						
		CTOBO- OBЫC	Грунтовые воды в четвертичных аллювиальных отложениях речных долин	ескими	0,1-0,5 до 20	3–6	Гидрокарбонатно-кальциевые с общей минерализацией 0,02–0,08 г/л; мягкие (3 мг-экв/л), pH вод 6,4–7,7. Содержание свободной углекислоты до 36 мг/л.						
	водообмена	Плас пор	Водоносный горизонт аллювиально- морских четвертичных отложений	иматич	0,04–0,10	5–8	Соленые или солоноватые хлоридно-натриево-кальциевые, минерализация 0,3 г/л						
		альной	Водоносный комплекс палеоген- неогеновых отложений	іяется кл рами	4,7–6,6	2–5	Гидрокарбонатные кальциево-магниевые, реже натриево-кальциевые, воды пресные с минерализацией 0,06–0,34 г/л, мягкие (0,3–0,5 мг-экв/л), рН 6,3–7,4						
		региона сти)	Грунтовые воды верхней трещиноватой зоны верхнемеловых вулканогенных пород	Определ факто	0,1–2,14	2–4	Гидрокарбонатно-кальциевые с минерализацией 0,01 – 0,7 г/л, мягкие (0,1 - 2 мг-экв/л), рН 6,9 – 7,4						
ГАЯ		bi 30Hbi Hobato(Водоносный комплекс верхней трещиноватой зоны нижнемеловых терригенных пород	оянный.	0,01–2,2	2–4	Гидрокарбонатно-кальциевые, реже натриевые, пресные, с минерализацией 0,01–0,5 г/л, мягкие (0,1–2 мг-экв/л), нейтральные (рН 6,9–7,2)						
OTKPbI	BHOLO	цые (вод	Грунтовые воды верхней трещиноватой зоны юрских – нижнемеловых терригенных пород	Непост	0,1-5 до 20	1–3	Гидрокарбонатно-кальциевые, пресные (минерализация 0,01–0,7 г/л), мягкие (0,1–2 мг-экв/л), pH 6,8–7,4						
	ОНА АКТИ	Трещинные	Трещинны	Трещинны т	Трещинныс т	Трещинные т	Трещинные	Трещинные	раниеваной зоны породин нижнемеловых терригенных пород Н Прунтовые воды верхней трещиноватой зоны мезокайнозойских гранитоидов	остоянный злиянием ческих ров	0,05–2,3	2–5	Гидрокарбонатно-кальциевые, с повышенным содержанием калия, воды пресные (минерализация 0,05–0,11 г/л), мягкие (0,1–0,9 мг-экв/л), щелочные и слабокислые (рН 7,6–6,4)
	3	Трещинно- карстовые	Грунтовые и слабонапорные трещинно-карстовые воды палеозойских карбонатных пород	Довольно по со слабым 1 климати факто	0,05–3 до 10 в известняках	1–3,5	Гидрокарбонатно-кальциевые, в районах полиметаллических месторождений гидрокарбонатно- сульфатные. Воды пресные (минерализация 0,1–0,3 г/л), умеренно жесткие (1,1–3,7 мг-экв/л), pH 6,5–7,7						
		Трещинно- жильные	Напорные воды зон тектонических нарушений	Постоянный	0,1–3,1	6–12	Гидрокарбонатно-натриевые, реже натриево- кальциевые с общей минерализацией 0,04–0,7 г/л, мягкие (общая жесткость 0,2–3,2 мг-экв/л), нейтральные (рН 6–7,2)						

Таблица 2.2 – Характеристика подземных вод по условиям их движения (Лосив, 2002)

3. МЕТОДИКА ПОЛУЧЕНИЯ И ОБРАБОТКИ ИНФОРМАЦИИ

В работе использовались традиционные методы исследования, включающие анализ литературных и фондовых материалов, полевые исследования, геологическое картирование, геохимическое и гидрогеологическое опробование, химикоаналитические исследования, проведенные автором в течение 2011 – 2015 гг.

3.1. Полевые работы

В период полевых исследований было проведено гидрогеохимическое опробование дренажных, рудничных, поверхностных и подземных вод, донных отложений. На техногенных объектах производилось опробование складированных хвостов обогащения и отбор твердых минеральных новообразований.

Отбор проб воды осуществлялся согласно ГОСТ 17.1.5.04-81. Пробы отбирались в поверхностном горизонте до 20 см, в новые пластиковые бутылки объемом от 2 до 5 л, в точке пробоотбора отбирались по 2 пробы, схема отбора проб приведена на рисунке 3.1. Перед отбором воды, емкости ополаскивались из источника воды не менее 2–3 раз. Дренажные воды хвостохранилищ отбирались либо в среднем течении ручья, либо при впадении ручья в р. Рудную. Из ликвидированных штолен отбирались рудничные воды, схема отбора проб на рисунке 3.2. В течение 48 часов пробы были доставлены в лабораторию аналитической химии ДВГИ ДВО РАН и ООО «Экоаналитика».

Отбор проб донных отложений осуществлялся согласно ГОСТ 17.1.5.01-80, преимущественно со дна рек и дренажных ручьев и в устьевых частях, в местах впадения рудничных вод в реки. Пробы отбирались точечным методом, вручную, с использованием совка. Отобранные пробы помещались в пластиковые контейнеры с герметически закрывающейся крышкой. Затем пробы сушились, измельчались и отправлялись в лабораторию для геохимического исследования.

Отбор проб лежалых хвостов обогащения сульфидных руд проводился согласно ГОСТ 14180-80. Поверхностное опробование осуществлялось из закопушек глубиной до 20–30 см, также производилось опробование техногенных песков в шурфах глубиной 2,0–2,5 м, при этом литологически неоднородные слои опробовались задирковым способом (рисунок 3.3). Пробы отбирались в полиэтиленовые пакеты, вес пробы составил 0,4–0,5 кг.

Рисунок 3.1 – Схема отбора проб воды в Дальнегорском районе

Условные обозначения: 1– контуры: І – старого хвостохранилища КОФ; ІІ – нового хвостохранилища КОФ; ІІ – старого хвостохранилища ЦОФ; IV – нового хвостохранилища ЦОФ; 2 – озеро (прудок); 3 – точки отбора проб воды.

Рисунок 3.2 – Схема отбора проб в Кавалеровском рудном районе

Условные обозначения: 1 - Дубровское (фон), 2 – Дубровское (шт.1), 3 – Дубровское (ниже на 500 м), 4 – Высокогорское (фон), 5 – Высокогорское (шт.2), 6 – Хрустальное (фон), 7 – Хрустальное (шт.3), 8 – Фабричный (шт.4), 9 – Верхнее (шт.5), 10 – общественный колодец.

Рисунок 3.3 – Схема отбора проб минеральных фаз в пределах I – старого и II – нового хвостохранилищ КОФ Условные обозначения: 1 – контуры эфельных отвалов с насыпной дамбой; 2 – шурфы (закапуши) (а) и точки отбора проб (б); 3 –

На поверхности и в бортах хвостохранилищ были отобраны пробы твердых минеральных новообразований класса сульфатов, которые помещались в герметично закрывающиеся стеклянные бюксы и пластиковые контейнеры, для устранения контакта их с внешней средой. Затем, после предварительной обработки, пробы доставлялись в лабораторию.

Одновременно осуществлялось геологическое картирование, в результате чего были составлены картосхемы фактического материала, отображающие места отбора проб и разрезы шурфов.

3.2. Лабораторные исследования

Аналитические исследования химического состава поверхностных и подземных вод, а также твердых минеральных образований проводились в ООО «Экоаналитика» (аттестат аккредитации № РОСС RU.0001516028), а также в аналитическом центре Дальневосточного геологического института ДВО РАН г. Владивостока (аттестат аккредитации № РОСС RU.0001.518996) в лаборатории микро- и наноисследований и в лаборатории аналитической химии.

Диагностическое исследование минеральных образований проведено с применением оптического, рентгеноструктурного, электронно-микроскопического, микрозондового методов в лаборатории рентгеновских методов в аналитическом центре ДВГИ ДВО РАН. Приборная база и методы анализа компонентов химического состава вод приведены в таблице 3.1, а твердых минеральных образований в таблице 3.2.

Диагностика минералов осуществлялась в аналитическом центре ДВГИ ДВО РАН в лаборатории рентгеновских методов. Оптическое изучение проводилось с применением бинокулярного микроскопа МБС-9.

Изучение химического состава минералов, морфологии кристаллов и анализ микровключений производились на электронно-зондовом микроанализаторе JXA 8100 (производство Jeol Superprobe) с энергодисперсионным спектрометром INCA-sight производства Oxford Instruments (Великобритания). Рентгенографический анализ выполнялся на дифрактометре ДРОН-3 с монохроматизированным излучением и на микродифрактометре D8-Discover. Аналитики Т.Б. Афанасьева, Г.Б. Молчанова.

Компоненты	Метод анализа	Прибор
pH	Потенциометрический метод	Анализатор HI 9025C («HANNA»)
HCO3 ⁻	Титриметрический метод	Анион-7051 (РФ)
SO ₄ ²⁻ , Cl ⁻	Метод капиллярного электрофореза	«Капель-103РТ» (РФ)
Ca ²⁺ , Mg ²⁺ , Na ⁺ , K ⁺ , B, Si, Mn, Al, Cr, Sr, Ba,	Атомно-эмиссионная спектрометрия с индуктивно- связанной плазмой (АЭС – ИСП)	Спектрометр ICAP 6500Duo (Thermo Scientific Corporation, CШIA)
Co, Ni, Cu, Pb, Cd	Атомно-абсорбционной спектрометрии с электротермической атомизацией (ААС)	Атомно-абсорбционный спектрометр
Li, Be, Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Pb, Ga, As, Rb, Se, Sr, Y, Ag, Cd, Cs, Ba, Tl, Th, U, REE	Масс-спектрометрия с индуктивно-связанной плазмой (ИСП МС)	Спектрометр Agilent 7700 (Agilent Technologits, CIIIA)
Нефтепродукты	ИК – спектрометрия	Анализатор нефтепродуктов АН-2 (РФ)

Таблица 3.1 – Лабораторные методы анализа химического состава вод

Таблица 3.2 – Лабораторные методы определения содержания элементов в твердых минеральных образованиях

Компоненты	Метод анализа	Прибор
Li, Be, Fe, Mn, Sc, V, Cr, Co, Ni, Cu, Zn, Pb, Ag, Ga, Rb, Sr, Y, Zr, Nb, Mo, Cd, Sn, Cs, Ba, Hf, Ta, W, Tl, Th, U, REE	Масс-спектрометрия с индуктивно-связанной плазмой (ИСП МС)	Спектрометр Agilent 7700 (Agilent Technologits, США)
Au	Метод атомно-абсорбционной спектрофотометрии	Спектрофотометр (Shimadzu AA-6800, Япония)
As	Метод инверсионной вольтамперометрии	Вольтамперометрический анализатор АВС-1.1 (РФ)
Hg	Атомно-абсорбционная спектрометрия	HiShimadzu AA-6800 с приставкой HVG-1 (Япония)
H ₂ O, SiO ₂	Метод гравиметрии	Аналитические весы
TiO ₂ , Al ₂ O ₃ , Fe ₂ O ₃ , MnO, MgO, CaO, Na ₂ O, K ₂ O, P ₂ O ₅ ,	Атомно-эмиссионная спектрометрия с индуктивно- связанной плазмой (АЭС – ИСП)	Спектрометр ICAP 6500Duo (США)

Изучение микроморфологии и состава минеральных фаз (200 определений) осуществлялось с помощью сканирующей электронной микроскопии на приборах JSM-6490LV и ZEISS EVO 50XVP, оснащенных рентгеновскими энерго-дисперсионными спектрометрами INCA Energy, в режимах вторичных и отраженных электронов при ускоряющем напряжении 20 кВ и токах пучка $n \cdot 10^{-12}$ (оператор А.В. Поселюжная).

3.3. Камеральная обработка результатов исследований

Анализ и статистическая обработка химического состава вод и твердых минеральных образований осуществлялись с помощью средств пакетов Microsoft Office. Обработка графического материала производилась при помощи программного продукта Surfer 8.0, CorelDraw 6. Расчет равновесия вод с горными породами проведен с использованием программного комплекса AquaChem V. 5.1 (AquaChem v. 5.1, 2006).

3.3.1. Расчет степени насыщенности подземных вод минералами

По представлениям С.Л. Шварцева (Шварцев, 1996; 1998; 2005; 2008) одним из основных фундаментальных свойств системы «вода – порода» является ее неравновесность. Согласно данному положению вода в природных условиях, независимо от глубины залегания и скорости движения, всегда неравновесна с одними минералами, растворяя их, и одновременно равновесна с другими, что приводит к образованию новых вторичных минералов и геохимических типов воды. В условиях зоны гипергенеза наиболее широко распространены алюмосиликатные и карбонатные породы, играющие основную роль в обогащении подземных и поверхностных вод химическими элементами.

Расчет степени насыщения растворов относительно минералов вмещающих горных пород осуществлялся методами равновесной термодинамики с использованием электронных таблиц MS Excel.

Степень насыщенности вод относительно вторичных минералов оценивалась с использованием индекса насыщения S1 (Saturation index), учитывающего активности индивидуальных ионов в растворе: S1 = $lg(K_p/Q)$, где K_p - константы реакций; Q - квотант реакций или отношение фактического произведения активностей ионов к

фактическому произведению растворимости (Дривер, 1985). Если SI < 0, то раствор характеризуется как ненасыщенный относительно определенного минерала. По мере насыщения SI стремиться к нулю, т.е. если SI = 0, характеризует равновесное состояние. Если SI > 0, то раствор пересыщен относительно того или иного минерала (Зверев, 1982).

По данным различных авторов (Дривер, 1985; Авченко и др., 2009; Копылова и др., 2014) способность компонентов водного раствора вступать в химическое взаимодействие, характеризуется активностью иона ($a_{иона}$). Активность ионов вычислялась по формуле: $a_i = [ион] = \gamma_i \cdot m_i$, где $\gamma_i - коэффициент активности; <math>m_i - молярность$ иона, г-моль/л.

Для расчета коэффициента активности γ_i использовано уравнение Дебая-Хюккеля (Авченко и др., 2009): $-\lg \gamma_i = (A \cdot z_i^2 \sqrt{I})/(1 + Ba_i \sqrt{I}),$

где A и B – характеристические константы растворителя, зависящие от температуры и диэлектрической проницаемости воды, a_i – среднее расстояние сближения ионов противоположного знака, зависящее от эффективного диаметра данного иона в растворе и определяемого экспериментально, z_i – заряд иона, I – ионная сила раствора. Математические операции по изучению состояния равновесия воды с породообразущими минералами во времени производились в программе MS Excel и нанесением данных по химическому составу на диаграммы полей устойчивости алюмосиликатных и карбонатных минералов.

4. ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ПРИРОДНЫХ И ТЕХНОГЕННЫХ ВОД

На формирование и эволюцию химического состава поверхностных и подземных вод оказывают влияние различные факторы: природно-климатические условия, особенности геолого-тектонического строения, рудная минерализация и горнопромышленный техногенез, под которым следует понимать совокупность геохимических и гидрогеологических процессов в техногенных ландшафтах, вызванных производственной деятельностью человека (Емлин, 1991; Елохина, 2014).

На основании изученных природно-климатических, геолого-минералогических особенностей района и гидрогеохимических исследований, установлено, что в районе исследований формируются различные по химическому составу подземные и поверхностные воды.

4.1. Химический состав природных подземных вод района работ

На основе фондовых материалов ОАО «Приморгеология» (Гаврилов, 1969) был изучен состав естественного гидрогеохимического фона вод четвертичных аллювиальных отложений, подземных вод вулканогенных и интрузивных пород верхнемелового и палеоген-неогенового возраста, водоносного горизонта юрсконижнемеловых терригенных пород и напорных вод зон тектонических нарушений Дальнегорского рудного района (таблица 4.1).

В 2014 г. для сравнительного анализа химического состава были отобраны пробы грунтовых вод в отложениях четвертичного возраста с глубины ~10 м из общественного колодца в пгт Высокогорск и две пробы родниковой воды в Кавалеровском районе (таблица 4.2).

Анализ данных позволил установить, что в Дальнегорском районе грунтовые воды четвертичных аллювиальных отложений речных долин (1) и подземные воды в вулканогенных и интрузивных породах верхнего мела и палеоген-неогена (2) относятся к хлоридно-гидрокарбонатному кальциево-натриевому типу; юрско-меловых терригенных пород (3) и напорные воды зон тектонических нарушений (4) имеют гидрокарбонатный кальциево-натриевый состав. Усредненные формулы растворов приведены ниже:

$$M_{0,05} \frac{HCO_{3}^{72}Cl^{19}}{(Na+K)^{54}Ca^{34}} \text{ pH 7,0 (1)} \qquad M_{0,06} \frac{HCO_{3}^{77}Cl^{16}}{(Na+K)^{54}Ca^{33}} \text{ pH 6,8 (2)}$$
$$M_{0,18} \frac{HCO_{3}^{90}}{(Na+K)^{45}Ca^{31}} \text{ pH 7,7 (3)} \qquad M_{0,41} \frac{HCO_{3}^{95}}{(Na+K)^{75}Ca^{15}} \text{ pH 7,6 (4)}$$

Результаты химического анализа проб воды в Кавалеровском районе показали (см. таблицу 4.2), что природные подземные воды имеют сульфатно-гидрокарбонатный кальциевый и гидрокарбонатно-кальциевый состав. Формулы растворов приведены ниже:

$$M_{0,05} \frac{HCO_{3}^{70}SO_{4}^{27}}{Ca^{75} Na^{12}} \text{ pH 6,01 (5)} \qquad M_{0,06} \frac{HCO_{3}^{84}}{Ca^{72} Mg^{13}} \text{ pH 7,29 (6)}$$
$$M_{0,03} \frac{HCO_{3}^{72}SO_{4}^{17}}{Ca^{64} Mg^{17}} \text{ pH 7,29 (7)}$$

Все изученные воды пресные (минерализация не превышает 0,03–0,41 г/дм³). Значение pH изменяется в пределах 6,01–7,7, по жесткости все воды мягкие и очень мягкие (0,31–1,73 мг-экв/л). Среди анионов преобладает гидрокарбонат-ион, рост концентрации которого наблюдается при увеличении общей минерализации раствора.

По данным С.Л. Шварцева (Шварцев, 1996; 1998), одним из основных источников HCO_3^- -иона может служить гидролиз полевых шпатов и, прежде всего, анортита, протекающий по схеме: $Ca[Al_2Si_2O_8] + H_2O = Al_2Si_2O_5(OH)_4 + Ca^{2+} + OH^-$. Далее при взаимодействии гидроксила с углекислым газом происходит образование гидрокарбонат-иона по реакции: $OH^- + CO_2 = HCO_3^-$ (Шварцев, 1998; Крайнов, 2004).

Кроме этого, гидрокарбонат-ион может поступать в водоносные комплексы в процессе углекислотного выветривания карбонатных пород. Как было отмечено ранее, в исследуемом районе локализуются скарновые боросиликатное и свинцово-цинковые месторождения. Большая часть скарновых тел приурочена к контактам триасовых известняков с вмещающими их песчаниками и алевролитами. Характер конгруэнтного растворения карбонатных минералов, на примере кальцита, может быть представлен в виде уравнения: $CaCO_3 + H_2O + CO_2 = Ca^{2+} + 2HCO_3^-$ (Крайнов, 1987). В результате происходит обогащение подземных вод гидрокарбонат-ионом.

Практически во всех исследуемых водах в небольших количествах присутствует сульфат-ион. Обнаружение $SO_4^{2^-}$ -иона объясняется наличием в районе сульфидной минерализации. При этом концентрации $SO_4^{2^-}$ -иона в подземных водах на порядок ниже, чем в поверхностных водах. В подземных водах содержание $SO_4^{2^-}$ -иона лимитируется щелочным (наличием карбонатных пород) и биохимическим (при котором $SO_4^{2^-}$ восстанавливается до сероводорода или продуктов его диссоциации) барьерами (Перельман, 1982). Так, по данным 3.Ф. Липецкой (Липецкая с соавторами, 1966), в трещинных грунтовых и слабо напорных водах в песчано-алевролитовой толще мезозоя и трещинно-жильных типах вод отмечается наличие сероводорода и углекислоты (до 36 мг/дм³), что указывает на активно протекающие биохимические процессы в зоне формирования химического состава подземных вод.

Количество хлора незначительное и варьирует в пределах 0,73–5 мг/дм³, связано это с тем, что хлор не адсорбируется коллоидными системами и обладает высокой миграционной способностью (Шварцев, 1998; Чудаева, 2002; Чертко, 2008). По представлениям (Шварцев, 1998; Плюснин, 2001; Сунгатуллин, 2010), основным источником хлора в подземных водах, при его значимых концентрациях, являются древние морские воды, захороненные при формировании осадочных пород.

Преобладающими катионами в химическом составе подземных вод Дальнегорского района являются сумма натрия и калия, с максимальной концентрацией 66,24 мг/дм³ и минимальной 2,48 мг/дм³. Основным источником которых, служат продукты разложения и растворения калинатровых полевых шпатов изверженных пород.

Кальций второй по распространенности катион в Дальнегорском районе и ведущий в Кавалеровском (см. таблицу 4.1; 4.2). Основным источником поступления кальция в природные подземные воды являются процессы химического выветривания и растворения кальцийсодержащих минералов (известняки, доломиты, кальциевые полевые шпаты) при взаимодействии в системе «вода-порода».

Таким образом, в результате анализа макрокомпонентного состава природных подземных вод установлено, что в Дальнегорском районе формируются пресные воды хлоридно-гидрокарбонатного и гидрокарбонатного кальциево-натриевого типа. В Кавалеровском районе подземные воды относятся к сульфатно-гидрокарбонатному кальциевому и гидрокарбонатно-кальциевому типу.

58

Водоносный	Количес тво	T		G, мг- экв/л			Минерализация,					
горизонт	изученн ых проб	тип воды	рн		Na ⁺ + K ⁺	Ca ⁺	Mg^+	Cl-	SO4 ²⁻	HCO ₃ -	Микро- компоненты	г/дм ³
Грунтовые воды в четвертичных	17		7	0.21	0 = 0	156	1.02	4 79	2 00	20.04	Ti Ma Cu	0.05
отложениях речных долин	17	Na-Ca- HCO ₃ -CI	/	0,51	0,00	4,30	1,05	4,78	2,00	30,04	TI, WIII, Cu	0,05
Подземные воды в вулканогенных и интрузивных породах верхнего мела и палеоген- неогена	17	Na-Ca- HCO ₃ -Cl	6,8	0,36	8,74	4,69	1,14	4,42	2,22	35,86	Ti, Mn, Cr, V, Cu, Ba, Zn, Pb, Be	0,06
Водоносный горизонт юрско- нижнемеловых терригенных пород	17	Na-Ca- HCO3	7,7	1,73	33,14	20,02	9,41	3,85	4,76	110,67	Ti, Mn, Cr, V, Cu, Zn, Pb, Ag, Sn	0,18
Напорные воды зон тектонических нарушений	9	Na-Ca- HCO ₃	7,6	0,88	66,24	11,16	4,51	4,67	8,2	317,5	Pb, Cu, Zn, Ba, Ag, Sn, Sb, As	0,41

Таблица 4.1 – Макрокомпонентный состав подземных вод Дальнегорского района (Гаврилов, 1969)

Таблица 4.2 – Макрокомпонентный состав подземных вод Кавалеровского района

Маата атбара нроб	Тин роли	G,	пU			Минерализация,					
Mee to otoopa npoo	тип воды	мг-экв/л	PII	K ⁺	Na ⁺	Ca ⁺	Mg^+	Cl-	SO_4^{2-}	HCO ₃ -	г/дм ³
Общественный колодец в пгт Высокогорский, глубина ~10 м (формула 5)	Ca-HCO ₃ - SO ₄	0,5	6,01	0,82	1,66	8,85	0,73	0,59	8,37	27,45	0,05
Родник 1 (формула 6)	Ca-HCO ₃	0,7	7,29	0,3	1,93	11,88	1,27	1,56	4,09	40,24	0,06
Родник 2 (формула 7)	Ca-HCO ₃ - SO ₄	0,34	7,43	0,31	1,71	5,4	0,87	1,72	3,88	20,21	0,03

59

4.2. Химический состав природных поверхностных вод района работ

Для изучения химического состава природных поверхностных вод в Дальнегорском районе проводилось опробование реки Рудной и ее притоков, а также небольшого пресноводного озера, расположенного вблизи хвостохранилища, но гипсометрически находящегося выше, поэтому не испытывающего прямого негативного воздействия от хвостов обогащения.

Общей особенностью изученных вод является небольшая минерализация воды, изменяющаяся от 0,05 до 0,18 г/дм³ (таблица 4.3). По величине pH воды являются нейтральными и слабощелочными (6,93–7,85), по показателям общей жесткости мягкие и очень мягкие (0,31–1,73 мг-экв/л).

По химическому составу воды преимущественно Ca-Mg-HCO₃-SO₄ и Ca-Na-HCO₃-SO₄ типа. Усредненные формулы растворов имеют следующий вид:

$$M_{0,11} \frac{HCO_3^{61}SO_4^{43}}{Ca^{63} Mg^{23}} \text{ pH 7,7 (1)} \qquad M_{0,05} \frac{HCO_3^{51}SO_4^{47}}{Ca^{52} Na^{20} Mg^{14}} \text{ pH 6,93 (2)}$$

В исследуемых водах содержание HCO₃⁻-иона превышает содержание других анионов, его концентрации находятся в диапазоне 18,3–109,8 мг/дм³.

Повсеместно, в природных поверхностных водах, отмечается присутствие SO₄²⁻иона, его содержание изменяется от 12,88 до 28,79 мг/дм³.

В группе катионов преобладающим является Ca²⁺ содержание, которого варьирует от 9,07 до 22,48 мг/дм³. Вторым по распространенности катионом является магний, диапазон его содержаний от 1,40 до 11,89 мг/дм³.

Главными источниками магния в природных водах района, на наш взгляд, является разложение минерала диопсида CaMg(Si₂O₆), основного пироксена эндоскарнов Дальнегорского боросиликатного месторождения, а также метеорные воды.

На территории исследований в природных водах наблюдаются сезонные вариации содержания основных катионов. Так, в летний период содержание Ca²⁺ в 23 раза больше, чем в зимний, Mg+ почти в 7 раз, K⁺ в 18 раз, а Na⁺ в 3 раза (таблица 5.1 приложения 5).

<u>No</u>	Μεστο οτδορα		G,				Содер	эжание,	мг/дм ³			— Минерализация,
пробы	пробы	Тип воды	мг- экв∕л	pН	\mathbf{K}^+	Na ⁺	Ca ⁺	Mg^+	Cl-	SO ₄ ²⁻	HCO ₃ -	г/дм ³
7	Озеро	Ca-Mg- HCO ₃ -SO ₄	2,11	7,76	0,81	2,05	22,48	11,89	0,5	22,79	109,8	0,18
8	р. Рудная (1100 м выше Краснореченска)	Ca-Na-Mg- HCO ₃ -SO ₄	0,57	6,93	0,32	3,05	9,07	1,40	0,5	12,88	18,3	0,05
16	р. Рудная (7 км выше от хвостохранилища ЦОФ)	Ca-Mg- HCO3-SO4	1,31	7,81	0,8	3,88	20,29	3,59	0,6	28,79	57,95	0,12
17	р. Рудная (16 км выше от хвостохранилища ЦОФ)	Ca-Mg- HCO ₃ -SO ₄	1,13	7,85	0,81	3,65	16,11	3,83	0,5	24,90	42,70	0,09
18	р. Рудная (21 км выше от хвостохранилища ЦОФ)	Ca-Mg- HCO ₃ -SO ₄	1,07	7,61	0,59	3,20	14,94	3,86	0,5	25,18	33,55	0,08

Таблица 4.3 – Макрокомпонентный состав природных поверхностных вод Дальнегорского района

Таблица 4.4 – Макрокомпонентный состав природных поверхностных вод Кавалеровского района

No			G,					Минерализация				
пробы	Место отбора пробы	Тип воды	мг- экв/л	pН	\mathbf{K}^+	Na ⁺	Ca^+	Mg^+	Cl⁻	SO ₄ ²⁻	HCO ₃ -	г/дм ³
1	Ручей в пгт Рудный (фон)	Ca-HCO ₃	0,74	7,29	0,63	2,18	12,63	1,30	0,36	4,19	48,80	0,07
4	р. Высокогорская (фон)	Ca-HCO ₃	0,34	7,43	0,57	1,94	5,72	0,87	0,44	4,18	30,50	0,04
6	р. Хрустальная (фон)	Ca-Mg- HCO ₃ -SO ₄	0,62	7,03	0,76	2,06	8,13	2,46	-	9,55	36,60	0,06

Для изучения химического состава природных поверхностных вод в Кавалеровском рудном районе нами были опробованы ручей вблизи пгт Рудный (1), воды р. Хрустальной (2) и р. Высокогорской (3). Установлено, что природные поверхностные воды пресные (минерализация от 0,04 до 0,07 мг/дм³), по величине общей жесткости характеризуются как очень мягкие (G_{общ.} – 0,34–0,74 мг-экв/л), pH – 7,03–7,43, по химическому составу относятся к Ca-HCO₃ и Ca-Mg-HCO₃-SO₄ типу (таблица 4.4). Формулы природных растворов представлены ниже:

$$M_{0,07} \frac{HCO_{3}^{89}}{Ca^{73} Mg^{13}} \text{ pH 7,29 (1)} \qquad M_{0,06} \frac{HCO_{3}^{76}SO_{4}^{24}}{Ca^{56} Mg^{29}} \text{ pH 7,03 (2)}$$

$$M_{0,04} \frac{HCO_{3}^{83}SO_{4}^{15}}{Ca^{62} Na^{18} Mg^{16}} \text{ pH 7,43 (3)}$$

Анализ полученных результатов указывает на значительные сходства макрокомпонентного состава природных поверхностных вод Дальнегорского и Кавалеровского районов. Отмечено широкое распространение и преобладание вод Са-HCO₃ и Ca-Mg-HCO₃-SO₄ типов.

4.3. Микрокомпонентный состав природных вод

Известно, что гидрогеохимические параметры вод определяются набором не только макро-, но и микрокомпонентов. При этом макрокомпоненты определяют солевой состав вод, а микроэлементы характеризуют гидрогеохимическую специализацию вод, их концентрации обычно не превышают 10 мг/дм³ (Шварцев, 1996; 1998; Крайнов, 2004). И если содержание макроэлементов в водах имеет относительно равномерное распределение В водоносных горизонтах, то распределение микроэлементов носит неравномерный дискретный характер, их концентрации могут изменяться на незначительном расстоянии в десятки и даже сотни раз (Вернадский, 1960; 1965; Перельман, 1982; Плюснин и др., 2001).

Анализ данных таблицы 4.5 свидетельствует о том, что в водных объектах Дальнегорского района представлен широкий спектр микрокомпонентов, содержания которых варьируют в значительных пределах.

Номер п	робы	7	8	16	17	18
Состав ра	CTRON9	Ca-Mg-	Ca-Na-	Ca-Mg-	Ca-Mg-	Ca-Mg-
Состав ра	створа	HCO ₃ -SO ₄				
Показатель	ПДКр		Coz	цержание, мг/д	M ³	
pH	6,5-8,5	7,76	6,93	7,81	7,85	7,61
Fe	0,1	11,8	4,35	0,076	0,115	0,086
Ni	0,01	0,017	0,0045	<0,0002	<0,0002	<0,0002
Со	0,01	0,012	0,0023	<0,0002	<0,0002	<0,0002
Cu	0,001	0,02	0,011	0,015	0,0003	0,0041
Zn	0,01	0,451	0,178	0,053	0,091	0,147
Pb	0,006	<0,0002	<0,0002	0,0035	0,0029	0,0013
Cd	0,005	0,0007	0,0004	<0,00001	<0,00001	<0,00001
Ga	-	0,000019	0,000026	0,000034	0,00002	0,000026
As	0,05	0,01102	0,00093	0,00712	0,00085	0,00078
Se	0,002	0,000051	0,000152	0,000038	0,000128	0,00003
Ag	0,05	0,00006	0,000001	0,00003	0,00001	0
Mn	0,01	13,9	8,19	0,283	0,45	0,987
Si	-	4,31	9,85	7,25	7,81	8,47
Al	0,04	0,817	0,551	0,217	0,196	0,206
Cr		<0,001	<0,001	0,0021	0,0015	<0,001
Sr	10	0,179	0,041	0,0021	0,075	0,074
Ba	0,74	0,094	0,0066	0,013	0,017	0,011
Li	0,0007	0,005	0,0034	0,0104	0,006	0,0066
В	2,67	<0,01	<0,01	0,03	<0,01	<0,01
Be	0,0003	0,00001	0,000032	0,000021	0,000019	0,000034
Sc	-	0,000011	0,000031	0,000019	0,00003	0,000019
V	0,001	0,00009	0,00011	0,0002	0,00013	0,00011
Rb	0,1	0,000781	0,000744	0,00113	0,00106	0,00104
Y	-	0,000056	0,000363	0,000173	0,000159	0,000274
Cs	1,0	0,0001	0,000464	0,000229	0,000186	0,000437
Th		0,000028	0,0000203	0,000004	0,000009	0,000005
U		0,000159	0,000066	0,00012	0,00006	0,000044
НП	0,05	<0,05	<0,05	<0,05	0,055	<0,05

Таблица 4.5 – Микрокомпонентный состав природных поверхностных вод Дальнегорского района

Примечание: 7 – озеро; 8 – р. Рудная (1100 м выше от Краснореченска); 16 – р. Рудная (7 км выше от хвостохранилища ЦОФ); 17 – р. Рудная (16 км выше от хвостохранилища ЦОФ); 18 – р. Рудная (21 км выше от хвостохранилища ЦОФ). Здесь и далее цветным фоном выделены превышения ПДК.

Наибольшие концентрации характерны для Fe – 0,115–11,8 мг/дм³, Cu – 0,0041– 0,02 мг/дм³, Zn – 0,053–0,451 мг/дм³, Mn – 0,283–13,9 мг/дм³, Al – 0,196–0,817 мг/дм³ и Li – 0,0034–0,0104 мг/дм³. Следует заметить, что по микрокомпонентному составу также наблюдаются сезонные вариации концентраций (таблица 5.2. приложения 5).

По данным (Липецкая и др., 1966; Гаврилов, 1969; Колотов и др., 1974), в фоновых

пробах Приморья содержание меди составляет 0,001 мг/дм³, цинка – 0,02 мг/дм³.

В Кавалеровском рудном районе в природных поверхностных водах в значительных концентрациях фиксируются Fe – 0,122–0,913 мг/дм³, Cu – 0,0028–0,0142 мг/дм³, Pb – 0,0077–0,0116 мг/дм³, Mn – 0,0112–0,0140 мг/дм³ (таблица 4.6). В единичных пробах отмечаются высокие концентрации Zn 0,1248 мг/дм³ и Li 0,0128 мг/дм³.

Номер и	пробы	1	4	6
Состав ра	аствора	Ca-HCO ₃	Ca-HCO ₃	Ca-Mg- HCO ₃ -SO ₄
Показатель	ПДКр		Содержание, мг/дм ³	
pН	6,5-8,5	7,29	7,43	7,03
Fe	0,1	0,913	0,122	0,125
Cu	0,001	0,0142	0,0028	0,0135
Si	10,0	5,11	3,86	5,70
Zn	0,01	0,0095	0,0039	0,1248
Pb	0,006	0,0077	0,0087	0,0116
Cd	0,005	0,0005	0,0004	0,0008
Со	0,01	0,003	0,0021	0,0023
Mn	0,01	0,0140	0,0058	0,0112
Ni	0,01	0,0029	0,0026	0,0049
Al	0,04	<0,04	<0,04	<0,04
Cr	0,05	0,0027	0,0021	0,0022
Sr	10,0	0,557	0,617	0,759
Ba	0,74	<0,001	0,0043	<0,001
Li	0,0007	0,0003	<0,01	0,0128

Таблица 4.6 – Микрокомпонентный состав природных поверхностных вод Кавалеровского района

Примечание: 1 – пгт Рудный (м-е Дубровское, фон), 4 – р. Высокогорская (фон), 6 – р. Хрустальная (м-е Хрустальное, фон).

Таким образом, анализ данных таблиц 4.5 и 4.6 свидетельствует о том, что природные поверхностные воды Дальнегорского и Кавалеровского районов по микрокомпонентному составу имеют схожий состав. Единственным отличительным признаком является наличие более высоких концентраций микроэлементов в водах Дальнегорского района.

4.4. Геохимия техногенных вод

Химический состав техногенных вод изучался по пробам, отобранным из левобережных притоков р. Рудной, дренирующих территорию, прилегающую к

хвостохранилищам Краснореченской обогатительной фабрики и участков реки, принимающей эти притоки. Кроме этого, опробованы и изучены воды прудковой зоны на верхнем уровне старого и нового хвостохранилищ КОФ, а также воды в прудке нового Дальнегорского хвостохранилища (ЦОФ).

Объектом исследований в Кавалеровском рудном районе являлись рудничные воды штолен, расположенные в пределах законсервированных месторождений Дубровского, Хрустального, Высокогорского и Верхнего, а также химический состав вод, формирующихся в пределах разведочной штольни в пос. Фабричный.

4.4.1. Геохимическая характеристика основных типов техногенных вод Дальнегорского района

При исследовании макрокомпонентного состава вод реки Рудной и ее притоков (таблица 4.7) установлено, что воды левобережных притоков имеют преимущественно сульфатный магниево-кальциевый состав (1), а воды реки Рудной, принимающие эти притоки гидрокарбонатно-сульфатный магниево-кальциевый состав (2). Усредненные формулы растворов приведены ниже:

$$M_{0,65} \frac{SO_4^{94}}{Ca^{71} Mg^{22}} (1) \qquad \qquad M_{0,13} \frac{SO_4^{68} HCO_3^{29}}{Ca^{76} Mg^{19}} (2)$$

Минерализация изученных вод изменяется от 0,09 до 1,27 г/дм³, значения pH варьируют в пределах 4,61–8,34, а величина общей жесткости воды изменяется от G_{общ} 1,17 мг-экв/л (мягкие) до G_{общ} 18,58 мг-экв/л (очень жесткие).

Пробы воды в прудке нового Дальнегорского хвостохранилища имеют гидрокарбонатно-сульфатный натриево-кальциевый состав. Воды полупрозрачные, пресные (минерализация 0,22 г/дм³), мягкие (G_{общ} 1,7 мг-экв/л), характеризуются слабощелочной реакцией (pH 8,48), температура ≈16 °C.

Вода в прудке нового хвостохранилища КОФ является пресной (минерализация 0,13 г/дм³), мягкой (G_{общ} 1,75 мг-экв/л), по водородному показателю нейтральной (pH 7,1), и относится к гидрокарбонатно-сульфатному магниево-кальциевому типу. Вода полупрозрачная, в период отбора проб температура составила ≈10 °C.

Особого внимания заслуживают воды прудковой зоны (прудок 1 и прудок 2) на

верхнем уровне старого хвостохранилища КОФ, формирующиеся в процессе восходящей циркуляции поровых растворов (рисунок 4.1). Вода имеет кроваво-красный цвет, сульфатный магниево-кальциевый состав. «Кровавые» воды обладают высокой степенью агрессивности, так как характеризуются как сильнокислые (pH 2,33–2,48),

Рисунок 4.1 – Прудок 2 на поверхности старого хвостохранилища КОФ

сильносолоноватые (5,85 г/дм³) в прудке 2 и соленые (10,19 г/дм³) в прудке 1, а по жесткости – очень жесткие (35,87–46,99 мг-экв/л). В период отбора проб (июнь, 2014 г) температура воды составила около 15 °C.

При изучении макрокомпонентного состава техногенных водных растворов выявлены следующие особенности. Сульфат-ион обнаруживается во всех исследуемых пробах воды (см. таблицу 4.7). В водах Ca-Mg-SO₄-HCO₃ типа содержание сульфат-иона не превышают

78,41 мг/дм³, а в водах Ca-Mg-SO₄ типа его концентрации варьируют от 101,73 до 9364 мг/дм³. Согласно данным рисунка 4.2 содержание SO₄²-иона изменяется закономерно в соответствии с общей минерализацией раствора и контролируется величиной pH.

Основным источником сульфатов в техногенных водных растворах являются процессы окисления сульфидов Pb, Zn, Fe, протекающие по схеме:

 $PbS + 2O_2 = PbSO_4;$

 $ZnS + 2O_2 = ZnSO_4;$

FeS₂ + 7O₂ + H₂O = FeSO₄ + H₂SO₄ (по: Шварцев, 1996; 1998; Крайнов, 2004).

По представлениям С.Л. Шварцева (Шварцев, 1998) из сульфидов наибольшее воздействие на состав вод оказывает процесс окисления дисульфидов (пирит, марказит и др.), характерной чертой которого является образование серной кислоты. При этом диссоциация образующейся серной кислоты приводит к понижению pH растворов и увеличению сульфат-иона. Постепенное снижение значений pH и увеличение сульфатиона приводит к резкому увеличению агрессивности вод, которые в свою очередь воздействуют на карбонатные, силикатные, алюмосиликатные породы и рудные минералы, способствуя их растворению, и как следствие, обогащению вод разнообразными элементами, увеличивая их минерализацию.

Рисунок 4.2 – Зависимость концентраций SO₄²⁻ -иона от минерализации и величины рН в водах Дальнегорского района

Примечание: 1 – техногенные воды, 2 – поверхностные природные воды, 3 – атмосферные воды, 4 – подземные воды.

Таким образом, в пределах территорий с широко развитыми процессами окисления сульфидных руд формируются воды с высоким содержанием сульфат-иона.

Содержание гидрокарбонат-иона изменяется в диапазоне от 0 до 45,75 мг/дм³. Поступление в раствор НСО₃-иона может быть связано с растворением алюмосиликатов, либо карбонатов, например, кальцита, о чем уже неоднократно отмечалось ранее. По данным рисунка 4.3 в сильнокислых Ca-Mg-SO₄ водах прудковой зоны хвостохранилища и ручья, дренирующего его в нижних горизонтах, при снижении

величины pH гидрокарбонат постепенно исчезает.

Анализ распределения основных катионов в техногенных водах свидетельствует 0 незначительной изменчивости их параметров. Установлено, что в водах Ca-Mg-SO₄ типов наблюдаются более высокие концентрации кальция И магния по сравнению с Ca-Mg-SO₄-НСО₃ водами. На рисунке 4.4 видно,

что с ростом минерализации происходит закономерное увеличение концентраций магния и кальция, и незначительно калия, натрия и хлора.

Рисунок 4.4 – Зависимость содержания макрокомпонентов в исследуемых водах от общей минерализации

Следовательно, содержание и распределение основных ионов в техногенных водах зависит от интенсивности водообменных процессов в системе «вода-порода» и геохимических процессов, связанных с гидролизом алюмосиликатных и карбонатных пород. Концентрации анионов и катионов также определяются общей минерализацией раствора и контролируются кислотно-щелочными условиями среды.

Анализ данных микрокомпонентного состава вод (таблица 4.8) показал, что практически во всех пробах зафиксировано высокое содержание железа, концентрации

которого в водах Ca-Mg-SO₄ состава изменяются от 0,096 до 15,21 мг/дм³, а в Ca-Mg-SO₄-HCO₃ водах содержание железа составляет 0,01–3,77 мг/дм³.

Содержание никеля и кобальта возрастает с увеличением общей минерализации растворов и изменяется в диапазоне Ni – 0,059–1,04 мг/дм³ и Co – 0,027–0,703 мг/дм³. Анализ распределения концентраций Fe, Ni и Co показал, что наиболее высокие значения установлены в прудковых и дренажных водах Ca-Mg-SO₄ состава старого хвостохранилища КОФ, далее при слиянии с водами р. Рудной содержание данных микроэлементов заметно снижается. Также установлено, что стабильно во всех пробах обнаруживаются высокие концентрации меди и цинка. Их содержания изменяются в широких пределах, например, концентрации Cu от 0,0013 до 8,45 мг/дм³, Zn от 0,028 до 10,41 мг/дм³.

Значительные концентрации свинца фиксируются в пробах воды старого хвостохранилища. Так, в водах прудковой зоны, его содержание изменяется от 0,063 мг/дм³ (прудок 2), до 1,53 мг/дм³ (прудок 1). В дренажных водах содержание свинца снижается до 0,075 мг/дм³ (см. таблицу 4.8). В пробах прудковой зоны старого хвостохранилища также отмечаются значительные концентрации мышьяка от 0,051 до 0,206 мг/дм³, и кадмия – 0,0087 мг/дм³.

Селен, в количествах от 0,00222 до 0,0056 мг/дм³, обнаруживается в дренажных водах старого хвостохранилища КОФ, а в водах прудка нового хвостохранилища ЦОФ его содержание не превышает 0,00294 мг/дм³. Аномальные концентрации марганца (0,27–39,6 мг/дм³) и алюминия (0,157–29,51 мг/дм³) фиксируются в водах Ca-Mg-SO4 состава. Литий в концентрациях от 0,0049 до 0,1051 мг/дм³ зафиксирован в Ca-Na-SO4-HCO₃ водах, отобранных из прудка нового хвостохранилища ЦОФ. В химическом составе Ca-Mg-SO₄ вод в диапазоне от 0,00142 до 0,0021 мг/дм³, также обнаружен бериллий. Кроме этого, в прудке старого хвостохранилища отмечено высокое содержание ванадия до 0,00337 мг/дм³. В пробах воды р. Рудной в 1500 м от нового хвостохранилища ЦОФ зафиксировано повышенное содержание бора до 3,83 мг/дм³.

Таким образом, анализ изученных нами проб воды позволил установить, что наиболее высокие концентрации микрокомпонентов выявлены в водах Ca-Mg-SO₄ состава, в меньших количествах в Ca-Mg-SO₄-HCO₃ и Ca-Na-SO₄-HCO₃ водах.

No						Соде	ржание, м	мг/дм ³			Минерализация.
пробы	Место отбора пробы	Тип воды	рН	K ⁺	Na ⁺	Ca ⁺	Mg^+	Cl	SO ₄ ²⁻	HCO ₃ -	г/дм ³
1	Ручей из-под дамбы старого хвостохранилища КОФ	Ca-Mg-SO ₄	6,43	2,63	1,7	95,8	29,06	0,5	381,29	27,45	0,53
2	Среднее течение ручья старого хвостохранилища КОФ	Ca-Mg-SO ₄	4,61	2,6	4,2	228,7	85,7	0,5	933,9	-	1,27
3	Место впадения ручья в р. Рудная	Ca-Mg-SO ₄	6,65	0,51	3,35	29,75	9,90	0,5	101,73	23,18	0,17
4	р. Рудная в 100 м выше от т. 3	Ca-Mg-SO ₄ -HCO ₃	6,9	0,47	3,14	20,55	6,43	0,5	59,58	29,89	0,12
5	Вода в прудке 1 старого хвостохранилища КОФ	Ca –Mg –SO4	2,48	1,07	4,20	617,5	193,5	0,5	9364	-	10,19
6	Вода в прудке 2 старого хвостохранилища КОФ	Ca –Mg –SO4	2,33	2,06	3,75	369	209	0,5	5250	-	5,84
9	Ручей из-под дамбы нового хвостохранилища КОФ	Ca-Mg-SO ₄	7,08	1,29	2,04	25,74	6,81	0,5	76,19	24,4	0,14
10	Вода в прудке нового хвостохранилища КОФ	Ca-Mg-SO ₄ -HCO ₃	7,1	0,66	1,69	24,32	6,31	0,5	69,96	25,01	0,13
11	Место впадения ручья в р. Рудная	Ca-Mg-SO ₄ -HCO ₃	7,35	1,25	1,91	30,42	7,07	0,5	78,41	29,28	0,15
12	р. Рудная в 100 м выше от т. 11	Ca-Mg-SO ₄ -HCO ₃	7,26	0,44	3,65	18,38	5,45	0,5	48,69	29,28	0,11
13	р. Рудная в 100 м ниже от т. 11	Ca-Mg-SO ₄ -HCO ₃	7,42	0,34	3,03	15,84	4,50	0,5	45,42	21,35	0,09
14	Вода в прудке нового хвостохранилища ЦОФ	Ca-Na-SO ₄ -HCO ₃	8,48	8,74	26,86	31,50	1,41	4,59	98,22	45,75	0,22
15	р. Рудная в 1500 м ниже от нового хвостохранилища ЦОФ	Ca-SO ₄ -HCO ₃	8,34	0,9	6,53	35,90	3,68	0,5	74	37,82	0,16

Таблица 4.7 – Макрокомпонентный состав техногенных вод Дальнегорского района

Таблица 4.8 – Микрокомпонентный состав техногенных вод Дальнегорского района

Номер	пробы	1	2	3	4	5	6	9
Состав р	раствора	Ca-Mg- SO ₄	Ca-Mg- SO ₄	Ca-Mg- SO ₄	Ca-Mg- SO ₄ - HCO ₃	Ca-Mg- SO ₄	Ca-Mg- SO ₄	Ca-Mg- SO ₄
Показатель	ПДКр			Соде	ержание, мг	у/дм ³		
pН	6,5-8,5	6,43	4,61	6,65	6,9	2,48	2,33	7,08
Fe	0,1	1,03	15,21	0,096	0,62	7,08	1,11	6,16
Ni	0,01	0,059	0,065	0,011	0,0085	0,525	1,04	0,0095
Co	0,01	0,032	0,027	0,0048	0,0049	0,275	0,703	0,0073
Cu	0,001	0,0053	8,45	0,0039	0,012	0,94	0,78	0,011
Zn	0,01	1,91	10,41	1,53	1,69	0,272	0,194	0,409
Pb	0,006	<0,0002	0,075	0,0034	<0,0002	1,53	0,063	<0,0002
Cd	0,005	0,0034	0,0036	0,0019	0,0027	0,0015	0,0087	0,0003
Ga	-	0,00068	0,00237	0,000126	-	0,00244	0,00179	0,000021
As	0,05	0,00277	0,00351	0,00118	-	0,206	0,051	0,00647
Se	0,002	0,00222	0,0056	0,000302	-	<ПО	0,00041	<ПО
Ag	0,05	0,00002	0,00004	0,00001	-	0,00101	0,00025	0,00001
Mn	0,01	16,67	13,32	10,6	9,24	36,7	39,6	17,7
Si	-	4,77	8,7	5,94	5,93	32,9	40,8	4,94
Al	0,04	0,541	7,29	0,335	0,471	29,51	0,857	0,515
Cr		0,0012	0,003	<0,001	<0,001	<0,001	<0,001	<0,001
Sr	10	0,71	1,28	0,322	0,259	2,23	0,075	0,131
Ba	0,74	0,041	0,0095	0,0127	0,014	1,68	0,585	0,035
Li	0,0007	0,0158	0,0581	0,0083	0,027	0,0202	0,0309	0,0061
В	2,67	0,01	0,02	<0,01	-	<0,01	<0,01	<0,01
Be	0,0003	0,00142	0,0021	0,000227	-	0,00166	0,00153	0,00002
Sc	-	0,00118	0,00073	0,000025	-	0,00093	0,00069	0,00001
V	0,001	0,00045	0,00023	0,00011	-	0,00337	0,00011	0,00002
Rb	0,1	0,00145	0,00285	0,000839	-	0,00029	0,00044	0,001008
Y	-	0,01154	0,03219	0,00183	-	0,01346	0,01095	0,000103
Cs	1,0	0,00383	0,00030	0,000993	-	0,00032	0,00072	0,000137
Th		0,00019	0,00011	0,000019	-	0,00310	0,00249	0,0000025
U		0,00027	0,00039	0,000073	-	0,00051	0,00039	0,000013
НП	0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,056
Минерал г/д	пизация, ^{(м³}	0,53	1,27	0,17	0,12	10,19	5,84	0,14

Продолжение таблицы 4.8

	-	10	11	12	13	14	15
Номер	пробы	Ca-Mg-	Ca-Mg-	Ca-Mg-	Ca-Mg-	Ca-Na-	Ca-SO ₄ -
Показатель	ПДКр	504 11003	504 11003	Содержан	ие, мг/дм ³	504 11003	neo3
pН	6,5-8,5	7,1	7,35	7,26	7,42	8,48	8,34
Fe	0,1	3,77	<0,01	0,192	0,174	0,283	0,052
Ni	0,01	0,0055	0,0016	0,0014	0,0003	0,0026	<0,0002
Со	0,01	0,0093	0,0009	0,0002	<0,0002	0,0034	<0,0002
Cu	0,001	0,0062	0,0013	0,0031	0,0028	1,41	0,024
Zn	0,01	0,449	0,179	0,663	0,524	0,028	0,033
Pb	0,006	<0,0002	0,0009	0,0038	0,0034	0,038	0,0045
Cd	0,005	0,0005	<0,00001	0,0004	0,0002	<0,00001	<0,00001
Ga	-	0,00001	0,000018	0,000056	0,000052	0,00188	0,000013
As	0,05	0,00566	0,00606	0,00117	0,00076	0,04874	0,01614
Se	0,002	0,000013	0,00006	0,000201	0,000209	0,00294	0,000534
Ag	0,05	0,00001	0,00001	0,00001	0,00001	0,00129	0,00001
Mn	0,01	15,4	10,3	4,27	3,44	1,2	0,27
Si	-	4,7	5,06	9,19	9,44	3,7	8,01
Al	0,04	0,376	0,157	0,266	0,241	0,458	0,247
Cr		0,0017	<0,001	0,0027	0,0013	<0,001	<0,001
Sr	10	0,084	0,126	0,127	0,099	0,094	0,059
Ba	0,74	0,034	0,017	0,0077	0,0067	0,0084	0,011
Li	0,0007	0,0049	0,0059	0,0072	0,0073	0,1051	0,0119
В	2,67	<0,01	<0,01	<0,01	<0,01	0,09	3,83
Be	0,0003	0,000019	0,000021	0,00014	0,000085	0,000056	0,000015
Sc	-	0,000011	0,000013	0,000021	0,000018	0,000023	0,000017
V	0,001	0,00002	0,00002	0,00009	0,00008	0,00061	0,00025
Rb	0,1	0,0011	0,00106	0,0008	0,000905	0,0353	0,000112
Y	-	0,000038	0,000094	0,00075	0,000614	0,000207	0,00009
Cs	1,0	0,000199	0,00014	0,0008	0,000767	0,01707	0,000154
Th		0,0000009	0,0000001	0,000011	0,000006	0,000041	0,000003
U		0,0000038	0,0000108	0,000061	0,000056	0,000055	0,000369
НП	0,05	<0,05	0,05	<0,05	<0,05	<0,05	<0,05
Минерализ	ация, г/дм ³	0,13	0,15	0,11	0,09	0,22	0,16

Примечание: условные обозначения см. в таблице 4.7
Значительное содержание в водах таких элементов как Zn, Pb, Cu, Fe, Mn, Co, Ni, As, B, Al, Li является показателем специализации геохимических зон, выделенных Ю.Н. Брилевым (Брилев, 1984), и отражает металлогенические особенности Дальнегорского района. Высокие концентрации в воде бериллия и лития, можно объяснить наличием Be- и Li-содержащих минералов в грейзенизированных породах месторождений Николаевское и Садовое (Говоров, 1977). Кроме этого, по данным В.А. Баскиной с соавторами (Состав рудоносных растворов..., 2009), по результатам химического состава флюидных включений в минералах Дальнегорского скарново-боросиликатного месторождения в кварце содержание лития составило 484 мкг/кг воды, а флюорите 248 мкг/кг воды. Наличие в воде Со и Ni объясняется присутствием в рудах свинцовоцинковых месторождений Дальнегорского района микроминералов, представленных сульфидами и арсенидами кобальта и никеля, такими как кобальтин (CoAsS), джулукулит и феррокобальтин разновидности кобальтина, обогащенные Ni и Fe, лиинеит (Co₃S₄), карролит (Co₂CuS₄), выявленных H.C. Благодаревой (1977).

В водах района исследований в различных количествах присутствуют редкие и рассеянные элементы. О распределении данных элементов в рудах месторождений Приморья отмечено в работах Г.Н. Федчиной (1977); Л.И. Рогулиной и др. (1984); Н.В. Булавко (2000); В.Г. Моисеенко (2003). По данным Л.И. Рогулиной (Рогулина и др., 1984), в полиметаллических рудах месторождения Южного сфалерит является основным носителем Cd (2800–3600 г/т), галенит – Se (до 330 г/т), Те, Та, Ag, Bi, селен также концентрируется в арсенопирите, а геденбергит фиксирует Ga (4,1 г/т) и Ge (10,7 г/т). Наличие радиоактивных элементов (Th, U) в водах Дальнегорского района, скорее всего, связано с выветривающимися интрузиями диорит-гранодиорит-гранитной ассоциации. Содержание нефтяных углеводородов в пробах воды < 0,05 г/дм³.

Распределение микрокомпонентов в водной среде обусловлено миграционными характеристиками элементов. Интенсивность миграции химических элементов зависит от кислотности или щелочности раствора (Перельман, 1982). Кислые и слабокислые растворы благоприятны для миграции элементов, в связи с этим, наиболее высокие концентрации растворенных элементов отмечаются в водах со значениями pH 2,33, 2,48 и 4,61 (рисунок 4.5). В водах с более высокими значениями pH содержание химических элементов значительно ниже.

Рисунок 4.5 – Содержание микроэлементов в техногенных водах в зависимости от величины pH раствора

Объясняется это тем, что при увеличении pH водной среды растворенные формы металлов адсорбируются на твердых частицах взвеси или осаждаются в их составе, тем самым снижая содержание микроэлементов в водном потоке (Колотов и др., 1974).

Данная закономерность прослеживается на участке, где происходит формирование щелочного геохимического барьера, который образуется в результате смешения вод, дренирующих территорию, прилегающую к хвостохранилищу, pH

74

которых 4,61, с водами р. Рудной со значениями pH 6,65–7,1. На этих же участках в донных осадках в значительных концентрациях были определены такие элементы как: Fe, Cu, Zn, Pb, Cd, As, Co, Ag, Hg, Li, Mn, Ni, Sn.

Таким образом, микрокомпонентный состав изученных вод носит унаследованный характер и отражает химический состав руд, перерабатываемых на КОФ. А распределение микроэлементов в водных потоках зависит от близости или удаленности источника (хвостохранилища), pH растворов и наличия геохимических барьеров (щелочного и др.), на которых происходит осаждение химических элементов.

4.4.2. Геохимическая характеристика основных типов вод Кавалеровского района

Объектом исследований в Кавалеровском рудном районе являлись рудничные воды штолен, расположенных в пределах законсервированных месторождений Дубровского, Хрустального, Высокогорского и Верхнего, а также воды в пределах разведочной штольни в пос. Фабричный.

В отличие от пресных природных вод района, минерализация которых не превышает 0,07 г/дм³, в рудничных водах штолен минерализация увеличивается до 1– 1,5 г/дм³ за счет увеличения ионов Ca²⁺, Mg²⁺, SO₄², HCO₃⁻ (таблица 4.9). Это приводит к формированию солоноватых гидрокарбонатно-сульфатных и сульфатных кальциевых и магниево-кальциевых вод (рисунок 4.6). По водородному показателю исследуемые воды нейтральные и слабощелочные, величина рН изменяется от 7,2 до 7,63. Формулы рудничных растворов имеют следующий вид:

$$M_{0,96} = \frac{SO_4^{83} HCO_3^{17}}{Ca^{80} Mg^{15}}$$
 pH 7,30 (шт. 1) $M_{0,33} = \frac{SO_4^{77} HCO_3^{23}}{Ca^{78} Mg^{15}}$ pH 7,26 (ниже на 500 м)

$$M_{0,3} \frac{SO_4^{84} HCO_3^{16}}{Ca^{86}} \text{pH 7,31 (шт. 2)} \qquad M_{0,84} \frac{SO_4^{81} HCO_3^{19}}{Ca^{75} Mg^{14} Na^{10}} \text{ pH 7,43 (шт. 3)}$$

$$M_{1,0} \frac{SO_4^{82} HCO_3^{18}}{Ca^{57} Mg^{32} Na^{11}} \text{ pH 7,63 (шт. 4)} \qquad M_{1,5} \frac{SO_4^{88} HCO_3^{12}}{Ca^{91}} \text{ pH 7,20 (шт. 5)}$$

Для рудничных вод района характерны высокие показатели общей жесткости (G_{общ}), обусловленные значительным содержанием ионов Mg²⁺ и Ca²⁺. Так, значения G_{общ} для шт. 1 – 11,63 мг-экв/л, шт. 2 – 4,35 мг-экв/л, шт. 3 – 10,2 мг-экв/л, шт. 4 – 11,57 мг-экв/л и шт. 5 – 17,86 мг-экв/л. Полученные данные свидетельствуют о превышении допустимых значений G_{общ} в несколько раз, согласно ГН 2.1.5.1315-03 для G_{общ} < 7,0 мг-экв/л.

Рисунок 4.6 – Соотношение основных катионов и анионов в водах Кавалеровского района

Примечание: 1 – Дубровское (фон), 2 –Дубровское (шт.1), 3 – Дубровское (ниже штольни на 500 м), 4 – Высокогорское (фон), 5 – Высокогорское (шт.2), 6 – Хрустальное (фон), 7 – Хрустальное (шт.3), 8 – Фабричный (шт.4), 9 – Верхнее (шт.5), 10 – родник 1, 11 – родник 2.

Анализ макрокомпонентного состава рудничных вод показал, что среди анионов в химическом составе преобладает $SO_4^{2^-}$ -ион, его концентрации изменяются в пределах от 170,0 до 959,48 мг/дм³. Преобладающим катионом является кальций, его содержания варьируют в пределах от 67,03 до 340,00 мг/дм³.

Изучение микрокомпонентного состава показало, что практически во всех пробах в значительных концентрациях обнаруживаются Fe – 0,22–2,956 мг/дм³, Cu – 0,002– 0,0099 мг/дм³, Zn – 0,0256–0,221 мг/дм³, Pb – 0,0123–0,0364 мг/дм³, Mn – 0,0206–0,2488 мг/дм³ и Li – 0,0337–0,4557 мг/дм³. В единичных пробах установлены в (мг/дм³): Si – 11,78, Co – 0,0164 и Ni – 0,0169–0,0482.

Номер пр	обы	2	3	5	7	8	9
Состав рас	гвора	Ca-Mg- SO ₄	Ca-Mg- SO ₄ - HCO ₃	Ca-SO ₄	Ca-SO ₄ - HCO ₃	Ca-Mg- SO ₄ - HCO ₃	Ca-SO ₄
Показатель	ПДКр		I	ие, мг/дм ³	I	L	
pН	6,5-8,5	7,30	7,26	7,31	7,43	7,63	7,2
HCO ₃ -	-	146,40	67,10	40,22	140,30	170,80	164,70
SO4 ²⁻	100	580,86	183,60	170	478,73	596,92	959,48
Cl	300	-	-	0,87	-	-	-
K ⁺	50	1,68	1,25	4,31	2,40	2,15	2,33
Na ⁺	120	13,36	5,73	4,37	26,21	32,95	14,75
Ca ⁺	180	196,33	67,03	79,14	172,10	147,72	340,00
Mg ⁺	40	21,56	7,58	4,06	19,08	49,70	10,30
Fe	0,1	1,726	0,328	0,22	2,080	0,051	2,956
Cu	0,001	0,0099	0,0087	0,002	0,0081	0,003	0,0031
Si	10,0	5,11	4,22	4,16	11,78	-	5,54
Zn	0,01	0,0712	0,0803	0,221	0,0586	0,0256	0,1001
Pb	0,006	0,0218	0,0174	0,0364	0,0237	0,0123	0,0135
Cd	0,005	0,0019	0,0006	0,0005	0,0011	0,0004	0,0004
Со	0,01	0,0164	0,0036	0,0023	0,0041	0,0020	0,0035
Mn	0,01	0,0206	0,2327	0,1291	0,2488	0,0341	0,1296
Ni	0,01	0,0482	0,0085	0,0098	0,0169	0,0029	0,0048
Al	0,04	0,083	<0,04	<0,04	<0,04	<0,04	<0,04
Cr	0,05	0,0029	0,0027	0,0032	0,0033	0,0018	0,0022
Sr	10,0	2,723	1,478	2,176	3,474	3,715	2,457
Ba	0,74	0,1037	0,0482	0,0554	0,0662	0,0148	0,0644
Li	0,0007	0,2248	0,0337	0,2171	0,2610	0,4557	0,2194
Минерализаци	ия, г/дм ³	0,96	0,34	0,3	0,84	1,0	1,5

Таблица 4.9 – Химический состав техногенных вод Кавалеровского района

Примечание: 2 – Дубровское (шт. 1), 3 – Дубровское (ниже шт. 1 на 500 м), 5 – Высокогорское (шт. 2), 7 – Хрустальное (шт. 3), 8 – Фабричный (шт. 4), 9 – Верхнее (шт. 5).

Таким образом, рудничные водоотливы штолен выносят в природные поверхностные водотоки различные токсичные элементы, изменяя естественный геохимический фон природных гидросистем.

4.4.3. Редкоземельные элементы в водных объектах Дальнегорского района

Повышенный интерес к редкоземельным металлам обусловлен увеличивающимся спросом со стороны предприятий, развивающих высокотехнологичные отрасли промышленности и выпускающих новейшую наукоемкую продукцию, представленную

люминофорами, микроволновыми фильтрами, миниатюрными ядерными батареями, мощными лазерами, компьютерами, мобильными телефонами, перманентными магнитами, керамикой и другими продуктами.

Использование РЗЭ значительно опережает оценку их воздействия на окружающую среду и живые организмы, а имеющиеся на сегодняшний день сведения недостаточны и противоречивы. Тем не менее, имеются данные о негативном воздействии РЗЭ на живые организмы, их токсическом действии, биотрансформации и миграции по пищевым цепям. Попадая в биологические системы, редкоземельные элементы могут не только сами оказывать негативное влияние, но также усиливать действие других веществ и, по представлениям Е.Ю. Крысанова (Крысанов и др., 2012), синергические эффекты могут оказаться наиболее существенными и более опасными.

По данным А.М. Анучина (Анучин и др., 2014) по степени токсичности соединения РЗЭ относятся к умеренно опасным и малоопасным. В живых организмах депонирование РЗЭ происходит в костях скелета, зубах, легких и селезенке. Воздействие пыли с высоким содержанием РЗЭ приводит к возникновению пневмокониоза, гранулематоза и рака гортани, к понижению уровня гемоглобина и возникновению эритропении и тромбопении. Кроме этого, отмечаются сухость и шелушение кожи рук, пигментация кожи и выпадение волос (Lanthanide particles..., 1994; Sampsonas et. al., 2010). Популяционные исследования в тропических регионах показали, что повышенная концентрация Се ассоциируется с рядом сердечнососудистых заболеваний, таких как инфаркт миокарда и эндокардиальный миофиброз (Анучин и др., 2014). Исследования, проведенные в Китае, в районах обогащенных РЗЭ показали, что повышенный уровень РЗЭ в окружающей среде приводит к серьезным нарушениям когнитивных функций, отклонениям в развитии и снижению уровня интеллекта у детей (Иванов, 1997; Fan et. al., 2004). Показано, что Gd³⁺ может привести к развитию нефрогенного системного фиброза (Linking drugs to obscure..., 2012).

При изучении воздействия соединений РЗЭ на животных установлено, что Gd³⁺ и Tb³⁺ вызывают некроз печени (Hirano et al., 1996). Кроме этого, La³⁺, Pr³⁺, Nd³⁺, Eu³⁺ и Tb³⁺ ингибируют Са в митохондриях клеток микроорганизмов и являются токсичными для них (Иванов, 1997; Индуцированный лантаном..., 2007).

На основании вышесказанного следует, что существует необходимость в изучении состава, содержания и контроля РЗЭ в геологических системах исследуемых

78

районов и выявления потенциального поставщика РЗЭ в поверхностные водоносные горизонты. Для этого были изучены метеорные воды (дождевые и снеговые), поверхностные природные и техногенные воды.

В основу работы положен фактический материал, полученный во время полевых работ и исследованный комплексом аналитических методов в аналитическом центре ДВГИ ДВО РАН.

Так как в полевых условиях фильтрование проб воды не производилось, нами изучен валовый состав редкоземельных элементов. Для сравнения концентраций РЗЭ в различных природных и техногенных объектах, все полученные результаты нормализованы на состав РЗЭ в североамериканском сланце (NASC), который применяют для изучения гипергенных процессов и обычно используют в экологических исследованиях.

При исследовании состава метеорных вод нами выявлен низкий уровень концентрации редкоземельных элементов. Так, в дождевой воде общая сумма P3Э – 0,187 мкг/дм³, в снеговой воде – 0,009 мкг/дм³ (таблица 1.1 приложения 1). В изученных атмосферных водах прослеживаются общие черты – содержание в них легких P3Э составляет 83 % от общей суммы. Обогащение вод элементами ЛРЗЭ относительно тяжелых выражено незначительно и соответствует ((ЛРЗЭ/ТРЗЭ)^N – 0,95–1,42). Отношение легких редкоземельных элементов к тяжелым, рассматривалось относительно сланца (NASC) как: (ЛРЗЭ/ТРЗЭ)^N = (La/La^N + 2 × Pr/Pr^N + Nd/Nd^N) / (Er/Er^N + Tm/Tm^N + Yb/Yb^N + Lu/Lu^N) (Дубинин, 2006).

спектрах распределения Ha РЗЭ в метеорных водах отчетливо проявлена положительная аномалия Еи и Но и отрицательная аномалия Се (рисунок 4.7). Отличительные особенности в том, что общая сумма РЗЭ в дождевой воде в 19 раз больше, по сравнению со снеговой водой, вероятно, связано ЭТО С эоловыми процессами, наиболее ярко выраженными летний В период.

Также в дождевой воде прослеживается положительная аномалия тулия, в снеговой воде положительная аномалия иттербия и отрицательная тулия. В результате незначительного содержания РЗЭ в метеорных водах Дальнегорского района, можно предположить, что они не могут оказывать существенного влияния на содержание и распределение РЗЭ в поверхностных водах исследуемого района.

Далее приводится сравнительный анализ концентраций РЗЭ в поверхностных природных и техногенных водах Дальнегорского района.

Анализ пространственной изменчивости концентрации редкоземельных элементов в поверхностных природных водах показал, что сумма РЗЭ в разных точках опробования изменяется незначительно и составляет 0,273–1,047 мкг/дм³. Состав РЗЭ в природных поверхностных водах повторяет состав метеорных вод, и указывает на наличие отрицательной аномалии церия, а также как положительной, так и отрицательной аномалии европия (рисунок 4.8).

Рисунок 4.8 – Нормированное распределение РЗЭ в природных водах Дальнегорского района

Примечание: 7 – озеро; 8 – р. Рудная (1100 м выше от Краснореченска); 16 – р. Рудная (7 км выше от хвостохранилища ЦОФ); 17 – р. Рудная (16 км выше от хвостохранилища ЦОФ); 18 – р. Рудная (21 км выше от хвостохранилища ЦОФ).

Количественно аномалии оценивались соотношениями $Ce/Ce^N = Ce/Ce^N / (1/2 La/La^N + 1/2 Pr/Pr^N)$ по А.В. Дубинину (2006) и Eu/Eu^N = 2 (Eu/Eu^N)/(Sm/Sm^N + Gd/Gd^N) по Ү. Като et al. (1998). Значения соотношений менее 0,95 указывают на обеднение, а более 1,05 – на обогащение Се и Еu относительно соседних РЗЭ (Тейлор др., 1988).

В исследуемых водах наблюдаются переменные значения отношений $((ЛРЗЭ/ТРЗЭ)^{N} = 0,59-1,28)$. На фоне снижения содержания $\Sigma PЗЭ$ происходит обогащение вод ЛРЗЭ.

Концентрации редкоземельных элементов в техногенных водах изменяются от 0,135 до 110,99 мкг/дм³ (таблица 1.2 приложения 1). При этом установлено, что

содержание РЗЭ в нейтральных и слабощелочных Ca-Mg-SO₄-HCO₃ водах на порядок ниже, чем в кислых и слабокислых Ca-Mg-SO₄ водах, в которых содержание РЗЭ составляет 44,0-55,5 мкг/дм³. Значительные концентрации РЗЭ (31,28-110,76 мкг/дм³) зафиксированы в дренажных водах старого хвостохранилища. При слиянии стоков с рекой Рудной происходит увеличение рН и как следствие, снижение концентраций РЗЭ до 6,09 мкг/дм³ и далее вниз по течению до значений 2,4–0,315 мкг/дм³ (Оводова, Горобейко, 2015). Интерпретация полученных данных позволяет утверждать, что существует строгая зависимость содержаний РЗЭ от рН среды. На рисунке 4.9 видно, что при pH > 5, происходит снижение содержания РЗЭ в воде. Связано это, по всей формированием слабощелочного видимости, c геохимического барьера. Ha относительно небольшом расстоянии кислые воды (рН 2,33) становятся нейтральными (pH 6,65-6,9) и даже слабощелочными (pH 7,76-8,48). В данных условиях среды из водных растворов осаждаются многие химические элементы, в том числе и редкоземельные. О высоких концентрациях РЗЭ, контролируемых величиной рН, выявленных в дренажных водах различных сульфидных месторождений, отмечено также в работах (Protano et al., 2002; Lei et al., 2008).

В изученных нами техногенных водах выявлено значительное содержание $SO_4^{2^-}$ иона и аномальные концентрации железа, марганца и алюминия. Исследования показали, что в водах с более высоким содержанием SO_4 -иона наблюдается закономерный тренд зависимости содержаний $\Sigma P33$ от низких концентраций $SO_4^{2^-}$ к более высоким (рисунок 4.10).

Рисунок 4.9 – Распределение содержаний РЗЭ в водоемах Дальнегорского района в зависимости от pH

Рисунок 4.10 – Распределение содержаний РЗЭ в техногенных водах в зависимости от SO₄ Кроме этого, наблюдается прямая зависимость суммы редкоземельных элементов от общей минерализации вод, чем она выше, тем более высокие содержания РЗЭ в исследуемых водах.

По представлениям Ю.А. Балашова (Балашов, 1976) и А.В. Дубинина (Дубинин, 2006), концентрации РЗЭ прямо зависят от содержания взвешенного вещества в воде. Так как, концентрации и распределение РЗЭ в воде связаны с процессами соосаждения и сорбции на взвешенном веществе, была изучена зависимость содержания ЛРЗЭ от концентраций в воде Fe, Mn, Al.

На рисунке 4.11 прослеживается отчетливая корреляционная связь легких РЗЭ с содержанием в воде железа и марганца.

Рисунок 4.11 – Распределение легких РЗЭ в техногенных водах Дальнегорского района в зависимости от концентраций железа и марганца

В паводковый период (пробы отбирались в июне – июле) значительно увеличивается содержание взвешенного алюминия в воде, поступающего в результате усиливающихся процессов выветривания алюмосиликатов. Согласно данным рисунка 4.12 наблюдается прямая зависимость концентрации РЗЭ и количества алюминия в воде. Из вышесказанного можно предположить, что содержание РЗЭ в водах зависит не только от растворения солей РЗЭ, но и контролируется процессами соосаждения и сорбции.

В процессе изучения техногенных вод Дальнегорского района установлено, что во всех изученных пробах концентрации легких РЗЭ в значительной степени выше, чем

Рисунок 4.12 – Зависимость содержания РЗЭ в техногенных водах от концентраций алюминия

тяжелых, и варьируют от 74 до 89 % от суммы всех РЗЭ. При этом наиболее высокое содержание легких РЗЭ фиксируется в кислых и сильнокислых сульфатных водах (рисунок 4.13). По данным литературных источников (Тейлор и др., 1988; Дубинин, 2006; Шатров, 2007; Elderfield et al., 1990; Johannesson et al., 2000; Stille et al., 2003), легкие РЗЭ обладают несколько большим эффективным ионным освобождаются радиусом, легче В процессе растворения и, как следствие,

интенсивнее обогащают водный раствор. В результате, мы наблюдаем дифференцирование РЗЭ, выражающееся в увеличении концентраций легких РЗЭ в

кислых водах, и незначительное обогащение слабощелочных вод тяжелыми РЗЭ.

Изученные профили распределения РЗЭ в техногенных водах, нормированные по стандарту NASC, характеризуются слабым обогащением РЗЭ в области неодима – тербия, с максимальными значениями европия, гадолиния и тербия (рисунок 4-14), а также значительным разбросом соотношений между легкими и

тяжелыми РЗЭ ((ЛРЗЭ/ТРЗЭ)^N – 0,75–3,51). Практически на всех спектрах прослежена отрицательная цериевая аномалия, появление которой, по данным Д.А. Минеева (Минеев, 1969), Ю.А. Балашова (Балашов, 1976), А.В. Дубинина (Дубинин, 2006), связано с окислением церия (переходом из Ce³⁺ до Ce⁴⁺). Вследствие чего он становится малоподвижным, адсорбируется на твердых частицах и таким образом выводится из

раствора, вплоть до возникновения в составе РЗЭ отрицательной цериевой аномалии (Ce/Ce^N 0,45–0,92). В прудке нового Дальнегорского хвостохранилища и в ручье из-под дамбы нового Краснореченского хвостохранилища дефицит церия исчезает (Ce/Ce^N ≥ 1).

Рисунок 4.14 – Нормированное распределение РЗЭ в техногенных водах Дальнегорского района

Примечание: 1 – ручей из-под дамбы старого хвостохранилища КОФ; 2 – среднее течение ручья старого хвостохранилища КОФ; 3 – место впадения ручья в р. Рудная; 5 – вода в прудке 1 старого хвостохранилища КОФ; 6 – вода в прудке 2 старого хвостохранилища КОФ; 9 – ручей из-под дамбы нового хвостохранилища КОФ; 10 – вода в прудке нового хвостохранилища КОФ; 11 – место впадения ручья в р. Рудная; 12 – р. Рудная в 100 м выше от т. 11; 13 – р. Рудная в 100 м ниже от т. 11; 14 – вода в прудке нового хвостохранилища ЦОФ, 15 – р. Рудная в 1500 м ниже от нового хвостохранилища ЦОФ.

Одной из особенностей исследуемых вод является наличие как отрицательной, так и положительной аномалии европия (Eu/Eu^N 0,83–3,5). Обогащение водного раствора европием происходит в результате поступления его из породообразующих минералов, например, плагиоклаза, в котором европиевая аномалия наиболее ярко выражена, по сравнению с другими РЗЭ (Тейлор и др., 1988). По свидетельствам Г.А. Валуй (Валуй, 2004), содержание европия в Дальнегорских гранитах составляет 0,741 г/т, в габбродиоритах Николаевской интрузии – 1,141 г/т, в монцонитах интрузива кл. Лапшина в пос. Краснореченский – 1,147 г/т. В стандартных образцах для сравнения (Бобров, 1988), содержание европия в гранитах составляет 0,4–1,32 г/т.

Изученные спектры составов РЗЭ в техногенных водах имеют слабую аномалию гольмия (Ho/Ho^N 1–2). По данным литературных источников (Тейлор и др., 1988; Иванов, 1997), повышенные содержания гольмия установлены в монаците из гранитов (1400 г/т), а также в биотите (4,9 г/т) и амфиболе (4,4 г/т). По представлениям Г.А. Валуй (2004), в гранитоидах Дальнегорского района, содержание гольмия изменяется от 0,55 до 1,05 г/т, при этом в стандартных образцах – 0,35 г/т (Бобров, 1988).

Анализ данных свидетельствует о неравномерном распределении РЗЭ в водах исследуемого района. Наиболее высокие концентрации РЗЭ (31,28–110,76 мкг/дм³) характерны для кислых техногенных вод, низкие содержания фиксируются в атмосферных осадках: в дождевой воде – 0,1873 мкг/дм³, в снеговой воде – 0,0099 мкг/дм³. Исследования показали, что абсолютные содержания РЗЭ, в изученных водах, контролируются кислотно-щелочными условиями раствора и общей минерализацией вод.

На данном этапе исследований можно сделать вывод, что обогащение водных объектов редкоземельными элементами происходит в процессе взаимодействия «вода – порода», и свидетельствует о том, что состав и степень концентрации РЗЭ в водных объектах определяется составом пород водосборного бассейна и косвенно отражает геохимический фон концентраций РЗЭ в зоне гипергенеза изучаемой территории.

4.4.3.1. Распределение РЗЭ в прудковой зоне хвостохранилища КОФ

Значительный интерес, с экологической точки зрения, вызывает прудок 1, сформировавшийся в результате восходящей циркуляции поровых растворов, на поверхности старого хвостохранилища КОФ (рисунок 4.15).

С целью изучения химического состава различных фаз прудка были отобраны пробы донных отложений и «кровавой» воды.

В результате выпаривания 200 г прудковой воды получена твердая минеральная фаза (рисунок 4.16). Выпаривание осуществлялось в лабораторных условиях в течение месяца при комнатной температуре (около 18–23 °C). Минеральный осадок имеет яркий красно-оранжевый цвет, стеклянный блеск, твердость по шкале Мооса 2–3.

85

Рисунок 4.15 – Прудок 1 («кровавое» озеро) старого хвостохранилища КОФ

Рисунок 4.16 – Минеральные фазы из прудковой воды

Полученный в результате твердый минеральный осадок подвергся химическому анализу, результаты которого представлены в таблице 4.10 и 4.11.

Таблица	4.10	_	Химический	состав	твердых	минеральных	фаз
хвостохранилиц	ца КО	Ф, м	acc. %				

Образец	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	ППП+ Н2О	Σ
Донные отложения прудка	53,76	0,37	9,96	16,92	0,33	0,57	0,85	0,14	2,79	0,03	13,84	99,56
Минеральный осадок	0,40	<0,01	0,93	22,14	2,91	1,86	3,52	0,03	0,02	<0,01	65,70	97,51

Таблица 4.11 – Химический состав твердых минеральных фаз хвостохранилища КОФ, г/т

Образец	Li	Be	Sc	V	Cr	Co	Ni	Cu	Zn	Ga	As	Rb	Sr	Y
Донные														
отложения	35,91	0,84	6,30	64,50	42,30	0,80	20,00	82,80	1094,0	9,67	1255,0	82,60	55,10	5,33
прудка														
Минеральный														
осадок из	15,76	1,08	0,36	8,75	3,81	6,44	16,43	121,8	5286	0,91	90,91	1,01	63,51	6,45
воды														

Продолжение таблицы 4.11

Образец	Zr	Nb	Mo	Cd	Sn	Cs	Ba	Hf	Та	W	Tl	Pb	Th	U
Донные														
отложения	40,00	6,63	0,74	0,41	91,20	14,53	296,60	1,16	0,43	3,10	1,22	3300,0	5,16	0,93
прудка														
Минеральный														
осадок из	0,32	0,03	0,47	18,10	0,81	0,22	1,55	0,011	0,002	<ПО	0,012	23,24	1,15	0,18
воды														

Содержания РЗЭ в различных фазах прудка 1 приведены в таблице 4.12.

Образец	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Донные отложения, г/т	18,05	36,88	3,7	12,95	2,22	0,47	1,76	0,26	1,21	0,25	0,74	0,11	0,83	0,11
Минеральный осадок, г/т	3,88	8,69	1,05	4,57	1,32	0,449	1,61	0,246	1,163	0,226	0,499	0,062	0,329	0,048
Прудковая вода, мкг/дм ³	8,38	19,24	2,48	11,12	3,05	1,13	3,83	0,568	2,9	0,507	1,24	0,143	0,806	0,109

Таблица 4.12 – Содержание РЗЭ в различных фазах прудковой зоны хвостохранилища КОФ

Продолжение таблицы 4.12

Образец	∑REE, г/т	∑LREE	∑HREE	LREE,%	HREE,%	(LREE/ HREE) ^N	Eu/Eu*	Ce/Ce*
Донные отложения, г/т	79,54	74,27	5,27	93,37	6,63	2,01	1,04	0,99
Минеральный осадок, г/т	24,142	19,959	4,183	82,67	17,33	1,1	0,53	0,92
Прудковая вода, мкг/дм ³	55,503	45,4	10,103	81,8	18,2	1,08	1,43	0,9

Данные таблицы 4.12 и рисунка 4.17 свидетельствуют о том, что донные

Примечание: 1 – донные отложения прудка 1; 2 – вода в прудке 1; 3 – твердый осадок из «кровавой» воды прудка 1.

отложения В большей степени обогащены РЗЭ (79,54 г/т), по сравнению с твердым остатком (24,142 г/т) и прудковой водой (55,503 мкг/дм³). Минеральный остаток прудковые воды И относительно донных отложений обеднены легкими РЗЭ. Отношения величин (ЛРЗЭ/ТРЗЭ)^N составляет для донных отложений 2,01, прудковой воды 1,08, в твердом остатке 1,1.

Нормализованные по стандарту NASC концентрации РЗЭ

имеют сходные профили распределения воды и твердого остатка с хорошо выраженными европиевой и гольмиевой аномалиями и слабо выраженной отрицательной аномалией церия. Более пологий профиль распределения характерен для донных отложений, на котором прослеживается слабая аномалия Eu, Ho, Yb и отрицательная аномалия Nd, Dy, Er.

Таким образом, более высокие концентрации РЗЭ отмечаются в тонкодисперсных фазах донных отложений, наиболее низкие в прудковой воде, при этом, наблюдается обогащение всех изученных фаз ЛРЗЭ относительно ТРЗЭ.

4.4.4. Редкоземельные элементы в водных объектах Кавалеровского района

С целью изучения состава и содержания РЗЭ в водных объектах в районах с разным типом оруденения, был проведен сравнительный анализ содержания РЗЭ в фоновых, природных поверхностных и техногенных водах Дальнегорского и Кавалеровского района. Содержание РЗЭ в водах Кавалеровского района получены из литературных источников, по данным работ В.П. Зверевой с соавторами (Зверева и др., 2014) (таблица 1.3 приложения 1). Обработка и анализ аналитических данных проводился автором данной работы.

В фоновых водах Дальнегорского района Σ РЗЭ достигает 1,047 мкг/дм³, при этом доля ЛРЗЭ составляет 77 %. В Кавалеровском районе в фоновых водах Σ РЗЭ составляет 0,877 мкг/дм³, доля ЛРЗЭ – 79 %. Обогащение фоновых вод ЛРЗЭ относительно ТРЗЭ соответствует величине (ЛРЗЭ/ТРЗЭ)^N = 0,59 в Дальнегорском районе и (ЛРЗЭ/ТРЗЭ)^N = 0,75 в Кавалеровском районе. Профили распределения РЗЭ указывают, что фоновые воды в большей степени обогащены Gd, Tb, Dy, Ho (рисунок 4.18), а также на наличие в водах отрицательной цериевой аномалии, а в составе дальнегорских вод также отмечается дефицит европия.

Анализ природных поверхностных вод Кавалеровского района показал, что содержание РЗЭ в р. Высокогорская – 0,339 мкг/дм³, в р. Партизанка – 0,908 мкг/дм³. В Дальнегорском районе в озере – 0,273 мкг/дм³, а в р. Рудная (выше на 16 км от хвостохранилища ЦОФ) – 0,558 мкг/дм³, что свидетельствует о низком содержании РЗЭ в природных водах. Состав РЗЭ, почти во всех водах (кроме озерной), имеет дефицит церия. В водах реки Высогорской содержание ЛРЗЭ достигает 75 % от общей суммы РЗЭ, а величина (ЛРЗЭ/ТРЗЭ)^N = 0,69. В составе РЗЭ р. Высокогорской, преобладают элементы средней группы (Sm, Gd, Tb, Er). Состав РЗЭ в р. Партизанке несколько отличается от предыдущего, так как эти воды больше обогащены элементами легкой группы (La, Pr, Nd), из средней группы слабо проявлена положительная аномалия Gd. Содержание ЛРЗЭ в воде составляет 90 %, отношение (ЛРЗЭ/ТРЗЭ)^N = 1,43.

Для сравнительного анализа состава РЗЭ в Дальнегорском районе взяты пробы воды из озера, находящегося в непосредственной близости от старого хвостохранилища КОФ, но гипсометрически расположенного выше, поэтому вероятность воздействия дренажных вод хвостохранилища невелика. В озерной воде Дальнегорского района положительная европиевая аномалия. Возможно, выражена это связано с восстановлением этого элемента в гипергенных условиях биохимическими процессами, наиболее интенсивно протекающими в замкнутых водоемах (Дубинин, 2006). При общей сумме РЗЭ, составляющей 0,273 мкг/дм³, содержание ЛРЗЭ достигает 85 %, а величина (ЛРЗЭ/ТРЗЭ) $^{N} = 1,28$.

Рисунок 4.18 – Распределение нормализованных значений содержания РЗЭ в водах Дальнегорского и Кавалеровского района

Примечание: 1 – фоновая проба (Кавалеровский район)*; 2 – фоновая проба (Дальнегорский район); 3 – шламовые воды хвостохранилища (месторождение Дубровское)*; 4 – шламовые воды хвостохранилища (месторождение Высокогорское)*; 5 – р. Высокогорка (ниже месторождения Высокогорского)*; 6 – р. Партизанка (ниже месторождения Дубровского)*; 7 – рудничные воды (месторождение Хрустальное)*; 8 – рудничные воды (месторождение Дубровское)*; 9 – озеро; 10 – р. Рудная (16 км выше от хвостохранилища ЦОФ); 11 – среднее течение ручья из-под дамбы старого хвостохранилища КОФ; 12 – ручей из-под дамбы нового хвостохранилища КОФ; 13 – вода в прудке 1 старого хвостохранилища КОФ. * – по данным В.П. Зверевой, 2014.

Состав воды в р. Рудной, пробы которой отбирались в 16 км выше от хвостохранилища ЦОФ, характеризуется наличием отрицательной цериевой аномалии и

незначительным обогащением элементами средней группы (Sm, Eu, Gd, Tb), отношение величин (ЛРЗЭ/ТРЗЭ) $^{N} = 1,02$.

Максимальные концентрации РЗЭ устанавливаются в техногенных водах Кавалеровского и Дальнегорского района. В Кавалеровском районе самые высокие концентрации РЗЭ характерны для рудничных (71,086 мкг/дм³) и шламовых вод хвостохранилища месторождения Дубровского (2,581 мкг/дм³). В Дальнегорском районе максимальные концентрации РЗЭ фиксируются в дренажных – 110,76 мкг/дм³ и прудковых водах – 55,503 мкг/дм³ старого хвостохранилища КОФ. Анализ состава и распределения РЗЭ в техногенных водах Кавалеровского района выявил следующие особенности. Доля ЛРЗЭ в составе РЗЭ достигает 73–92 %. В рудничных водах отношение величин (ЛРЗЭ/ТРЗЭ)^N составляет 1,45–1,5, в шламовых водах 0,35–1,47, что свидетельствует о незначительном преимуществе легких элементов в исследуемых водах. Как можно видеть на профилях распределения РЗЭ (см. рисунок 4.18), все исследуемые техногенные воды имеют положительную аномалию Тb, Er, рудничные воды Дубровского месторождения – Sm, Lu, а шламовые воды Высокогорского хвостохранилища – Eu, Ho. В техногенных водах наблюдается отрицательная аномалия Dy, а в рудничных водах наблюдается также дефицит Tm и Yb.

В водах Дальнегорского района, дренирующих хвостохранилище и в прудковой воде, также зафиксированы высокие концентрации РЗЭ среди всех изученных вод. В ручье, вытекающем из-под дамбы старого хвостохранилища КОФ Σ РЗЭ – 110,76 мкг/дм³, при этом ЛРЗЭ составляют 89 %, а величина (ЛРЗЭ/ТРЗЭ)^N = 1,08. В составе данных вод преобладают элементы средней группы – Eu, Gd, Tb, минимальные концентрации характерны для Ce, Dy и Ho. В сульфатных водах прудковой зоны Σ РЗЭ – 55,503 мкг/дм³. Наблюдается преобладание ЛРЗЭ (82 %), над ТРЗЭ, а величина (ЛРЗЭ/ТРЗЭ)^N = 1,08. В составе РЗЭ прослеживается незначительное преобладание элементов средней группы (Sm, Eu, Gd, Tb, Dy, Ho), хорошо выражена положительная аномалия Eu, относительно соседних элементов. Также устанавливается слабо выраженная отрицательная цериевая аномалия (Оводова, Горобейко, 2014). Третьим объектом, выбранным для сравнения, являются воды ручья из-под дамбы нового хвостохранилища КОФ. Данный тип вод отличается от вышеописанных, прежде всего тем, что Σ РЗЭ составьято соседних элементов преобладание элементов среднии КОФ. Данный тип вод отличается преобладание элементов легкой (ЛРЗЭ/ТРЗЭ)^N = 1,67. В составе РЗЭ прослеживается преобладание элементов легкой

(La, Ce, Nd) и средней (Eu, Gd, Tb) групп. На профиле распределения РЗЭ хорошо выражена отрицательная цериевая аномалия и положительная аномалия европия.

Сравнительный анализ составов РЗЭ в водах Дальнегорского и Кавалеровского района показал, что природные воды характеризуются низким содержанием РЗЭ – от 0.339 до 0.877 мкг/дм³ в Кавалеровском районе и от 0.273 до 1.047 мкг/дм³ в Дальнегорском районе. Максимальные концентрации РЗЭ характерны для техногенных вод и выявлены в рудничных водах месторождения Дубровское Кавалеровского района (71,086 мкг/дм³), а также в дренажных растворах (110,76 мкг/дм³) и водах прудковой зоны (55,503 мкг/дм³) старого хвостохранилища КОФ. Для всех изученных образцов проб воды, характерно преобладание в общем балансе легких РЗЭ (82-89 % в Дальнегорском районе; 73–92 % в Кавалеровском районе). Отношения величин (ЛРЗЭ/ТРЗЭ)^N составляют: для Кавалеровского района = 0,35–1,5; для Дальнегорского района = 0,59–1,67. При этом на фоне увеличения содержаний суммы РЗЭ в водах, происходит увеличение отношений (ЛРЗЭ/ТРЗЭ)^N почти в 3-4 раза. Состав РЗЭ вод исследуемых районов характеризуется обогащением элементами легкой и средней групп, и дефицитом элементов тяжелой группы, за исключением рудничных вод Дубровского месторождения, где наблюдается значительное содержание лютеция. Почти во всех изученных водах на профиле распределения выделяется отрицательная аномалия церия; в природных и техногенных водах Дальнегорского района ярко положительная выражена аномалия европия. В результате изучения общих особенностей распределения РЗЭ в водах районов, было установлено фракционирование РЗЭ: природные воды истощены относительно NASC согласно ряду: легкие < средние ≥ тяжелые; техногенные воды обогащены согласно ряду: легкие ≤ средние > тяжелые.

Таким образом, на основании проведенных гидрогеохимических исследований природных и техногенных вод Дальнегорского и Кавалеровского районов, можно сделать следующие выводы.

Все исследуемые воды имеют сходный анионно-катионный состав. Подземные воды относятся преимущественно к гидрокарбонатному с преобладанием роли натрия и кальция типу, в целом химический состав подземных вод типичен для вод, не подверженных антропогенному воздействию, о чем свидетельствуют минерализация (0,03–0,41 г/дм³), pH вод (6,01–7,7), G_{общ} (0,31–1,73 мг-экв/л).

Природные поверхностные воды имеют преимущественно Ca-Mg-HCO₃-SO₄

состав, характеризуются приблизительно равными средними значениями общей минерализации (0,05 г/дм³), нейтральной и слабощелочной средой, по жесткости мягкие и очень мягкие. В природных водах зафиксированы значительные концентрации Fe, Cu, Mn, Zn, Pb, Li, Al.

изучении пространственного распределения содержаний При макро-И выявлены локальные участки техногенного микроэлементов, загрязнения вод, приуроченные к областям горнорудного производства. В результате антропогенного воздействия формируются Ca-Mg-SO₄ воды, с величиной pH в пределах 2,33-8,48 и увеличивающейся минерализацией растворов до 10,19 г/дм³ (Дальнегорский район) и 1,5 г/дм³ (Кавалеровский район). Увеличение в растворе катионов Ca⁺ и Mg⁺ приводит к повышению общей жесткости до 46,99 мг-экв/л (Дальнегорский район) и 17,86 мг-экв/л (Кавалеровский район). В техногенных водах установлен широкий спектр элементов, содержания которых значительно превосходят фоновые и ПДК (SO₄²⁻, Mg, Ca, Fe, Ni, Co, Cu, Zn, Pb, As, Cd, Se, Mn, Al, Li, Be, V, B). В результате изучения характера распределения РЗЭ установлено, что наиболее высокие их концентрации выявлены в кислых техногенных водах. Для всех изученных образцов проб воды, характерно преобладание в общем балансе легких РЗЭ – 82–89 % в Дальнегорском районе, 73–92 % Кавалеровском районе. Отношения величин (ЛРЗЭ/ТРЗЭ)^N составляют: для В Кавалеровского района = 0,35-1,5; для Дальнегорского района = 0,59-1,67. В природных и техногенных водах районов установлено фракционирование РЗЭ.

4.5. Типизация вод района работ

Анализ данных гидрогеохимических исследований показал, что на изучаемой территории на фоне природных вод выделяются участки техногеннотрансформированных вод (таблица 4.13; 4.14). Природные воды распространены на антропогенной деятельностью участках, не затронутых И сохранившие свой естественный геохимический фон, к ним относятся подземные и природные поверхностные воды.

Минерализация подземных вод в Дальнегорском районе изменяется от 0,05 до 0,41 г/дм³. Значения рН варьируют в пределах от 6,8 до 7,7, следовательно, воды характеризуются как нейтральные и слабощелочные. По химическому составу

(классификация О.А. Алекина (Алекин, 1970; Беликов, 2007)), подземные воды принадлежат к гидрокарбонатному классу, группе натрия, первому типу (C^{Na}_{I}). В Кавалеровском районе минерализация подземных вод изменяется от 0,03 до 0,06 г/дм³. Значения рН лежат в пределах от 6,01 до 7,43 и характеризуют воды как слабокислые и нейтральные. По химическому составу воды принадлежат к гидрокарбонатному классу, группе кальция, второму типу (C^{Ca}_{II}).

Природные поверхностные воды Дальнегорского района характеризуются низкой минерализацией, варьирующей в пределах 0,05 до 0,18 г/дм³. Значения pH в пределах 6,93–7,85, при этом наблюдается преобладание слабощелочных вод. По химическому составу воды принадлежат к гидрокарбонатному классу, группе кальция, второму типу (C^{Ca}_{Π}). Минерализация природных поверхностных вод Кавалеровского района изменяется в интервале от 0,04 до 0,07 г/дм³, значения pH от 7,03 до 7,43, что указывает на преобладание нейтральных вод. По химическому составу воды принадлежат к гидрокарбонатному классу, группе кальция, первому и второму типу ($C^{Ca}_{I-\Pi}$).

Техногенные воды формируются под воздействием горнорудного техногенеза, образуя локальные участки техногенно-трансформированных вод по спектру элементов макрокомпонентного (SO₄²⁻) и микрокомпонентного состава (Zn, Cd, As, Cu, Mn, Al, Li и др.). В Дальнегорском районе минерализация техногенных вод изменяется от 0,09 до 10,19 г/дм³. Значение pH колеблется от 2,33 до 8,48, что указывает на изменение вод от сильнокислых до щелочных. По химическому составу воды относятся к сульфатному классу, группе кальция, второму и четвертому типу (S^{Ca}_{II-IV}). Минерализация рудничных вод Кавалеровского района изменяется от 0,30 до 1,5 г/дм³, значения pH от 7,26 до 7,63. По химическому составу воды относятся к сульфатному классу, группе кальция, второму и третьему типу (S^{Ca}_{II-II}).

Исследования показали, что химический состав вод в районах развития горнопромышленного комплекса подвержен значительной изменчивости. В природнотехногенных геологических системах Дальнегорского и Кавалеровского районов происходит геохимическая трансформация природных вод по схеме HCO_3 -Ca \rightarrow SO₄-Ca, наблюдается увеличение минерализации (от 0,03 г/дм³ до 10,19 г/дм³) и изменение водородного показателя (8,48 > pH > 2,33).

Таблица 4.13 – Типизация природных вод района

Исследуемые воды	Класс	Группа	Тип	Вид вод	Минерализация, г/дм ³	Группа вод по значению pH
	Природные	е подземные воды	і Дальнегорского р	района	•	
Грунтовые воды в aQ отложениях речных долин			I (HCO ₃ -Na)	Ультрапресные	0,05	Нейтральные (7,0)
Подземные воды в вулканогенных и интрузивных породах K ₂ и P –N	Гилпокорбонотичи	Натриород	I (HCO ₃ -Na)	Ультрапресные	0,06	Нейтральные (6,8)
Водоносный горизонт J–K ₁ терригенных пород	т идрокароонатный	патриевая	I (HCO ₃ -Na)	Пресные	0,18	Слабощелочные (7,7)
Напорные воды зон тектонических нарушений			I (HCO ₃ -Na)	Пресные	0,41	Слабощелочные (7,6)
	Природные	е подземные воды	і Кавалеровского р	айона		
Общественный колодец			II (HCO ₃ -Ca)	Ультрапресные	0,05	Слабокислые (6,01)
Родник 1	Гидрокарбонатный	Кальциевая	II (HCO ₃ -Ca)	Ультрапресные	0,06	Нейтральные (7,29)
Родник 2			II (HCO ₃ -Ca)	Ультрапресные	0,03	Нейтральные (7,43)
	Природные п	оверхностные во,	ды Дальнегорского	о района		
Озеро			II (HCO ₃ -Ca)	Пресные	0,18	Слабощелочные (7,6)
р. Рудная (1100 м выше Краснореченска)			II (HCO ₃ -Ca)	Ультрапресные	0,05	Нейтральные (6,93)
р. Рудная (7 км выше от хвостохр. ЦОФ)	Гидрокарбонатный	Кальциевая	II (HCO ₃ -Ca)	Пресные	0,12	Слабощелочные (7,81)
р. Рудная (16 км выше от хвостохр. ЦОФ)			II (HCO ₃ -Ca)	Ультрапресные	0,09	Слабощелочные (7,85)
р. Рудная (21 км выше от хвостохр. ЦОФ)			II (HCO ₃ -Ca)	Ультрапресные	0,09	Слабощелочные (7,61)
	Природные п	оверхностные во	ды Кавалеровского	о района		
Ручей в пгт Рудный (фон)			I (HCO ₃ -Ca)	Ультрапресные	0,07	Нейтральные (7,29)
р. Высокогорская (фон)	Гидрокарбонатный	Кальциевая	I (HCO ₃ -Ca)	Ультрапресные	0,04	Нейтральные (7,43)
р. Хрустальная (фон)			II (HCO ₃ -Ca)	Ультрапресные	0,06	Нейтральные (7,03)

Исследуемые воды	Класс	Группа	Тип	Вид вод	Минерализация,	Группа вод по
	Tex	и Кногенные волы Л	Тальнегорского ра	айона	1/дм	значению рт
Ручей из-под дамбы старого хвостохр. КОФ			II (SO ₄ -Ca)	Умеренно пресные	0,53	Слабокислые (6,43)
Среднее течение ручья старого хвостохр. КОФ			IV (SO ₄ -Ca)	Слабосолоноватые	1,27	Кислые (4,61)
Место впадения ручья в р. Рудная			II (SO ₄ -Ca)	Пресные	0,17	Нейтральные (6,65)
р. Рудная в 100 м выше от т. 3			II (SO ₄ -Ca)	Пресные	0,12	Нейтральные (6,9)
Вода в прудке 1 старого хвостохр. КОФ		Кальциевая	IV (SO ₄ -Ca)	Слабосоленые	10,19	Сильнокислые (2,48)
Вода в прудке 2 старого хвостохр. КОФ	Сульфатный		IV (SO ₄ -Ca)	Сильносолоноватые	5,84	Сильнокислые (2,33)
Ручей из-под дамбы нового хвостохр. КОФ			II (SO ₄ -Ca)	Пресные	0,14	Нейтральные (7,08)
Вода в прудке нового хвостохр. КОФ			II (SO ₄ -Ca)	Пресные	0,13	Нейтральные (7,1)
Место впадения ручья в р. Рудная			II (SO ₄ -Ca)	Пресные	0,15	Нейтральные (7,35)
р. Рудная в 100 м выше от т. 11			II (SO ₄ -Ca)	Пресные	0,11	Нейтральные (7,26)
р. Рудная в 100 м ниже от т. 11			II (SO ₄ -Ca)	Ультрапресные	0,09	Нейтральные (7,42)
Вода в прудке нового хвостохр. ЦОФ			II (SO ₄ -Ca)	Пресные	0,22	Щелочные (8,48)
р. Рудная в 1500 м от нового хвостохр. ЦОФ			II (SO ₄ -Ca)	Пресные	0,16	Слабощелочные (8,34)
	Tex	кногенные воды І	Кавалеровского ра	ийона		
Дубровское (шт.1)			II (SO ₄ -Ca)	Умеренно пресные	0,96	Нейтральные (7,3)
Дубровское (ниже шт. 1 на 500 м)			II (SO ₄ -Ca)	Пресные	0,34	Нейтральные (7,26)
Высокогорское (шт.2)			III (SO ₄ -Ca)	Пресные	0,30	Нейтральные (7,31)
Хрустальное (шт.3)	Сульфатный	Кальциевая	II (SO ₄ -Ca)	Умеренно пресные	0,84	Нейтральные (7,43)
Фабричный (шт.4)			II (SO ₄ -Ca)	Умеренно пресные	1,0	Слабощелочные (7,63)
Верхнее (шт.5)			II (SO ₄ -Ca)	Слабосолоноватые	1,5	Нейтральные (7,2)

Таблица 4.14 – Типизация техногенных вод района

5. ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ ХИМИЧЕСКОГО СОСТАВА ТЕХНОГЕННЫХ ВОД

На формирование и изменение химического состава поверхностных и подземных вод оказывают влияние различные факторы, основными являются природноклиматические условия региона (главным образом, атмосферные осадки), особенности геолого-тектонического строения, а также минеральный и вещественный состав руд и рудовмещающих пород. Данные факторы определяют интенсивность водообмена (время взаимодействия в системе «вода-порода»), растворения и миграции вещества.

5.1. Факторы формирования химического состава вод

Изучение геологического строения исследуемых районов (см. главу 2), позволило рудные районы объединяют утверждать, что пространственно проявления магматических пород двух серий: известково-щелочной, представленной диоритгранодиорит-гранитной ассоциацией, и субщелочной, представленной монцодиоритгранодиоритовой ассоциацией, имеющими различную геохимическую характеристику и, как следствие, сопровождающиеся различными типами оруденения. Первая ассоциация широко проявлена в Дальнегорском рудном районе, вторая распространена в пределах Кавалеровского и Верхне-Уссурского рудных районов. Различный характер магматизма обусловливает различный тип оруденения – скарново-полиметаллическое В проявлено Дальнегорском рудном районе, оловянное в Кавалеровском и оловополиметаллическое в Верхне-Уссурском рудном районе. Выявленные особенности геологического строения определяют направление гипергенных (минералогогеохимических) преобразований в природно-техногенных геологических системах Кавалеровского и Дальнегорского районов (штольни и хвостохранилища ЦОФ и КОФ).

Кроме этого, для природно-техногенных геологических систем Кавалеровского района немаловажную роль играет приуроченность месторождений и, как следствие рассматриваемых горных выработок (штолен), к разломам 2-го порядка, наследующим или оперяющим глубинные разломы фундамента. Все литологические разности характеризуются повышенной трещиноватостью и относительно высокой проницаемостью. Естественные ресурсы подземных вод в зонах трещиноватости горных пород зависят от количества и характера атмосферных осадков, условий их инфильтрации и условий подземного стока. Колебания уровня трещинных подземных вод на юге Сихотэ-Алинской гидрогеологической области достигают 10-12 м, дебиты источников изменяются по сезонам года в десятки раз, многие из них носят временный характер. Коэффициент водопроводимости пород зоны дезинтеграции в среднем изменяется от 1 до 36 м²/сут, в трещиноватых приконтактовых зонах достигает 50 м²/ сут (Гидрогеология СССР, 1976). Эти особенности определяют скорость водообмена (время взаимодействия в системе «вода-порода»), интенсивность растворения (окисления) руд и рудовмещающих пород, условия миграции вещества и, как следствие, объем и состав формирующихся вод, вытекающих из штолен.

Так как в хвостохранилищах руды и рудовмещающие породы находятся в измельченном, измененном различными физико-химическими процессами состоянии, ниже представлены результаты геохимических и минералогических исследований хвостов обогащения руд Краснореченской обогатительной фабрики. Кроме этого, выявлены особенности вторичной минерализации в природно-техногенных геологических системах Дальнегорского и Кавалеровского районов, оказывающей большое влияние на формирование химического состава рассматриваемых вод.

5.1.1. Геохимическая характеристика техногенных отложений

Для исследования геохимического состава хвостов обогащения в 2014 г. проводилось опробование старого и нового хвостохранилищ Краснореченской обогатительной фабрики. Произведено послойное опробование грунтов в шурфах глубиной до 2,0–2,5 м (см. рисунок 3.3). Всего было отобрано 36 проб.

Пробы проанализированы на ряд химических элементов (Li, Be, Sc, V, Cr, Co, Ni, Cu, Zn, Pb, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Cd, Sn, Cs, Ba, Hf, Ta, W, Tl, Th, U, REE) методами масс спектрометрии с индуктивно-связанной плазмой (ИСП МС) на спектрометре Agilent 7700 в аналитическом центре ДВГИ ДВО РАН. В научно-исследовательской лаборатории ООО «Экоаналитика» методами инверсионной вольтамперометрии (ИВ) определялось содержание мышьяка, атомно-абсорбционным экспресс-методом (ААА) – ртути, и также ИСП – МС содержание Сr, Be, Fe, Cu, Zn, Pb, Ag, Cd, Co, Li, Mn, Ni, Sn. Определение породообразующих оксидов выполнено в

аналитическом центре ДВГИ ДВО РАН методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой (АЭС – ИСП) на спектрометре iCAP 6500Duo (аналитики Г.И. Горбач, Е.А. Ткалина, Н.В. Хуркало), измерение H₂O, SiO₂, ППП, выполнено методом гравиметрии (аналитик Ж.А. Щека). Результаты аналитических исследований представлены в таблице 2.1 – 2.3 приложения 2.

С целью изучения распределения химических элементов в эфельных отложениях техногенных систем Дальнегорского района рассчитаны кларковые концентрации (КК) элементов – содержания элемента в исследуемом объекте, нормированные к его кларку в литосфере по Е.В. Склярову (Интерпретация геохимических..., 2001). Результаты исследований приведены в таблице 5.1 и 5.2.

В отложениях хвостов старого хвостохранилища КОФ установлено превышение кларков по таким химическим элементам как: Ag, Pb, Sn – в сотни раз; Zn, Cd, As – в десятки раз; Be, Fe, Cu, Co, Mn, Cs и W – в несколько раз. Геохимический ряд элементов в техногенных песчаниках старого хвостохранилища имеет следующий вид (г/т): Ag (134,14) > Pb (130,95) > Sn (106,96) > As (98,81) > Zn (36,32) > Cd (17,78) > Mn (8,51) > Cu (3,92) > Fe (3,18) > Be (3,10) > Co (2,70) > W (2,19) > Cs (1,61).

В отложениях нового хвостохранилища КОФ кларки превышены по As, Ag – в сотни раз; Zn, Pb, Cd и Sn – в десятки раз; единичные превышения характерны для Be, Fe, Cu, Co, Mn, Cs, W. Геохимический ряд элементов в отложениях нового хвостохранилища следующий (г/т): As (218,18) > Ag (167,0) > Pb (97,39) > Sn (84,77) > Zn (68,29) > Cd (66,64) > Mn (7,49) > Co (4,73) > Cu (4,66) > W (2,99) > Fe (2,43) > Be (2,3) > Cs (1,63). Содержания Au в лежалых хвостах КОФ не превышают 0,001 г/т (Оводова и др., 2016; Отходы Краснореченской обогатительной фабрики..., 2017).

Для изучения распределения элементов в техногенных песках, с помощью программного комплекса Surfer 8.0, построены картосхемы распределения Pb, Zn, Cd и As, как наиболее токсичных (рисунок 5.1 и 5.2). Анализ схем указывает на неравномерное распределение токсичных элементов, наиболее высокие их концентрации фиксируются непосредственно в чаше старого и нового хвостохранилищ.

С целью изучения распределения элементов в толще техногенных песков произведено послойное опробование грунтов в шурфах глубиной 2,0–2,5 м (рисунок 5.3). Анализ распределения элементов в техногенных отложениях показал, что концентрации всех элементов, за исключением Ве и Li, с глубиной увеличиваются (рисунок 5.4).

Рисунок 5.1 – Распределение Pb, Zn, Cd и As в старом хвостохранилище КОФ, г/т

Рисунок 5.2 – Распределение Pb, Zn, Cd и As в новом хвостохранилище КОФ, г/т

99

Рисунок 5.3 – Вертикальный разрез старого хвостохранилища КОФ. Шурф 1

Рисунок 5.4 – Распределение металлов в верхней части старого хвостохранилища Краснореченской обогатительной фабрики

100

Элемент	Минимум	Максимум	Количество проб	Среднее, г/т	Кларк, Скляров, 2001	КК
Ag	1,49	19,41	9	9,39	0,07	134,14
Hg	0,2	0,48	9	0,28	0,42	0,67
Cr	28,8	120,93	25	44,94	94	0,48
Be	0,02	2,17	26	0,93	0,3	3,1
Fe	13682	460740	26	140735,9	44200	3,18
Cu	33,12	545,2	26	188,14	48	3,92
Zn	36,77	12030	26	3377,82	93	36,32
Pb	62,93	5364	26	2619,08	20	130,95
Cd	0,41	29,24	26	7,47	0,42	17,78
As	143,8	1997	26	1185,76	12	98,81
Со	0,8	382,17	26	51,32	19,0	2,70
Li	3,86	40,45	26	23,93	65	0,37
Mn	467	24554	26	6811,58	800	8,51
Ni	5,8	142,86	26	37,33	74,0	0,50
Sn	14,28	3148	26	684,55	6,4	106,96
Al	6837	57028	18	44567,11	77200	0,58
Sc	3,4	8,9	18	6,13	13	0,47
V	12,5	64,5	18	48,57	130	0,37
Ga	1,11	12,83	18	8,72	22	0,40
Rb	8,9	98,1	18	72,06	150	0,48
Sr	20,17	67,4	18	44,62	330	0,14
Y	5,33	80,9	18	12,72	30	0,42
Zr	6,4	47,8	18	37,32	170	0,22
Nb	0,75	8,08	18	6,19	18	0,34
Мо	0,62	3,71	18	1,04	2,6	0,4
Cs	1,2	17,61	18	10,46	6,5	1,61
Ba	181,7	388,3	18	257,14	660	0,39
W	0,4	6,85	18	3,28	1,5	2,19
Hf	0,2	1,44	18	1,06	3,5	0,30
Ta	0,05	0,49	18	0,38	1,5	0,25
<u> </u>	0,19	1,52	18	1,15	1,1	1,05
Th	1,12	7,45	18	5,93	12	0,49
U	0,61	1,29	18	0,94	3,7	0,25
La	14,92	38,59	18	20,95	140	0,15
Ce	30,79	65,23	18	42,54	63	0,68
Pr	3,13	6,03	18	4,29	6,4	0,67
Nd	11,41	19,87	18	15,40	27	0,57
Sm	2,14	6,02	18	2,93	6,5	0,45
Eu	0,47	1,82	18	0,71	1,1	0,65
Gđ	1,/6	0,00	18	2,50	0,5	0,38
	0,26	1,15	18	0,41	1	0,41
Dy	1,21	5,/6	18	1,98	4,8	0,41
HO	0,25	0,998	18	0,36	1,4	0,26
Er T	0,/3	2,5	18	1,02	2,/	0,38
	0,11	0,313	18	0,14	0,23	0,61
Y D	0,/4	1,93	18	0,91	3	0,30
Lu	0,11	0,259	18	0,13	0,66	0,19

Таблица 5.1 – Кларки концентрации химических элементов в отложениях старого хвостохранилища КОФ

Примечание: КК – кларк концентрации = среднее содержание / кларк

Элемент	Минимум	Максимум	Количество проб	Среднее, г/т	Кларк, Скляров, 2001	КК
Ag	3,2	18,13	5	11,69	0,07	167
Hg	0,24	0,33	5	0,28	0,42	0,67
Cr	31,5	72,72	10	54,49	94	0,58
Be	0,04	1,47	10	0,69	0,3	2,3
Fe	59082	199080	10	107202,2	44200	2,43
Cu	78,66	385	10	223,54	48	4,66
Zn	1302	10460	10	6351,4	93	68,29
Pb	944	3773	10	1947,8	20	97,39
Cd	1,81	48,95	10	27,99	0,42	66,64
As	177,2	7373	10	2618,16	12	218,18
Со	9,7	286,16	10	89,96	19,0	4,73
Li	0,45	56,18	8	19,40	65	0,30
Mn	3580	10069	10	5994,1	800	7,49
Ni	32,7	61,7	10	46,54	74,0	0,63
Sn	85,5	1064	10	542,55	6,4	84,77
Al	41022	62487	7	51417,57	77200	0,67
Sc	7,86	17,31	7	10,58	13	0,81
V	41	76,2	7	60,64	130	0,47
Ga	8,31	15,66	7	11,31	22	0,51
Rb	61,1	124,4	7	87,54	150	0,58
Sr	55,2	106,5	7	86,74	330	0,26
Y	8,74	12,67	7	10,74	30	0,36
Zr	20,7	42,2	7	30,28	170	0,18
Nb	5,37	8,56	7	6,83	18	0,38
Мо	0,56	0,85	7	0,69	2,6	0,27
Cs	7,86	17,31	7	10,57	6,5	1,63
Ba	238,2	360,7	7	301,36	660	0,47
W	2,23	5,89	7	4,49	1,5	2,99
Hf	0,65	1,1	7	0,77	3,5	0,22
Та	0,26	0,48	7	0,39	1,5	0,26
Tl	0,75	1,29	7	0,98	1,1	0,89
Th	4,44	7,58	7	5,76	12	0,48
U	0,71	1,22	7	0,94	3,7	0,25
La	16,95	23,25	7	20,22	140	0,14
Ce	33,91	48,2	7	40,41	63	0,64
Pr	3,47	4,83	7	4,15	6,4	0,65
Nd	12,64	17,46	7	15,02	27	0,56
Sm	3,34	3,36	7	2,88	6,5	0,44
Eu	0,73	1,05	7	0,89	1,1	0,81
Gd	1,89	2,73	7	2,37	6,5	0,36
Tb	0,32	0,46	7	0,39	1	0,39
Dy	1,58	2,34	7	2,01	4,8	0,42
Но	0,3	0,45	7	0,39	1,4	0,28
Er	0,91	1,28	7	1,11	2,7	0,41
Tm	0,12	0,17	7	0,15	0,23	0,65
Yb	0,74	1,2	7	1,01	3	0,34
Lu	0,11	0,18	7	0,15	0,66	0,23

Таблица 5.2 – Кларки концентрации химических элементов в отложениях нового хвостохранилища КОФ

Примечание: КК – кларк концентрации = среднее содержание / кларк

Отчетливое увеличение концентраций Со, Ni, Mn, Fe, Zn и Ag прослеживается на горизонте от 0,5 до 0,8 м, где техногенные отложения характеризуются желто-рыжими разностями песчанистых фракций. Ниже, на глубине от 1,0 до 2,5 м, желто-рыжие разности сменяется серо-голубыми пелитовыми (< 0,01 мм), при этом наблюдаются вариации в концентрировании Со, Ni, Mn, Fe, Zn и Ag. Связано это, по всей видимости, с различными физико-химическими условиями, сложившимися в рассматриваемых интервалах глубин. Не исключены вариации физико-химических условий и в нижележащих разностях эфельных песков.

Таким образом, хвостохранилища являются источниками загрязнения экосистемы Дальнегорского района. В техногенных отложениях хвостохранилищ КΟΦ сконцентрированы являюшиеся потенциально Согласно элементы, опасными. классификации потенциально опасных веществ (ГОСТ 17.4.1.02-83), Pb, Zn, Cd и As относятся к I классу опасности, степень их вредного воздействия на окружающую природную среду очень высока. Си и Со – ко II, а Мп и W – к III классам опасности, характеризующим отходы как высоко и умеренно опасные для окружающей природной среды. Это свидетельствует о том, что экологическая система на рассматриваемых территориях сильно нарушена и даже при условии полного устранения источника вредного воздействия период восстановления составит более 30 лет (согласно критериям отнесения отходов к I-V классам опасности по степени негативного воздействия на окружающую среду, утвержденным приказом Министерства природных ресурсов РФ от 15.06.2011 г. № 511).

В последние годы, все большую актуальность приобретают исследования в области изучения распределения редкоземельных элементов (РЗЭ) в различных средах. Слабое изменение составов РЗЭ в гипергенных условиях и большинстве геологических процессов (на них слабо влияют процессы низко- и высокотемпературного метаморфизма), позволяют сохранять составы РЗЭ источников исходного вещества.

Способность церия и европия в природной среде изменять свою степень окисления позволяет использовать РЗЭ как индикаторы окислительновосстановительных условий образования пород и минералов (Римская – Корсакова и др., 2003), а отношение ΣСе/ΣҮ используют в качестве индикатора климата (Шатров, 2007). По данным А.В. Дубинина (Дубинин, 2006), европий подвижен в восстановительной обстановке, при этом часть его может восстановиться до двухвалентного состояния и, в отсутствии минералов-концентраторов, перейти в поровый раствор, следовательно, в осадке его количество уменьшается. Относительная концентрация церия также отражает окислительно-восстановительную обстановку (Балашов, 1976). Увеличение его содержания указывает на окислительную обстановку, в то время как уменьшение – на восстановительные или бескислородные условия.

При изучении геохимии РЗЭ обычно используются содержания, нормированные на NASC (North American Shale Composite) для того чтобы устранить влияние различной распространенности химических элементов (четные более распространены, чем нечетные) (Gromet et al.,1984). Отношение легких РЗЭ к тяжелым РЗЭ рассматривается относительно сланца (NASC) как: (LREE/HREE)^N = (La/La^N + 2 × Pr/Pr^N + Nd/Nd^N) / (Er/Er^N + Tm/Tm^N + Yb/Yb^N + Lu/Lu^N). Величины цериевой и европиевой аномалий оценивались соотношениями Ce/Ce^N = Ce/Ce^N /(1/2 La/La^N + 1/2 Pr/Pr^N) (Дубинин, 2006), а Eu/Eu^N = 2 (Eu/Eu^N)/(Sm/Sm^N + Gd/Gd^N) (Kato et al., 1998). Значения соотношений менее 0,95 указывают на истощение, а более 1,05 – на обогащение Се и Еu относительно соседних РЗЭ (Тейлор и др., 1988). Индикатор климата Σ Ce/ Σ Y, где (La + Ce + Pr + Sm + Eu)/ (Gd + Tb + Du+ Ho + Er + Tm + Yb + Lu), отражающий интенсивность процессов выветривания, интерпретируют следующим образом в терминах климата: <2,5 – аридный; 2,5–4,0 – семигумидный – семиаридный; >4 – гумидный (Шатров, 2007).

Изучение лантаноидов в хвостах обогащения КОФ показывает, что сумма РЗЭ в отложениях старого хвостохранилища изменяется от 68,42 до 145,07 г/т, в новом от 76,08 до 106,69 г/т (таблица 2.4–2.5 приложения 2). Сумма РЗЭ в Северо-Американском сланце составляет 173,2 г/т (Дубинин, 2006; Gromet et al., 1984). Низкие концентрации РЗЭ в эфельных песках хвостохранилищ объясняются незначительным их содержанием в исходных породах (таблица 5.3).

Отношение легких РЗЭ к тяжелым РЗЭ в старом хвостохранилище составляет $(LREE/HREE)^{N} = 1,13-2,41$, в новом $(LREE/HREE)^{N} = 1,48-1,9$, что свидетельствует о существенном преобладании легких лантаноидов над тяжелыми в изучаемых техногенных отложениях. Дифференцированное распределение лантаноидов обычно объясняют разницей в их ионных радиусах. Общая тенденция заключается в том, что легкие РЗЭ концентрируются преимущественно в фельзических минералах, а тяжелые РЗЭ – в фемических минералах (Минеев, 1969; Тейлор и др., 1988; Хасанов и др., 2011).

			Образец		
Элемент	1	2	3	4	5
La	45	47	23,5	8,1	26,8
Ce	90	69	59,5	21,2	58,3
Pr	-	8,3	7,49	2,89	6,69
Nd	50	23,4	27,0	13,2	25,2
Sm	10	3,9	5,44	3,15	5,10
Eu	0,4	1,32	0,741	1,141	1,147
Gd	-	2,6	5,34	3,03	4,46
Tb	1,7	0,29	0,818	0,459	0,697
Dy	10	1,8	5,02	2,79	4,11
Но	-	0,35	1,05	0,55	0,83
Er	6	0,9	3,19	1,47	2,33
Tm	-	0,12	0,479	0,202	0,351
Yb	7	0,6	3,28	1,25	2,27
Lu	0,9	0,1	0,503	0,179	0,342

Таблица 5.3 – Содержание РЗЭ в магматических породах, г/т

Примечание: 1–2 – стандартные образцы сравнения (Бобров, 1988): 1 – Свидетельство на стандартный образец состава щелочного агпаитового гранита. ГСО 3333-85, Иркутск, 1986; 2 – Образец сравнения аляскитового гранита. 3–5 – образцы гранитоидов Дальнегорского района (по Валуй, 2004): 3 – Дальнегорский (гранит), 4 – Николаевский (габбродиорит), 5 – кл. Лапшин пр. приток р. Рудной в пос. Краснореченский (монцонит).

Как отмечалось ранее, отношение $\sum Ce/\sum Y$ является индикатором климата и отражает интенсивность выветривания. По нашим расчетам параметр $\sum Ce/\sum Y > 4$, что соответствует гумидному типу климата. При гумидном климате более интенсивно разрушаются калиевые полевые шпаты и акцессорные минералы (монацит, апатит), обнаруженные в исследуемых отложениях хвостохранилищ, что и приводит к увеличению величины (LREE/HREE)^N. Кроме того, вмещающие породы руд, которые перерабатывались на КОФ, часто представлены вулканитами кислого состава, а они, по данным Ю.А. Балашова (Балашов, 1976), С.Р. Тейлора с соавторами (Тейлор и др., 1988), А.В. Дубинина (Дубинин, 2006), в значительной степени обогащены легкими РЗЭ.

Изучение распределения РЗЭ на глубину проводилось в шурфах в пределах старого (Ш.С. 1 – Ш.С. 3) (рисунок 5.5) и нового (Ш.Н. 4) хвостохранилищ. Анализ распределения РЗЭ показал вариации концентраций ∑РЗЭ с глубиной (рисунок 5.6). В интервале 0,1–0,6 м (шурфы Ш.Н4 и Ш.С2) они увеличиваются, ниже по разрезу происходит их снижение, а в шурфе Ш.С2, на глубине >1,3 м, вновь наблюдается

некоторое увеличение ∑РЗЭ. Что, по всей видимости, связано с наличием окислительновосстановительных барьеров, образующихся в результате движения встречных потоков кислых и слабощелочных вод.

Рисунок 5.5 – Вертикальный разрез старого хвостохранилища КОФ. Шурф 3

На фоне вариаций Σ РЗЭ с глубиной наблюдается незначительное снижение величины (LREE/HREE)^N (рисунок 5.7), например, в шурфе 1 соотношение (LREE/HREE)^N снижается в последовательности сверху вниз: 1,84–1,74–1,69–1,74, а в шурфе 3 в последовательности: 1,93–1,82–1,73.

Рисунок 5.6 – Распределение ∑РЗЭ в верхней части хвостохранилищ

Рисунок 5.7 – Изменение величины (LREE/HREE)^N в верхней части хвостохранилищ

Изученные профили распределения РЗЭ в техногенных отложениях Краснореченской обогатительной фабрики показывают максимальные концентрации РЗЭ для старого хвостохранилища в интервале глубин от 0 до 1,0 м (∑РЗЭ 101,92–103, 12 г/т), а для нового – в интервале от 0,5 до 1,0 м (∑РЗЭ 103,46 г/т) (рисунок 5.8).

Рисунок 5-8 – Состав РЗЭ, нормализованный по NASC, в хвостах обогащения старого (А) и нового (Б) хвостохранилищ КОФ

Примечание. Горизонты: 1 – от 0–0,5 м; 2 – 0,5–1,0 м; 3 – 1,0–2,0 м.

Нормализованные по Северо-Американскому сланцу (NASC) концентрации РЗЭ в старом и новом хвостохранилищах имеют схожие профили распределения с выраженными положительными аномалиями Eu, Tb, Yb и слабо выраженными отрицательными аномалиями Nd, Gd и Tm при небольшом дефиците церия (Ce/Ce^N _{стар}.= 0,97–0,98; Ce/Ce^N _{нов}.= 0,96–0,99). Обогащение отложений элементами легкой группы (LREE) относительно тяжелой (HREE) выражено незначительно, для старого хвостохранилища величина (LREE/HREE)^N = 1,73–1,93; для нового – (LREE/HREE)^N = 1,77–1,90. Состав и особенности распределения редкоземельных элементов в толще старого и нового хвостохранилищ КОФ имеют схожие черты. В толще хвостохранилищ происходит фракционирование РЗЭ, с глубиной наблюдается незначительное снижение величины (LREE/HREE)^N.

Таким образом, техногенные песчаники хвостохранилищ КОФ относятся к высоко и умеренно опасным для окружающей природной среды отходам и требуют проведения геотехнологической рекультивации и промышленной утилизации. Поэтому очень важно, по мере расширения объема знаний и опыта, совершенствования аналитической и инструментальной базы, дальнейшее развитие исследований и разработка технологий переработки этих техногенных объектов.

5.1.2. Минералогическая характеристика природно-техногенных геологических систем

В настоящей главе приводятся данные минерального и вещественного состава техногенных отложений хвостохранилищ Краснореченской обогатительной фабрики, полученные в ходе собственных исследований (Оводова с соавторами, 2015; 2016).

5.1.2.1. Минералогическая характеристика отложений хвостохранилищ КОФ

В составе техногенных отложений рассматриваемых хвостохранилищ преобладают нерудные минералы, представленные преимущественно обломками кварца (рисунок 5.9), в подчиненном количестве гидрослюдами, биотитом, хлоритом, каолинитом и др., их доля в общем балансе составляет 75–95 %.

Рисунок 5.9 – Соотношение рудных и нерудных минералов в техногенных отложениях Краснореченской обогатительной фабрики

Примечание: q – кварц, gn – галенит, сs – касситерит (принятые сокращения минералов в Приложении 6).

Количество рудных минералов колеблется в пределах от 5 до 25 %, из которых на пирит и марказит приходится \approx 70 %, галенит и сфалерит – 15 %, касситерит – 10 %, пирротин, станнин и арсенопирит до 5 %. Из благородных металлов присутствует серебро, основным носителем которого является пирит и фрейбергит. Акцессорные минералы составляют не более 1–2 %, они представлены апатитом и монацитом.
Изучение химического состава техногенных отложений свидетельствует о значительных содержаниях алюмосиликатной составляющей и оксидов железа, в составе отложений нового хвостохранилища также выделяются значительные концентрации CaO (2,0–4,6 масс. %), указывающие на наличие карбонатных минералов в составе техногенных отложений (таблица 5.4).

Таблица 5.4 – Химический состав техногенных отложений хвостохранилищ КОФ (масс. %)

Параметры	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	H ₂ O	ппп	Сумма
				Ст	арое хво	стохрани	лище К	0Φ					
Среднее (n=18)	45,21	0,31	8,41	23,01	1,15	0,84	1,40	0,13	2,08	0,07	2,35	13,91	98,87
Мин.	8,50	0,04	1,29	12,74	0,28	0,21	0,23	0,01	0,20	0,03	1,14	11,59	
Макс.	55,24	0,39	10,76	65,82	3,17	1,25	2,15	0,65	2,79	0,27	7,47	17,21	
				Но	вое хвос	тохрани	лище КО	ΦC					
Среднее (n=7)	51,5	0,36	9,70	19,57	0,88	1,46	3,08	1,13	2,26	0,08	1,07	8,06	98,85
Мин.	41,97	0,28	7,74	14,72	0,50	1,11	2,00	4,60	1,77	0,05	0,39	5,32	
Макс.	56,01	0,44	11,79	28,44	1,30	1,72	4,60	0,71	2,94	0,11	2,52	12,47	

В результате минералогических исследований в пределах хвостохранилищ КОФ выделены две группы минералов: гипогенные и гипергенные. Гипогенные представлены рудными, нерудными и акцессорными минералами.

Рудные минералы. В данном разделе охарактеризованы минералы, определившие основную значимость первичных руд, перерабатываемых на КОФ. К их числу относятся наиболее распространенные сульфидные минералы: пирит, галенит, сфалерит, арсенопирит, пирротин, касситерит и фрейбергит.

Пирит FeS₂ является наиболее распространенным минералом в исследуемых отложениях. Нами установлено три морфологических типа пирита.

Первый тип представлен идиоморфными кристаллами кубического габитуса размером 40–50 µm (рисунок 5.10 A), который содержит мелкие изометричные и линзовидные включения галенита, а в его составе установлены только железо и сера.

Для второго типа характерны более крупные кристаллы и агрегаты, размером до 100 µm. Агрегаты пирита трещиноваты, часто деформированы и раздробленны до более мелких форм. В интерстициях наблюдается замещение пирита галенитом и фрейбергитом. Вокруг зерен пирита часто образуется кайма из сульфатов железа с повышенным содержанием мышьяка (рисунок 5.10 Б).

Третий, наиболее распространенный морфологический тип, представлен реликтовыми формами, как результат его растворения и замещения (рисунок 5.10 В). Каверны и пустоты заполнены продуктами окисления пирита, как правило, это сульфаты железа FeSO₄, которые в благоприятных условиях (умеренная температура, высокая влажность) могут кристаллизоваться в мелантерит FeSO₄·7H₂O, а дальнейшее окисление мелантерита приводит к формированию копиапита $(FeFe_4[SO_4]_6)$ $(OH)_2 \cdot 20H_2O).$

Рисунок 5.10 – Морфоструктуры пирита (А-Г)

Повсеместно в толще хвостохранилищ встречаются реликтовые агрегаты и лишь по форме и составу напоминающие пирит. Агрегаты замещены сульфатами железа (FeSO₄), содержащими высокие концентрации As, в более светлых оторочках (рисунок 5.10 Г) отмечается незначительная примесь Co и Zn (таблица 5.5).

Кроме этого, по данным рентгеноспектрального микроанализа пирита содержание основных компонентов Fe и S изменяются соответственно (масс, %) 44,53–53,59 и 46,60–54,77, в составе пирита также установлены примеси As (0,29–2,16 масс. %), Ni (1,06 масс. %) и Ag (0,8 масс. %) (см. таблицу 5.5).

Сфалерит ZnS широко распространен в отложениях хвостохранилищ и составляет не менее 8–10 % среди рудных минералов. По форме, размерам и минеральным ассоциациям выделены два его типа. Первый образует вкрапленность мономинеральных зерен в кварцевом матриксе, размер зерен до 0,5 µm (рисунок 5.11 A). Второй тип выделения сфалерита представлен агрегатами размером 40×100 µm, имеющими гипидиоморфнозернистое строение, характерной особенностью которых является наличие обильной эмульсионной вкрапленности галенита (рисунок 5.11 Б).

Рисунок 5.11 – Морфоструктуры сфалерита (А-Б)

По результатам микрозондового анализа установлено, что практически, все образцы сфалерита являются высокожелезистыми, содержание Fe (8,46–12,94 масс. %), что указывает на их принадлежность к разновидности марматита. Концентрации основных элементов изменяются в диапазоне: Zn (51,76–58,03 масс. %), S (30,36–32,80 масс. %) и Mn (0,68 масс. %) (см. таблицу 5.5).

Галенит PbS, по данным исследования, образует пять морфологических типов. Первый тип представлен в виде небольших зерен размером до 0,5 μ m, заполняющих микротрещины и межзерновые пространства в пирите и сфалерите (рисунок 5.12 A, см. рисунок 5.10 Б). Второй тип образует обильную вкрапленность в зернах кварца (рисунок 5.12 Б). Третий выполняет интерстиции между пластинами слюдистых минералов (см. рисунок 5.10 Б). Четвертый тип определяется в виде срастаний с рудообразующими сульфидами (рисунок 5.12 В). Но чаще всего агрегаты галенита неправильной формы, размером от 0,1 до 100 μ m, образуют гнездообразные скопления, заполняющие поры и пустоты в сульфатах железа (рисунок 5.12 Г).

В химическом составе галенита содержание Pb (74,22–85,76 масс. %), S (12,45–22,06 масс. %), почти во всех пробах присутствует Fe (1,05–6,73 масс. %), в единичных образцах Cu (0,76–0,8 масс. %) (см. таблицу 5.5).

Рисунок 5.12 – Морфоструктуры галенита (А-Г) и пирротина (Г)

Пирротин FeS распространенный сульфидный минерал в эфельных отложениях. Встречается в ассоциации с галенитом, пиритом и сфалеритом. Форма выделений пирротина чаще неправильная, он образует реликтовые агрегаты размером от 50 до 100 µm (см. рисунок 5.12 Г). Повсеместно в пирротине диагностируется обильная вкрапленность мелкозернистого галенита, заполняющего микротрещины и межзерновые пространства.

Химический состав пирротина близок к теоретическому, содержание Fe (51,65– 53,02 масс. %), S (35,52–35,69 масс. %).

Арсенопирит FeAsS распространен в меньшей степени, чем пирит и галенит. Он встречается в форме гипидиоморфных зерен разной размерности (рисунок 5.13 A), часто в срастаниях с галенитом и пиритом, а также образует реликтовые с ксеноморфными очертаниями формы, покрытые сетью пор и трещин (рисунок 5.13 Б).

Рентгеноспектральным анализом установлено, что концентрации основных элементов в арсенопирите изменяются в диапазоне Fe (33,46–34,62 масс. %), As (42,07–44,43 масс. %), S (19,01–20,37 масс. %), в единичных пробах отмечаются примеси Ti (0,24 масс. %) (см. таблицу 5.5).

Рисунок 5.13 – Морфоструктуры арсенопирита (А-Б)

Касситерит SnO₂ встречается в виде вытянутых пластинчатых зерен, размер которых до 100-150 µm (рисунок 5.14 A) и изометричных форм размером до 15 µm в срастаниях с другими минералами (рисунок 5.14 Б).

Рисунок 5.14 – Морфоструктуры касситерита (А-Б)

Содержание основных минералообразующих элементов в касситерите составляет Sn (65,21–71,70 масс. %), O (29,15–37,11 масс. %). В качестве примесей, вероятно механических, присутствуют Ti (0,72–1,06 масс. %), S (0,76 масс. %), Al (0,32–0,46 масс. %) и Si (0,24–2,48 масс. %) (см. таблицу 5.5).

Фрейбергит (**Cu**, **Ag**)₁₀ (**Fe**,**Zn**)₂ **Sb**₄**S**₁₃. В техногенных отходах серебро зафиксировано в двух формах: в виде примеси в пирите (до 0,8 масс. %) и образует собственный минерал из группы блеклых руд фрейбергит. Фрейбергит встречается в ассоциации с сульфидами, преимущественно с пиритом и галенитом. В пирите образует вкрапленники неправильной формы, а в срастании с галенитом выполняет интерстиции между зернами (см. рисунок 5.10 Б).

Таблица 5.5 – Химический состав рудных минералов по данным микрозондового исследования, масс. %

N₂	Fe	S	As	Sb	Ag	Zn	Si	Al	Mn	Pb	Cu	Ti	Sn	0	Сумма
			•	•	- C		Пир	ит FeS	2						
1	53,59	46,60	-	-	-	-	-	-	-	-	-	-	-	-	100,19
2	45,97	51,81	2,16	-	-	-	-	-	-	-	-	-	-	-	99,94
3	45,92	53,57	-	-	-	-	-	-	-	-	-	-	-	-	99,49
4	46,83	53,27	-	-	-	-	-	-	-	-	-	-	-	-	100,1
5	47,08	53,48	-	-	-	-	-	-	-	-	-	-	-	-	100,56
8	45,78	54,77	-	-	-	-	-	-	-	-	-	-	-	-	100,55
9	46,70	53,48	-	-	-	-	-	-	-	-	-	-	-	-	100,18
10	46,59	52,46	-	-	-	-	-	-	-	-	-	-	-	-	99,05
12	44,53	51,8	-	-	0,8	-	-	-	-	-	-	-	-	-	97,13
13	48,52	50,09	0,29	-	-	-	-	-	-	-	-	-	-	-	98,90
1	11 17	20.26				52 77	Сфал	ерит Zi	nS				1	1	05.20
1	11,17	30,36	-	-	-	53,//	-	-	-	-	-	-	-	-	95,30
2	12,94	31,52	-	-	-	52,52	-	-	0,68	-	-	-	-	-	98,33
3	12,59	32,80	-	-	-	58.02	-	-	-	-	-	-	-	-	98,91
4	0,40	32,08	-	-	-	51.76	-	-	-	-	-	-	-	-	99,17
5	12,24	32,22	-	-	-	51,70	- Гала	- uut Ph	- S	-	-	-	-	-	90,22
1	6 73	1941	_	_	_	_	1 a.n.	-	-	74 22	_	_	_	_	100.36
2	4.98	12.99	-	-	_	_	-	-	-	81.22	_	_	_	_	99.19
3	2.57	12.45	-	_	-	_	-	-	-	83.90	-	-	_	-	98.92
4	2.42	22.06	-	-	-	_	-	-	-	76.34	-	-	-	-	100.82
5	3.58	13.31	-	-	-	-	-	-	-	81.04	-	-	-	-	97.93
6	1.96	17.93	-	-	-	-	-	-	-	79.3	0.8	-	-	-	99.99
7	1,55	19,08	-	-	-	-	-	-	-	77,42	0,77	-	-	-	98,82
8	2,57	17,14	-	1,34	-	-	-	-	-	73,86	0,76	-	-	-	95,67
9	2,76	13,38	-	-	-	-	-	-	-	83,79	-	-	-	-	99,93
10	1,05	14,14	-	-	-	-	-	-	-	83,81	-	-	-	-	99,0
11	-	13,23	-	0,59	-	-	-	-	-	85,76	-	-	-	-	99,58
12	1,76	13,43	-	2,47	-	-	-	-	-	81,25	-	-	-	-	98,91
						A	рсеноп	ирит F	eAsS						
1	34,35	20,04	43,27	-	-	-	-	-	-	-	-	-	-	-	97,66
2	34,62	20,37	44,25	-	-	-	-	-	-	-	-	-	-	-	99,24
3	34,37	19,01	44,43	-	-	-	-	-	-	-	-	-	-	-	97,81
4	33,46	20,19	42,07	-	-	-	-	-	-	-	-	0,24	-	-	95,96
1	51 (5	25 (0				1	Пирр	отин Г	eS				r	r	07.24
1	51,65	35,69	-	-	-	-	-	-	-	-	-	-	-	-	87,34
2	55,02	35,52	-	-	-	-	-	-	-	-	-	-	-	-	88,54
1	_	0.76	_	_	-	_	2 48	0.32	-	_	_	_	65 77	32 11	101 44
2	-	-	_	_	_	-		-	-	-	_	_	70 59	29.75	100.34
3	-	-	-	-	-	-	-	-	-	-	_	_	71.00	30,18	101.18
4	-	-	-	-	-	-	0,39	0,46	-	-	-	1,06	65.21	37.11	104.23
5	-	-	-	-	-	-	-	-	-	-	-	-	70.23	31.38	101.61
6	-	-	-	-	-	-	-	-	-	-	-	-	71,70	30,89	102,59
7	-	-	-	-	-	-	-	-	-	-	-	-	70,71	29,91	100,62
8	-	-	-	-	-	-	0,24	-	-	-	-	0,72	68,77	31,08	100,81
9	-	-	-	-	-	-	_	_	_	-	-	-	70,95	29,15	100,1

Результаты микрозондовых анализов фрейбергита приведены в таблице 5.6. Расчет кристаллохимических формул выполнен по общепринятой методике на базе 29 атомов. Расчет кристаллохимических формул осуществлялся с использованием «Руководство и таблицы...,1967» (Булах, 1967).

Результаты рентгеновского анализа показывают, что содержание Ag в фрейбергите изменяется от 25,32 до 29,19 масс. %, что соответствует 4,36–4,85 атомов в формулах, на основании чего и был выделен минеральный вид блеклых руд фрейбергит.

исследов	апия, масс.	/0										
№ п/п			Компо	оненты			Сумма					
	Cu	Ag	Zn	Fe	Sb	S						
1	14,58	29,19	0,74	9,56	24,41	23,43	101,9					
2	18,57	18,57 26,31 0,59 7,1 26,99 22,47 18,57 25,22 0,57 (.11) 26,59 22,47										
3	18,72	18,72 25,32 0,77 6,41 26,51 22,09										
		Кр	исталлохими	ческие форм	улы	<u>.</u>	-					
1	Cu _{4,12} Ag _{4,85} Z	Zn _{0,20} Fe _{3,08} Sb _{3,6}	51 S 13,13									
2	Cu _{5,32} Ag _{4,43} Z	$2n_{0,16}Fe_{2,31}Sb_{4,6}$	$_{03}S_{12,74}$									
3	Cu _{5,46} Ag _{4,36} Z	Zn _{0,22} Fe _{2,13} Sb _{4,0}	$_{4}S_{12,78}$									

Таблица 5.6 – Химический состав фрейбергита по данным микрозондового исследования, масс. %

Кроме этого, в составе фрейбергита отмечаются высокие содержания железа (до 9,56 масс. %) и незначительные содержания цинка (до 0,77 масс. %). В целом, кристаллохимические формулы фрейбергита, установленного в хвостохранилище КОФ, соответствуют теоретической.

Нерудные минералы. Как отмечалось ранее, к наиболее распространенным нерудным минералам относятся кварц, хлорит, слюды и полевые шпаты. В общем балансе минералов они составляют 75–95 %.

Кварц SiO₂ является самым распространенным среди перечисленных минералов в техногенных объектах Дальнегорского района. Выделяется несколько морфологических типов кварца. Первый встречается в виде округлых и угловатых зерен среди пирита, сфалерита и галенита (см. рисунок 5.11 Б). Другой распространенной формой являются регенерационные каемки на зернах обломочного кварца, толщиной до 0,1–0,2 µm (см. рисунок 5.10 Г). Источником кремнезема для образования регенерационного кварца, вероятно, служит обломочный кварц, подвергшийся растворению в окислительной обстановке хвостохранилищ (Недоливко и др., 2012). Нередко кварц встречается в виде вкрапленников в ассоциации с калиевым полевым шпатом и биотитом, где образует удлиненные и изометричные зерна, размером от 0,2 до 10 µm. Реже встречаются раздробленные, с признаками растворения обломки кварца.

В химическом составе кварца Si – 46,79–47,72 масс. %, O – 51,31–53,34 масс. %, отмечаются примеси Fe – 0,29–0,44 масс. %.

Хлорит (**Mg,Fe**)₃[**AI,Si**)₄**O**₁₀(**OH**)₂]·**3**(**Mg,Fe**)(**OH**)₂ встречается часто, образует удлиненные кристаллы разной размерности и крупные агрегаты до 120 μm, ассоциирующие с кварцем, биотитом и сульфидными минералами (рисунок 5.15 А и Б).

Рисунок 5.15 – Морфоструктуры хлорита (А-Б)

По химическому составу выделяются две разновидности хлоритов: железистые (тюрингит) и магнезиальные (таблица 5.7). В единичных образцах установлены примеси TiO₂ (0,66 масс. %), ZnO (0,66 масс. %).

Оксиды				Образец			
	1	2	3	4	5	6	7
SiO ₂	27,04	26,74	22,70	27,36	22,47	23,81	21,18
Al ₂ O ₃	17,58	21,30	19,69	19,37	20,32	21,62	15,56
FeO	28,01	16,38	31,48	16,94	32,53	33,34	39,43
MnO	0,65	1,39	0,89	0,87	0,78	0,77	0,50
MgO	9,95	19,53	6,75	20,50	8,42	8,41	9,27
Сумма	83,23	85,34	81,51	85,04	84,52	87,95	85,94

Таблица 5.7 – Химический состав хлорита, масс. %

Слюды в исследуемых отложениях представлены преимущественно биотитом и вермикулитом.

Биотит К(Mg,Fe)₃**[Si**₃**AlO**₁₀**]·[OH,F]**₂ образует как мелкочешуйчатые агрегаты, находящиеся в тесной ассоциации с калиевыми полевыми шпатами, хлоритом и кварцем, так и представлен изометричными зернами, размер которых достигает 100×200 µm (рисунок 5.16 Б), с заметными следами коррозии и растворения.

Рисунок 5.16 – Морфоструктуры биотита (А-Б)

В гипергенных условиях характерно полистадийное преобразование биотита. На начальном этапе происходит гидратация биотита, выражающаяся в обесцвечивании и появлении белой каймы вокруг пластины биотита (рисунок 5.16 А), возникающей за счет снижения содержаний железа, что подтверждается нашими исследованиями. Гидратация сопровождается разбуханием и механическим разрушением биотита. Под воздействием механических деформаций на межзерновых контактах биотитовые пластинки изгибаются, облекают более твердые обломочные зерна кварца и полевых шпатов. В межзерновых пространствах, на поверхности пластин биотита, формируются тонкие прожилки, выполненные сульфатами и гидроокислами железа. По данным Г.А. Кринари с соавторами (Кринари и др., 1976), в гипергенных условиях биотит может образовывать смешаннослойные фазы типа флогопит-вермикулит или гидробиотит, кроме этого, возможно образование мономинерального вермикулита. В процессе гидратации и окисления биотит теряет упругость, становится рыхлым и в конечной стации химического разложения образует гидроокислы железа и каолинит.

В химическом составе исследуемых образцов биотита установлены в разных количествах примеси мышьяка и титана (таблица 5.8).

Вермикулит (Mg,Fe)₃[(Si₃Al)₄O₁₀][OH]₂×4H₂O образуется в зоне гипергенеза в результате химического разложения биотита (образец 1 и 2). При этом вермикулит образует неправильной формы удлиненные агрегаты. В химическом составе вермикулита определены примеси марганца и цинка (см. таблицу 5.8).

Оконти						Образец	[
Оксиды	1	2	3	5	7	8	10	11	12	13	14
SiO ₂	41,45	54,90	32,96	34,85	46,14	44,65	46,65	50,30	51,59	46,60	42,23
TiO ₂	0	0	0	0	0	0	0	0,43	0	0,37	0
Al_2O_3	24,47	16,84	19,09	20,61	27,06	30,69	32,61	21,95	34,11	31,22	40,99
FeO	11,02	15,46	23,52	23,10	7,81	7,92	3,70	12,82	3,62	4,32	2,04
MnO	1,62	0	0	0	0	0	0	0	0	0	0
MgO	0	0,70	0,89	1,87	1,80	2,52	1,38	1,69	1,46	1,59	0,59
K ₂ O	7,60	4,87	5,05	5,79	6,78	6,70	9,30	6,52	7,79	8,27	0,52
ZnO	0	0,26	0	0	0	0	0	0	0	0	0
S	1,19	0,62	1,79	2,25	0	0,60	0,35	2,02	0,87	0	0,38
As	0,91	0,84	0,87	0	0	1,31	0	0	0	0	0
Сумма	88,26	94,49	84,17	88,47	89,59	94,39	93,99	95,73	99,44	92,37	86,75

Таблица 5.8 – Химический состав слюд хвостохранилищ Дальнегорского района, масс. %

Полевые шпаты представлены минералами калиевой группы (ортоклаз). Встречается в виде мелкозернистых агрегатов размером 0,3–15 µm, образующих беспорядочную вкрапленность в изменяющемся биотите (рисунок 5.16 A).

В условиях гипергенеза полевые шпаты испытывают значительные изменения, на поверхности их зерен часто образуются тонкодисперсные глинистые минералы, являющиеся продуктами инконгруэнтного растворения полевых шпатов, с последующим превращением его в глинистый минерал. Химический состав образцов полевых шпатов представлен в таблице 5.9.

1 4031													
Образец			Окс	иды			Сумма						
Образец	SiO ₂	Al ₂ O ₃	BaO	Cymma									
1	65,6	18,82	1,15	0,44	15,20	0	101,21						
2	67,42	19,02	1,06	0	13,61	0,80	101,91						

Таблица 5.9 – Химический состав калиевых полевых шпатов, масс. %

Акцессорные минералы в техногенных отложениях представлены апатитом и монацитом.

Апатит Ca₅[PO₄]₃F представлен фторапатитовой разновидностью с содержаниями F_2 от 4,27 до 6,07 масс. %, количество Cl не превышает 0,12–0,16 масс. %. Химический состав изученных образцов апатита отображен в таблице 5.10.

Апатит встречается в виде мелкозернистых вкрапленников, размером от 0,2 до 20 µm в слюдистом субстрате (рисунок 5.17 A).

Ofnoodu					Оксид	Ы				Cuanto
Образец	SiO ₂	Al_2O_3	FeO	CaO	K ₂ O	P_2O_5	SO ₃	Ce_2O_3	Nd ₂ O ₃	Сумма
1	0	3,2	0	44,25	2,8	38,22	0	1,75	0	90,22
2	7,12	2,7	5,06	39,68	1,03	35,55	3,26	1,94	0,7	97,04
3	0,87	0	1,04	50,25	0,26	40,00	0	0	0	92,42
4	0	0	1,17	47,86	0	39,47	0	0	0	88,5

Таблица 5.10 – Химический состав апатита, масс. %

Несмотря на то, что апатит в зоне гипергенеза химически устойчив, наблюдаются следы механической деформации. Зерна апатита раздроблены, трещиноваты и, как правило, имеют неправильную форму.

Рисунок 5.17 – Морфоструктуры апатита (А) и монацита (А-Б)

Монацит CePO₄ встречается в ассоциации с апатитом, биотитом, вермикулитом и образует микровключения, размером до 0,5 µm в слюдистом матриксе (см. рисунок 5.17 А), а также выполняет трещины и заполняет пустоты в сульфатах железа (см. рисунок 5.17 Б). Несмотря на то, что монацит обладает химической устойчивостью, характер гипергенного разложения монацита зависит от химизма зоны гипергенеза. По данным В.В. Иванова (Иванов, 1997), при кислотном режиме выветривания содержание монацита в зоне гипергенеза существенно снижается, в среднем до 60 %, при щелочном

режиме разложение монацита протекает еще более интенсивно. Химический состав образцов монацита показан в таблице 5.11.

Ofpapau					(Эксиды					Cunno
Образец	SiO ₂	FeO	CaO	K ₂ O	P_2O_5	La_2O_3	Ce_2O_3	Pr ₂ O ₃	Nd ₂ O ₃	ThO	Сумма
1	1,47	2,32	0,97	0,23	24,41	11,85	28,63	2,38	8,26	1,38	81,90
2	—	1,35	0,38	_	29,45	16,77	35,06	2,64	9,59	_	95,24

Таблица 5.11 – Химический состав монацита, масс. %

Анализ данных таблиц 5.10 и 5.11 свидетельствует о том, что и апатит и монацит являются основными минералами-концентраторами редкоземельной минерализации (La, Ce, Pr и Nd) и тория.

5.1.2.2. Равновесные вторичные минералы системы «вода-порода-газ»

Одним из наиболее важных процессов в результате которого происходит формирование химического состава вод и растворение водовмещающих пород, является неравновесность воды с гипогенными минералами, способствующая растворению породообразующих минералов и насыщению вод теми или иными компонентами. Формирование вторичных минералов контролирует содержания химических элементов в водах.

Расчеты значений индексов неравновесности вод Кавалеровского района к различным минералам, выполненные с использованием базы Minteq программного комплекса AquaChem V. 5.1 (2006) показали, что все рассматриваемые воды неравновесны с первичными алюмосиликатами (альбит, анортит, анальцим), но равновесны с вторичными минералами (каолинитом, иллитом, Са-, Mg-, Na-монтмориллонитом). Сам по себе факт неравновесности воды с эндогенными алюмосиликатами, в условиях зоны гипергенеза, не является уникальным и хорошо согласуется с существующими представлениями (Шварцев, 1996, 1998, 2008; Геохимия подземных вод ..., 2004; Геологическая эволюция ..., 2005, 2007 и др.), тем не менее, на диаграммах наблюдается четкая смена состава вод при их циркуляции и изменение состава вторичной минеральной фазы (рисунок 5.18).

В системе H₂O-Al₂O₃-Na₂O-CO₂-SiO₂ (рисунок 5.18 а) все исследуемые воды

недонасыщены не только относительно первичных алюмосиликатов, но и относительно Na-монтмориллонита. На рисунке видно, что подавляющая часть точек располагается в поле устойчивости каолинита. Следует заметить, что воды Высокогорского месторождения тяготеют к линии насыщения раствора кварцем.

В системе H₂O–K₂O–CO₂–SiO₂–Al₂O₃ (рисунок 5.18 б) подавляющая часть точек, в основном рудничных вод, на диаграмме равновесия калиевых минералов располагается в поле устойчивости мусковита и гидрослюды (иллита). Природные воды расположены в поле устойчивости с каолинитом.

Анализ системы H₂O–Na₂O–CO₂–SiO₂–Al₂O₃ показал, что все рудничные воды равновесны с Na-монтмориллонитом, а у природных вод равновесие с натриевыми минералами не достигнуто, так как для достижения равновесия необходимы более высокие значения общей минерализации раствора (рисунок 5.18 в).

На рисунке 5.18 г, характеризующей равновесно-неравновесное состояние с магниевыми минералами (система H₂O–MgO–CO₂–SiO₂–Al₂O₃) видно, что точки опробования природных вод сосредоточены в полях устойчивости с Mg-монтмориллонитом, а смещение точек опробования рудничных вод происходит в направлении образования Mg-хлорита. Родниковые воды равновесны с каолинитом.

В системах H₂O–CaO–CO₂–SiO₂–Al₂O₃ и H₂O–Al₂O₃–CaO₂–Na₂O–CO₂–SiO₂ (рисунок 5.18 д, е) показано, что рудничные воды недонасыщены относительно первичных алюмосиликатов и располагаются преимущественно в области устойчивости Са-монтмориллонита. Природные воды тяготеют к равновесию с каолинитом.

Изучение характера равновесия подземных вод исследуемого района с карбонатами показало, что природные воды в большинстве случаев не донасыщены по отношению к кальциту, в то время как рудничные воды значительно обогащены Ca^{2+} и способны высаживать его в виде вторичных минералов (рисунок 5.18 ж).

На рисунке 5.18 з наблюдается очевидное смещение рудничных вод к линии равновесия «раствор–гипс», что свидетельствует об увеличении концентрации в растворе SO₄²-иона.

Повсеместно в штольнях отработанных рудников на стенках выработок формируются натечные образования (рисунок 5.19) и рыхлые минеральные фазы, представленные белым и светло-серым легко рассыпающимся веществом (рисунок 5.20).

Рисунок 5.18 – Диаграммы равновесия основных минералов с нанесением данных по составу исследуемых вод Кавалеровского рудного района (T = 25 °C, P=1 атм)

Система: **a** – H₂O–Al₂O₃–Na₂O–CO₂–SiO₂; **б** – H₂O–K₂O–CO₂–SiO₂–Al₂O₃; **в** – H₂O–Na₂O–CO₂–SiO₂ – Al₂O₃; **г** – H₂O–MgO–CO₂–SiO₂–Al₂O₃; **д** – H₂O–CaO–CO₂ – SiO₂–Al₂O₃; **е** –H₂O–Al₂O₃–CaO₂–Na₂O–CO₂–SiO₂; **ж** – равновесие вод с кальцитом; **з** – равновесие вод с гипсом.

Точки наблюдения: 1 – Дубровское (фон); 2 – Дубровское (шт.1); 3 – Дубровское (ниже на 500 м); 4 – Высокогорское (фон); 5 – Высокогорское (шт.2); 6 – Хрустальное (фон); 7 – Хрустальное (шт.3); 8 – Фабричное (шт.4); 9 – Верхнее (шт.5); 10 – родник 1; 11 – родник 2.

По данным рентгеноструктурного микроанализа установлено, что натечные образования представлены карбонатом кальция – CaCO₃, а рыхлые минеральные образования состоят из безводного сульфата натрия – тенардита Na₂SO₄ с примесью кальцита. Названными соединениями не ограничивается разнообразие осаждающихся минеральных фаз.

Рисунок 5.19 – Натечные образования (кальцит). Рудник Верхний

Рисунок 5.20 – Рыхлые минеральные новообразования (тенардит). Рудник Верхний

На основании проведенных исследований, в пределах старого и нового хвостохранилищ КОФ, с учетом различных механизмов гипергенного минералообразования, установлено три минеральные ассоциации: 1) вторичные минералы, образующиеся в результате процессов выветривания и окисления первичных минералов; 2) вторичные минералы в виде каймы замещения вокруг сульфидных минералов; 3) минералы, кристаллизующиеся на испарительном геохимическом барьере (Оводова, Зиньков и др., 2015; Оводова, Тарасенко и др., 2015).

Минеральная ассоциация, представленная вторичными минералами, образующимися в результате процессов выветривания и окисления первичных минералов, имеет широкое распространение и по данным рентгеноспектрального микроанализа она представлена гипсом, кальцитом, плюмбоярозитом и базалюминитом.

Агрегаты **гипса Ca**(**SO**₄)·**2H**₂**O**, в форме призматических кристаллобластов, размером от 1 до 1,6 мм, и «звездчатого» гипса с лучистыми и листоватыми агрегатами, отдельные кристаллы которого достигают размеров от 0,2 до 0,6 мм, развиты повсеместно. Исследование показало, что в составе изученных образцов гипса, кроме основных компонентов Ca и S, в переменных количествах присутствуют примеси Zn, Mn, Fe, Si, Al (таблица 5.12).

Таблица 5.12 – Химический состав гипса, масс. %

Образец	0	Na	Si	S	Cl	Ca	Mn	Fe	Zn	Al	As	Сумма
1	32,19	0,78	0,21	18,36	0,5	14,21	0,43	8,57	0,71	-	-	75,95
2	32,7	-	-	13,02	0,19	12,23	-	5,83	-	0,72	1,23	65,92

Плюмбоярозит PbFe₃[SO₄]₂(OH)₆, образует агрегаты из плотно прилегающих пластинчатых кристаллов, размер которых до 0,5 µm (рисунок 5.21 A, Б).

Рисунок 5.21 – Морфоструктуры плюмбоярозита (А–Б)

По данным L.C. Basciano et al. (Basciano, et al., 2010) плюмбоярозит является последним минералом в цепочке окисления галенита: галенит–англезит–церуссит– плюмбоярозит и образуется в алевро-глинистых отложениях с величиной pH 3,5–4. Это указывает на интенсивность и длительность процесса окисления в техногенных отложениях Дальнегорского района. Химический состав исследуемых образцов плюмбоярозита представлен в таблице 5.13, он близок к теоретическому составу и сходен с химическим составом образцов из штата Вашингтон и Юта (США). Следует заметить, что в плюмбоярозитах Дальнегорского района отмечаются примеси алюминия, цинка и мышьяка.

Образец	Al	K	Na	S	Pb	Fe	Zn	As	0	SO_4	Сумма
1	0,22	0,78	0	10,52	22,13	25,21	2,24	0	36,29	0	97,39
2	0	0	0	11,88	13,38	30,43	0	0	41,59	0	97,28
3	0,24	0,94	0	9,8	14,69	26,78	0,99	1,97	38,16	0	93,57
4	0	0	0	11,3	18,3	29,64	0	0	39,6	0	98,84
5	0	0,46	0,16	0	14,0	26,23	0	0	0	25,5	66,35
6	0,10	0,21	0,30	0	17,48	27,34	0	0	0	26,17	71,6

Таблица 5.13 – Химический состав плюмбоярозита, масс. %

Примечание: 1-3 состав плюмбоярозита Дальнегорского района; 4 – теоретический состав [Alpers et al., 2000]; 5 – образец из штата Вашингтон, США [Basciano, 2008]; 6 – образец из штата Юта, США [Basciano, 2008].

Базалюминит Al₄ (SO₄) (OH)₁₀ 5H₂O. На границе слияния дренажных стоков старого хвостохранилища КОФ и водами р. Рудной обнаружены скопления желто-белой пены (рисунок 5.22), которая еще в 2001 г. И.А. Тарасенко была определена как базалюминит.

Рисунок 5.22 – Базалюминит

Сульфаты алюминия изучались многими исследователями ПО представлениям И (Пилипенко, 1927; Салтыков, 2009; Bannister et al., 1948), они являются продуктами сернокислотного изменения алюмосиликатных пород. При окислении сульфидов возникающая серная кислота выщелачивает алюминий, после чего инфильтрующиеся кислые воды переносят его К геохимическому барьеру, которым зачастую служат карбонаты, широко

представленные в районе исследований. Нейтрализация этих вод обусловливает выпадение сульфатов алюминия.

Проведенные исследования подтверждают присутствие базалюминита в пределах старого хвостохранилища КОФ, его химический состав и рассчитанные кристаллохимические формулы представлены в таблице 5.14.

Образец	Al	Si	S	Ca	Fe	Р	Сумма*
1.	29,91	3,28	7,93	0,81	11,18	-	53,11
2.	29,82	4,23	7,30	0,52	12,16	-	54,03
3.	22,52	2,99	6,72	0,46	26,13	-	58,82
4.	36,32	3,12	9,42	0,85	-	-	49,71
5.	32,22	3,00	7,69	0,90	7,88	0,91	52,6
6.	28,09	2,53	7,57	1,44	13,05	1,66	54,34
		Кри	істаллохими	ческие форм	улы		
1.		$(Al_{0,72}Fe_{0,19}Si_{0,08})$	$_{3}Ca_{0,02})[SO_{4}]O$	$H_{10} \cdot 5H_2O$			
2.		$(Al_{0,71}Fe_{0,20}Si_{0,08}$	3Ca _{0,01})[SO ₄]O	$H_{10} \cdot 5H_2O$			
3.		(Al _{0,51} Fe _{0,42} Si _{0,00}	5Ca _{0,01})[SO ₄]O	$H_{10} \cdot 5H_2O$			
4.		$(Al_{0,91}Si_{0,07}Ca_{0,07}$	2)[SO ₄]OH ₁₀ ·5	H ₂ O			
5.		$(Al_{0,77}Fe_{0,13}Si_{0,06}$	$5Ca_{0,02}P_{0,02})[Sc$	$O_4]OH_{10} \cdot 5H_2O$)		
6. $(Al_{0,67}Fe_{0,22}Si_{0,05}Ca_{0,03}P_{0,03})[SO_4]OH_{10}\cdot 5H_2O$							

Таблица 5.14 – Химический состав базалюминита, масс. %

Примечание:* - в сумму не включено содержание кислорода и водорода.

Изучение морфоструктур базалюминита указывает на наличие листоватых, пластинчатых кристаллов, размер которых не превышает 8–10 µm (рисунок 5.23).

Рисунок 5.23 – Морфоструктуры и энергодисперсионные спектры базалюминита

Вторая минеральная ассоциация представлена вторичными минералами в виде каймы замещения вокруг пирита (рисунок 5.24), галенита (рисунок 5.25) и арсенопирита, и, по данным Н.В. Сиденко (Сиденко, 2001), является наиболее ранней среди вторичных минеральных фаз.

Анализ кайм замещения по пириту, размер которых варьирует от 0,2 до 15 µm, показывает, что практически все фазы обогащены Si и Al, что может свидетельствовать о растворении алюмосиликатных пород. Кроме этого, в составе новообразований наблюдается значительное содержание Zn, As, реже Mn, Pb и Co.

Рисунок 5.24 – Кайма вокруг зерен пирита

Рисунок 5.25 – Кайма англезита, развивающаяся по галениту

Химический состав кайм замещения вокруг сульфидных минералов представлен в таблице 5.15.

	Таблица 5.15 –	Химический	состав	кайм	замещения	вокруг	зерен	сульфид	(ов,
масс.	%								

N⁰	0	Si	Al	S	Mn	Fe	Zn	As	Pb	Co	K	Sb	Сумма
			•		•	Кайма	по пир	оиту				•	
1	33,48	0,78	-	5,9	0,51	53,07	1,69	-	-	-	-	-	95,43
2	37,95	0,81	0,23	3,36	0,29	53,8	1,13	0,6	-	0,52	-	-	98,69
3	30,38	1,47	0,64	2,76	0,42	50,39	0,61	1,05	-	-	0,52	-	88,24
4	35,49	0,18	0,21	9,73	-	41,74	-	1,57	1,5	0,14	-	-	90,56
5	32,62	0,52	-	3,51	0,38	54,19	0,56	0,15	0,15	0,15	-	-	92,23
6	29,7	0,39	0,22	1,94	0,29	55,96	0,45	0,91	-	-	-	-	89,86
7	23,1	0,29	0,67	5,58	0,46	45,88	0,58	2,42	-	-	-	-	78,98
8	34,74	0,36	0,24	1,91	0,71	51,62	1,03	0,75	-	-	-	-	91,36
9	16,52	-	0,42	4,72	-	32,61	-	2,53	-	-	-	-	56,8
10	27,6	0,52	0,33	1,77	-	37,85	0,53	0,54	-	0,41	-	-	69,55
11	28,75	-	0,33	6,36	-	31,06	0,27	0,84	-	-	-	-	67,61
12	34,24	0,54	-	4,76	0,39	39,27	1,14	-	-	-	-	-	80,04
13	33,7	0,48	0,61	2,03	0,31	47,71	-	-	-	0,46	-	-	85,30
14	28,5	0,47	0,41	2,76	0,58	50,94	0,72	0,93	-	-	-	-	85,31
15	33,66	0,2	0,41	4,31	-	52,45	0,59	2,17	-	-	-	-	93,79
16	23,36	1,98	-	9,3	-	39,11	0,45	5,44	-	-	-	0,39	80,03
17	33,94	0,64	0,45	3,25	-	49,01	0,56	4,42	-	-	-	-	92,27
18	30,88	0,72	0,47	3,51	-	43,25	-	7,39	1,11	-	0,14	-	87,47
19	47,62	0,4	0,31	5,42	-	46,79	-	5,54	-	-	-	-	106,08
			-	-	-	Кайма	по гале	ниту				-	
1	20,51	-	-	11,10	-	1,77	-	-	53,22	-	-	-	86,6
2	2,36	-	-	12,40	-	4,20	-	-	60,14	-	-	-	79,09
					Ка	ийма по	арсено	пириту					
1	27,58	0,9	0,34	2,36	0,27	42,72	0,66	1,47	-	-	-	-	76,3
2	47,46	0,18	-	7,65	0,3	30,98	0,62	14,16	-	-	-	-	101,35

Вокруг галенита образуется кайма замещения в виде англезита (см. рисунок 5.25). Ширина каемки изменяется от 1 до 8 µm. Также наблюдаются микропрожилки англезита, формирующиегося по трещинам в галените. По результатам микрозондового анализа установлено, что в неизмененном галените содержание Pb составляет 70,25 масс. %, S 13,43 масс. %, a в преобразованной фазе содержание Pb снижается до 53,22 масс. %, S до 11,10 масс. % (см. таблицу 5.15). По данным С.Б. Бортниковой с соавторами (2006), в отвалах Джидинского рудного поля в составе англезитов содержание Pb варьирует от 56,56 до 57,0 % масс. %, S от 9,0 до 27,33 масс. %.

Кайма, развивающаяся по арсенопириту, сходна по составу с каймами по пириту, но в арсенопирите фиксируются более высокие концентрации As и более низкие содержания Al и Si (см. таблицу 5.15).

Третья минеральная ассоциация представлена водорастворимыми сульфатами группы мелантерита, розенита, бутлерита и фиброферрита, которые образуют корки и натечные формы, мощностью 0,5–3,0 см на поверхности и в бортах хвостохранилищ (рисунок 5.26).

Рисунок 5.26 – Вторичное минералообразование в старом хвостохранилище КОФ

Растущий интерес к данной группе минералов вызван, прежде всего, тем, что формируясь на испарительном геохимическом барьере, в результате восходящей циркуляции капиллярных растворов, сульфаты концентрируют широкий спектр микроэлементов – Pb, Zn, As, Cu, Fe, Al, Mn, Mg. Являясь на 100 % водорастворимыми минеральными образованиями, они способствуют миграции токсичных металлов, оказывая серьезную экологическую нагрузку на водные экосистемы.

Проблема вторичного минералообразования в хвостохранилищах возникла в результате интенсивно развивающихся диагенетических преобразований, вызванных процессами окисления, растворения и гидролиза. Ведущим минералообразующим процессом в геотехногенных системах является сульфатизация – процесс образования минералов класса сульфатов, в которое вовлекается как природное, так и техногенное вещество (Белогуб и др., 2007; Alpers et al., 2000; Jambor et al., 2000). Сульфатная минерализация начинается с окисления сульфидов, преимущественно пирита и пирротина, первичными продуктами которых являются серная кислота и сульфаты ряда Fe²⁺SO₄ · nH₂O (n = 1–7), наиболее распространенными являются мелантерит (n = 7) – сидеротил (n = 5) – розенит (роценит) (n = 4) (Емлин, 1991; Белогуб с соавторами, 2007, 2009). Образующаяся серная кислота способствует более глубокому преобразованию и кристаллизации маловодных сульфатов типа ссомольнокита (n = 1), а окисление Fe²⁺ – сульфатов до Fe³⁺ приводит к образованию сульфатов группы копиапита, ярозита, бутлерита, фиброферрита и, в конечном счете, оксигидроксидов железа (Alpers et al., 2000).

Последовательность сульфатного минералообразования на локальном уровне, по данным различных авторов (Ehlers, 1965; Alpers et al., 2000; Belogub et al., 2005), может отражать либо снижение относительной влажности воздуха, либо свидетельствовать об увеличении температуры воздуха. По представлениям C.N. Alpers et al. (Alpers et al., 2000), при определенных климатических условиях и на различных техногенных объектах формироваться может следующая последовательность сульфатного минералообразования: мелантерит-фиброферрит-алюминокопиапит, или мелантеритфиброферрит–ярозит–лимонит (гетит), мелантерит-галотрихит-ботриоген. или Дальнейшее их преобразование приводит к формированию таких минералов как ремерит, ромбоклаз, вольтаит.

Таким образом, в хвостохранилищах Краснореченской обогатительной фабрики, в

условиях муссонного типа климата на первой стадии преобразования хвостов обогащения развиваются процессы окисления сульфидов с формированием кислых вод. Вторая стадия кислотопродуцирования связана с процессами формирования на испарительном барьере техногенных водорастворимых сульфатов групп мелантерита, розенита, фиброферрита и бутлерита.

Ниже приводится краткая характеристика основных групп водорастворимых сульфатов старого и нового хвостохранилищ КОФ Дальнегорского района.

Сульфаты группы мелантерита $M^{2+}[SO_4] \cdot 7H_2O$ образуют белые, светлозеленные, слегка голубоватые сахаровидные с удлиненными кристалликами агрегаты. По представлениям ученых (Емлин, 1991; Белогуб, 2007; Alpers et al., 2000; Peterson et al., 2003), группа мелантерита включает шесть самостоятельных минеральных видов: мелантерит ($M^{2+} = Fe^{2+}$), бутит ($M^{2+} = Cu$), цинкмелантерит ($M^{2+} = Zn$, Cu, Fe²⁺), альперсит ($M^{2+} = Mg$, Cu), биберит ($M^{2+} = Co$) и маллардит ($M^{2+} = Mn$).

В техногенных объектах Дальнегорского района сульфаты данной группы имеют сложный состав, кроме Fe, присутствуют примеси Al, Zn, Mn и Mg. На основании этого выделено несколько разновидностей мелантерита: собственно мелантерит, марганеццинковые мелантериты и алюмомелантериты (рисунок 5.27).

Рисунок 5.27 – Тройная диаграмма Mn+Zn–Fe–Al составлена по формульным единицам мелантеритов хвостохранилищ Дальнегорского района

Примечание. Составы сульфатов группы мелантерита: 1 – старое хвостохранилище КОФ; 2 – новое хвостохранилище КОФ.

Собственно мелантериты $FeSO_4 \cdot 7H_2O$ обнаружены как в старом, так и в новом хвостохранилищах КОФ. По данным Е.В. Белогуб и др. (Белогуб и др., 2007), С.N. Alpers et al. (Alpers et al., 2000), к ним относятся члены группы, в составе которых двухвалентное железо преобладает над остальными катионами. Анализ химического состава исследуемых образцов мелантерита показал, что содержание Fe в сульфатах старого хвостохранилища изменяется в диапазоне 14,04–37,99 масс. %, кроме этого, установлены примеси Mg, Mn и Zn. В мелантеритах нового хвостохранилища концентрации железа варьируют в диапазоне 27,48–39,60 масс. %, а в качестве примесей установлены As и Si. Химический состав и кристаллохимические формулы мелантерита представлены в таблице 5.16.

№ п.п.	Mg	Al	S	Mn	Fe	Zn	As	Si	\sum^*					
				Старое	хвостохра	нилище								
1.	1,30	2,67	23,44	2,17	21,15	3,42	0	0	54,15					
2.	2,46	0	23,47	4,19	18,78	6,23	0	0	55,13					
3.	1,25	0	31,98	0	14,04	0	0	0	47,28					
4.	3,41	0	17,45	0	26,51	13,39	0	0	60,76					
5.	2,49	0	15,94	6,23	26,23	11,46	0	0	62,36					
6.	2,77	0	17,63	2,24	26,72	11,33	0	0	60,70					
7.	1,32	0	23,57	1,92	24,87	3,60	0	0	55,28					
8.	0,20	0	16,76	2,38	37,99	4,72	0	0	62,05					
			Криста	аллохими	ческие фо	рмулы								
1.	$(Fe_{0,65}Al_{0,65}$	$12Zn_{0,09}Mg_{0,09$	0,07Mn0,07)S	$O_4 \cdot 7H_2O$										
2.	$(Fe_{0.57}Zn_{0.17}Mg_{0.13}Mn_{0.13})SO_4 \cdot 7H_2O$													
3.	$(Fe_{0,86}Mg_{0,14})SO_4 \cdot 7H_2O$													
4.	$(Fe_{0,59}Zn_{0,27}Mg_{0,14})SO_4 \cdot 7H_2O$													
5.	$(Fe_{0,56}Zn_{0,21}Mn_{0,13}Mg_{0,09})SO_4 \cdot 7H_2O$													
6.	$(Fe_{0,61}Zn_{0,23}Mg_{0,11}Mn_{0,05})SO_4 \cdot 7H_2O$													
7.	$(Fe_{0,77}Zn_{0,10}Mg_{0,07}Mn_{0,06})SO_4 \cdot 7H_2O$													
8.	$(Fe_{0,84}Zn_{0,09}Mn_{0,05}Mg_{0,01})SO_4 \cdot 7H_2O$													
			He	вое хвост	охранили	ще								
1.	0	0,67	23,86	0	27,48	3,06	0	0	55,07					
2.	0	0	21,97	0	32,93	0,42	1,72	0	57,03					
3.	0	0,90	19,00	0	33,02	0,68	2,20	2,16	57,97					
4.	0	0	18,90	0	39,60	0	0,86	0,84	59,70					
5.	0	0	23,16	0	31,41	0	1,33	0	55,91					
6.	0	0	24,47	0	29,61	0	0,24	0,23	54,55					
	r		Криста	аллохими	ческие фо	рмулы								
1.	$(Fe_{0,88}Zn_0)$	0,09 Al0,03)SO	$O_4 \cdot 7H_2O$											
2.	$(Fe_{0,95} As_0)$	$_{0,04}$ Zn _{0,01})SC	$O_4 \cdot 7H_2O$											
3.	(Fe _{0,85} Si ₀ ,	06 As0,04 Al	$_{0,03}Zn_{0,02})S$	$O_4 \cdot 7H_2O$										
4.	$(Fe_{0,97} As_0)$	0,02 Si _{0,01})SC	$O_4 \cdot 7H_2O$											
5.	(Fe _{0,97} As ₀	0,03)SO4·7H	20											
6.	$(Fe_{0,98} As_0)$	0,01 Si0,01)SC	$D_4 \cdot 7H_2O$											

Таблица 5.16 – Химический состав собственно мелантерита, масс. %

Примечание: - в сумму не включено содержание кислорода и водорода.

Минералы собственно мелантерита в старом хвостохранилище встречаются в виде тонкочешуйчатых листоватых кристаллов (рисунок 5.28 А). Мелантериты нового хвостохранилища представлены преимущественно мелкозернистыми агрегатами беспорядочно ориентированных кристаллов (рисунок 5.28 Г).

В пределах старого хвостохранилища также установлены марганец-цинковые и алюминиевые разновидности. Марганец-цинковые мелантериты, в составе которых примерно одинаковое количество марганца и цинка, образуют глобулярные агрегаты, размер отдельных глобул изменяется от 0,5 до 20 µm (рисунок 5.28 Б, В). Химический состав данной группы минералов приведен в таблице 5.17.

Рисунок 5.28 – Морфоструктуры и энергодисперсионные спектры мелантерита Примечание: А, Б, В – старое хвостохранилище КОФ, Г – новое хвостохранилище КОФ.

№ п.п.	Mg	Al	S	Mn	Fe	Zn	\sum^*				
		(Старое хвост	гохранилище	e						
1.	0	0,74	2,36	15,47	41,49	35,25	95,31				
2.	3,34	0,54	23,54	5,84	13,16	8,18	54,61				
3.	2,92	0,31	23,34	6,61	13,33	8,53	55,04				
4.	2,40	0,56	22,26	5,97	15,94	8,97	56,1				
		Кри	сталлохими	ческие форм	улы						
1.	$(Fe_{0,46}Zn_{0,35}N)$	/In _{0,18} Al _{0,01})SC	$0_4 \cdot 7H_2O$								
2.	$(Fe_{0.40}Zn_{0.22}Mn_{0.18}Mg_{0.18}Al_{0.02})SO_4 \cdot 7H_2O$										
3.	$(Fe_{0,40}Zn_{0,23}N)$	Mn _{0,20} Mg _{0,16} Al	0,01)SO4·7H2O								
4.	$(Fe_{0,46}Zn_{0,23})$	$Mn_{0,17}Mg_{0,12}A$	$l_{0,02}$)SO ₄ ·7H ₂ O)							

Таблица 5.17 – Химический состав марганец-цинковых мелантеритов, масс. %

Примечание:* - в сумму не включено содержание кислорода и водорода.

При изучении сульфатных выцветов выделен минеральный вид, ранее не описанный, со значительным содержанием алюминия. Минералы, в формулах которых 0,54 < Al < 0,64 ф.е., рассматриваются нами как алюминиевые мелантериты, также выделены образцы с содержанием Al < 0,50 ф.е. Химический состав и кристаллохимические формулы данных минералов отображены в таблице 5.18.

№ п.п.	Mg	Al	S	Mn	Fe	Zn	Σ*							
			Старос	е хвостохран	илище									
1.	0,59	11,15	26,84	4,01	2,38	2,17	47,14							
2.	0,78	11,53	26,18	4,03	2,93	2,07	47,52							
3.	0,71	11,18	26,23	4,39	2,99	2,16	47,66							
4.	0,65	9,72	26,78	5,03	3,53	2,13	47,84							
5.	0,85	11,95	26,30	3,72	2,89	1,47	47,18							
6.	0,43	8,03	27,83	5,46	3,40	2,56	47,72							
7.	1,31	6,46	23,75	4,18	11,41	5,02	52,13							
8.	0	6,87	28,99	0	10,08	1,34	47,28							
	Кристаллохимические формулы													
1.	$(Al_{0,63}Mn_{0,16})$	Fe0,09Zn0,08Mg	$(g_{0,04})SO_4 \cdot 7H_2C$)										
2.	$(Al_{0,61}Mn_{0,15})$	Fe0,11Zn0,07Mg	30,05)SO4·7H2C)										
3.	$(Al_{0,60}Mn_{0,17})$	Fe _{0,11} Zn _{0,07} Mg	30,05)SO4·7H2C)										
4.	$(Al_{0,54}Mn_{0,20})$	Fe _{0,14} Zn _{0,07} Mg	$(g_{0,05})SO_4 \cdot 7H_2C$)										
5.	$(Al_{0,64}Mn_{0,14})$	Fe _{0,11} Mg _{0,06})S	$O_4 \cdot 7H_2O$											
6.	(Al _{0,49} Mn _{0,24}	Fe0,15Zn0,09Mg	30,03)SO4·7H2C)										
7.	$(Fe_{0,36}Al_{0,29}Z)$	Zn _{0,14} Mn _{0,13} Mg	$\overline{g_{0,07}}$)SO ₄ ·7H ₂ C)										
8.	(Fe _{0,48} Al _{0,46} Z	$Zn_{0,06})SO_4 \cdot 7H_2$	0											

Таблица 5.18 – Химический состав алюминиевых мелантеритов, масс. %

Примечание:* - в сумму не включено содержание кислорода и водорода.

Алюминиевые мелантериты имеют удлиненные, плотно прилегающие друг к

другу волосовидные кристаллы, диаметром не более 0,2 µm, длиной около 100 µm (см. рисунок 5.28 В). Минеральный вид, с содержанием A1 < 0,50 ф.е., образует короткостолбчатые кристаллы, хаотично расположенные относительно друг друга и имеющие различные размеры, как в диаметре, так и по длине (рисунок 5.29).

Формирование алюминиевых мелантеритов, вероятно, связано с сернокислотным разложением алюмосиликатов, прежде всего, калиевых полевых шпатов и слюд.

В результате рентгеноструктурных исследований была выявлена изоморфная серия мелантерит-эпсомит (Fe²⁺ \leftrightarrow Mg²⁺). По данным литературных источников (Олейников и др., 1965; Jambor et al., 2000), катионы с меньшим размером радиуса ионов (Mg²⁺ = 0,74 Å) легко входят в решетку соединений с катионом большего радиуса (Fe²⁺ = 0,80 Å), образуя минерал эпсомит.

Рисунок 5.29 – Морфоструктуры и энергодисперсионные спектры алюминиевого мелантерита

Согласно вышесказанному, можно сделать вывод о том, что в старом хвостохранилище состав мелантеритов наиболее разнообразен и представлен такими разностями как собственно мелантерит, марганец-цинковые и алюминиевые мелантериты. В новом хвостохранилище формируются лишь собственно мелантериты, в химическом составе которых Fe > 0,50 ф.е.

Сульфаты группы розенита $M^{2+}[SO_4] \cdot 4H_2O$ на поверхности хвостохранилищ формируют белые землистые агрегаты, инкрустированные светло-коричневыми образованиями. По представлениям (Белогуб и др., 2007; Jambor et al., 1963; 2000; Peterson et al., 2003), данная группа включает шесть минеральных видов, относящихся к

моноклинной сингонии: розенит (роценит) ($M^{2+} = Fe^{2+}$), илезит ($M^{2+} = Mn$), бойлеит ($M^{2+} = Zn$), старкиит ($M^{2+} = Mg$), эплоуит ($M^{2+} = Co$).

Розенит образуется при температуре ниже 18–30 °С, в условиях относительной влажности 70–80 % в результате дегидратации мелантерита и встречается в тесной ассоциации с мелантеритом, эпсомитом, ярозитом, гипсом, серой и другими минералами (Ehlers et al., 1965; Jambor et al., 2000).

По данным Е.В. Белогуб с соавторами (Белогуб и др., 2007), в составе идеального розенита содержание $Fe^{2+} = 25$ %, в нем также часто отмечаются примеси Zn, Mg, Mn. Например, в уральских розенитах из Блявинского месторождения содержание $Fe^{2+} = 24,23$ % (Гладковский и др., 1960).

В исследуемых объектах в зависимости от химического состава розенита выделены: розенит, илезит, бойлеит, а также алюминий-, магний- и фторсодержащие разновидности (рисунок 5.30).

Рисунок 5.30 – Тройная диаграмма Mn+Zn–Fe–Al составлена по формульным единицам розенитов хвостохранилищ Дальнегорского района

Примечание. Составы сульфатов группы розенита: 1 – старое хвостохранилище КОФ; 2 – новое хвостохранилище КОФ.

Розенит Fe²⁺[SO₄]·4H₂O образует мелкозернистые агрегаты и обнаружен, преимущественно, в пределах нового хвостохранилища КОФ. В химическом составе розенита содержание железа варьирует в диапазоне от 20,24 до 29,60 масс. %, примеси представлены Mn, Mg, Zn и др. (таблица 5.19).

№ п.п.	Mg	Al	S	Mn	Fe	Zn	Si	K	Ca	Σ*
				Старое хв	остохран	илище				
1.	0,57	2,82	15,67	1,28	29,60	0,85	5,48	1,66	0	57,98
			Кри	сталлохи	мические	формуль	Ы			
1.	(Fe _{0,65} Si ₀	,14Al0,09K0,	$_{0.05}Mg_{0,02}Zn$	_{0,02})[SO ₄]·4	H_2O					
				Новое хв	остохрани	лище				
1.	1,96	0	23,69	2,14	25,70	1,43	0	0	0	54,91
2.	0,91	0	22,86	2,83	28,27	1,09	0	0	0	55,98
3.	0,30	0	18,83	11,11	26,92	1,26	0	0	1,39	59,81
4.	1,97	0,64	24,17	5,84	20,24	1,28	0	0	0	54,14
5.	1,61	0	22,71	7,24	22,84	1,52	0	0	0	55,92
6.	2,04	0	23,69	4,27	22,78	1,31	0,47	0	0	54,56
7.	2,02	0	23,14	2,62	26,36	1,27	0	0	0	55,41
8.	1,39	0	22,57	5,64	25,13	1,39	0	0	0	56,12
			Кри	сталлохи	мические	формуль	J			
1.	(Fe _{0,79} Mg	g _{0,11} Mn _{0,06} Z	Zn _{0,04})[SO ₄]·4H ₂ O						
2.	(Fe _{0,84} Mr	$n_{0,08}Mg_{0,05}$	$Zn_{0,03})[SO_4$]·4H ₂ O						
3.	(Fe _{0,65} Mr	$n_{0,27}Ca_{0,04}Z$	$2n_{0,03}Mg_{0,01}$	$(SO_4) \cdot 4H_2$	0					
4.	(Fe _{0,64} Mr	$n_{0,19}Mg_{0,112}$	$Al_{0,03}Zn_{0,03}$	$SO_4] \cdot 4H_2$	0					
5.	(Fe _{0,66} Mr	n _{0,22} Mg _{0,08} Z	$Zn_{0,04})[SO_4$]·4H ₂ O						
6.	$(Fe_{0,70}Mr$	$n_{0,13}Mg_{0,11}Z$	$Zn_{0,04}Si_{0,02})$	$[SO_4] \cdot 4H_2$)					
7.	$(Fe_{0,78}Mg$	$g_{0,1}Mn_{0,08}$	$Zn_{0,03})[SO_4$]·4H ₂ O						
8.	(Fe _{0,73} Mr	$n_{0,17}Zn_{0,07}N$	/Ig _{0,03})[SO ₄]·4H ₂ O						

Таблица 5.19 – Химический состав розенита, масс. %

Примечание: * - в сумму не включено содержание кислорода и водорода.

Илезит Мп[SO₄]·4H₂O – это минерал, в котором содержание Mn > 0,50 ф.е. (Белогуб и др., 2007; Jambor et al., 1963; 2000; Peterson et al., 2003). Является одним из самых распространенных минералов, но встречается в основном в пределах старого хвостохранилища КОФ. Илезит образует микрокристаллические агрегаты неправильной формы, размер кристаллов от 1 до 10 μ m, встречающиеся в тесном срастании с волокнистыми кристаллами алюминиевого розенита (см. рисунок 5.31).

Рисунок 5.31 – Морфоструктуры и энергодисперсионные спектры илезита (1) и алюминиевого розенита (2)

В химическом составе изученных образцов илезита содержание Mn (9,28–28,41 масс. %), отмечаются примеси Zn, Al, Mg, Fe и др. (таблица 5.20).

№ п.п.	Mg	Al	S	Mn	Fe	Zn	\sum^*						
			Старое хвост	охранилищ	e								
1.	1,49	3,31	24,11	15,83	1,66	6,82	53,22						
2.	0	2,51	9,64	28,41	7,53	19,94	68,03						
3.	1,02	2,02	19,77	24,18	2,97	8,11	58,07						
4.	2,78	4,38	23,63	16,51	1,43	3,96	52,70						
5.	2,86	0,52	23,25	21,41	1,11	5,77	54,90						
6.	0,39	4,15	24,16	19,17	1,93	3,16	52,97						
7.	1,44 0,49 22,08 25,15 1,10 6,16 56,42												
8.	3,41	0	23,46	21,77	0,71	5,42	54,77						
9.	2,78	4,89	24,37	9,28	1,66	8,98	51,96						
10.	2,84	1,06	23,07	11,69	2,88	13,56	55,1						
11.	2,84	2,06	24,26	12,88	2,30	9,03	53,36						
12.	1,04	7,19	25,36	12,45	1,72	2,47	50,23						
13.	1,29	7,65	25,41	11,16	1,70	2,70	49,91						
14.	0,31	5,31	26,21	13,05	3,07	2,57	50,52						
Кристаллохимические формулы													
1.	1. $(Mn_{0.52}Zn_{0.19}Al_{0.15}Mg_{0.09}Fe_{0.05})[SO_4]\cdot 4H_2O$												
2.	$(Mn_{0,50}Zn_{0,31})$	Fe _{0,13} Al _{0,06})[S	O_4]·4H ₂ O										
3.	$(Mn_{0,62}Zn_{0,18})$	Fe0,08Al0,07Mg	g _{0,05})[SO ₄]·4H	$_{2}O$									
4.	$(Mn_{0,51}Al_{0,19})$	Mg _{0,15} Zn _{0,11} Fe	$e_{0,04}$)[SO ₄]·4H ₂	2 O									
5.	$(Mn_{0.64}Mg_{0.1})$	₅ Zn _{0,55} Fe _{0,03} A	$l_{0.02}$)[SO ₄]·4H	$_{2}O$									
6.	$(Mn_{0,63}Al_{0,19})$	Zn _{0,09} Fe _{0,06} Mg	$(50,02)[SO_4].4H_2$	$_{2}O$									
7.	$(Mn_{0.72}Zn_{0.15})$	Mg _{0.07} Fe _{0.03} A	$l_{0.02}$)[SO ₄]·4H	$_{2}O$									
8.	$(Mn_{0.66}Mg_{0.1})$	8Al _{0.37} Zn _{0.14} Fe	$(0.02)[SO_4] \cdot 4H_2$	2 O									
9.	$(Mn_{0.30}Zn_{0.26})$	$Al_{0.22}Mg_{0.16}Fe$	$e_{0.05}$ [SO ₄]·4H	20									
10.	$(Mn_{0.36}Zn_{0.36}$	$Mg_{0.15}Fe_{0.09}A$	$\log_{10.04}$ [SO ₄]·4H ²	~ 0									
11.	$(Mn_{0.42}Zn_{0.25})$	Mg0 16Al0 09F6	$(0.07)[SO_4].4H$	~ 0									
12.	$(Mn_{0.44}Al_{0.26})$	$Zn_{0.08}Mg_{0.07}Fe$	$(0.06)[SO_4] \cdot 4H$	$\frac{1}{2}$									
13.	$(Mn_{0.40}Al_{0.30})$	$Mg_0 \sim Zn_0 \sim Fe$	(0,00)[204] (H)	$\frac{1}{2}$									
14.	$(Mn_{0.49}Al_{0.28})$	$\frac{1200,000}{12} \text{ Fe}_{0.00} \text{ M}_{0.00} \text{ M}_{0.00}$	$(10,00)[20,04] \cdot 4H$	$\frac{1}{2}$									

Таблица 5.20 – Химический состав илезита, масс. %

Примечание:* - в сумму не включено содержание кислорода и водорода.

Кроме этого, были изучены марганцевые розениты с содержанием 0,30 < Mn < 0,49 ф.е. Они представлены плотными землистыми агрегатами, состоящими из тонкодисперсных кристаллических частиц близко прилегающих друг к другу.

Бойлеит ZnSO₄·**4H**₂**O** встречается реже других водорастворимых сульфатов и образует мелкозернистые агрегаты неправильной формы (рисунок 5.32). Под бинокуляром – это бесцветные, либо полупрозрачные образования. Также встречаются белые хлопьевидные розениты с концентрациями Zn < 0,50 ф.е. (таблица 5.21).

№ п.п.	Mg	Al	S	Mn	Fe	Zn	Σ*				
			Старое хвост	гохранилиш	(e						
1.	0	0	38,08	1,20	14,02	37,74	91,05				
2.	4,48	1,16	22,67	9,14	2,32	15,25	55,03				
3.	6,49	1,26	23,09	5,34	2,26	15,59	54,03				
		Кри	сталлохими	ческие форм	иулы						
1.	$(Zn_{0,68}Fe_{0,29}N)$	$Mn_{0,03})[SO_4].4$	H ₂ O								
2.	2. $(Zn_{0,39}Mn_{0,27}Mg_{0,23}Fe_{0,07}Al_{0,05})[SO_4]\cdot 4H_2O$										
3.	$(Zn_{0,39}Mg_{0,33})$	$Mn_{0,15}Fe_{0,06}A$	$l_{0,05})[SO_4] \cdot 4H$	20							

Таблица 5.21 – Химический состав бойлеита и цинксодержащих розенитов, масс. %

Примечание:* - в сумму не включено содержание кислорода и водорода.

Бойлеит был описан при изучении свинцово-цинковых руд и техногенных минеральных образований Маданского рудного поля (Болгария). По свидетельствам N. Zidarov et al. (Zidarov et al., 2009), обнаруженные ими белые порошкообразные налеты, образование которых связано с окислением пирита и сфалерита, соответствуют бойлеиту, а их формулы имеют вид: 1) ($Zn_{0,79}Cu_{0,1}Fe_{0,1}Mg_{0,01}Ca_{0,01})SO_4\cdot4,45H_2O$ и 2) ($Zn_{0,81}Ca_{0,08}Fe_{0,06}Mg_{0,05})SO_4\cdot4,3H_2O$.

Рисунок 5.32 – Морфоструктуры и энергодисперсионные спектры бойлеита

Цинксодержащие розениты имеют следующий формульный состав $(Fe_{0,49}Zn_{0,45}Ca_{0,02}Mg_{0,02}Mn_{0,02})[SO_4]\cdot 4,1$ 5 H₂O (Zidarov et al., 2009), что указывает на значительные сходства химического состава розенитов Дальнегорского района и Маданского рудного поля, но В последних образцах содержание железа значительно выше. Это может свидетельствовать 0 широко проявленных процессах изоморфизма $Zn \leftrightarrow Fe$ в сульфатах Дальнегорского

района. Морфологически бойлеиты и цинксодержащие розениты, практически, не отличаются, лишь в последних наблюдается преобладание плотных массивных агрегатов.

Наряду с вышеописанными вторичными минеральными образованиями в исследуемых техногенных объектах выявлены розениты со значительным содержанием алюминия (таблица 5.22).

№ п.п.	Mg	Al	S	Mn	Fe	Zn	Si	Σ*				
			Старое	хвостохран	илище	•		•				
1.	0,79	9,88	26,22	7,25	2,20	1,41	0,28	48,04				
2.	0,63	8,84	27,06	7,07	0,85	3,60	0	48,05				
3.	0,80	10,57	25,88	4,96	3,69	2,35	0	48,25				
4.	0,82	10,43	26,35	6,00	1,43	8,98	0	47,88				
5.	0,61	10,77	26,62	7,76	0,73	0,98	0	47,47				
6.	0,49	8,91	26,87	9,48	0,73	1,25	0,23	47,98				
7.	0,72	9,23	26,59	9,14	1,13	1,38	0	48,19				
8.	1,32	8,10	25,89	10,21	1,04	1,65	0,61	48,81				
9.	0,39	7,31	27,20	9,34	3,33	1,03	0	48,60				
Кристаллохимические формулы												
1.	$(Al_{0,53}Mn_{0,28}Fe_{0,08}Mg_{0,05}Zn_{0,05}Si_{0,01})[SO_4]\cdot 4H_2O$											
2.	$(Al_{0,50}Mn_{0,29}Zn_{0,13}Mg_{0,05}Fe_{0,03})[SO_4]\cdot 4H_2O$											
3.	$(Al_{0,55}Mn_{0,19}Fe_{0,14}Zn_{0,08}Mg_{0,05})[SO_4]\cdot 4H_2O$											
4.	$(Al_{0,56}Mn_{0,23}Zn_{0,10}Mg_{0,06}Fe_{0,05})[SO_4]\cdot 4H_2O$											
5.	$(Al_{0,59}Mn_{0,3})$	31Mg _{0,04} Fe _{0,03}	Zn _{0,03})[SO ₄]	·4H ₂ O								
б.	$(Al_{0,50}Mn_{0,3})$	$_{38}Mg_{0,04}Zn_{0,04}$	Fe _{0,03} Si _{0,01})[SO ₄]·4H ₂ O								
7.	(Al _{0,50} Mn _{0,3}	36Mg0,05Zn0,05	Fe _{0,04})[SO ₄]	·4H ₂ O								
8.	$(Al_{0,42}Mn_{0,3})$	38Mg _{0,09} Zn _{0,05}	Fe _{0,04})[SO ₄]	·4H ₂ O								
9.	$(Al_{0,42}Mn_{0,3})$	38Fe _{0,13} Zn _{0,04} N	Mg _{0,03})[SO ₄]	·4H ₂ O								
			Новое	хвостохран	илище							
1.	0,56	10,08	26,70	3,48	6,87	0	0	47,70				
2.	0,44	9,35	26,74	1,36	9,52	0	0,40	47,80				
3.	0,44	8,53	25,53	3,83	10,68	0,58	0	49,59				
			Кристалло	химически	е формулы							
1.	$(Al_{0,56}Fe_{0,27}$	$Mn_{0,13}Mg_{0,04}$	$(SO_4) \cdot 4H_2C$)								
2.	(Al _{0,52} Fe _{0,38}	$Mn_{0,05}Mg_{0,03}$	Si _{0,02})[SO ₄].	4H ₂ O								
3.	(Al _{0,43} Fe _{0,38}	$Mn_{0,14}Mg_{0,03}$	Zn _{0,02})[SO ₄]	·4H ₂ O								

Таблица 5.22 – Химический состав алюминиевых розенитов, масс. %

Примечание:* - в сумму не включено содержание кислорода и водорода.

Сульфаты, с содержанием 0,50 < Al < 0,59 ф.е., образуют параллельноволокнистые и спутанно-волокнистые агрегаты, состоящие из призматических или таблитчатых кристаллов (рисунок 5.33 A). Короткопризматические и таблитчатые кристаллы розенита, как правило, содержат Al < 0,50 ф.е., в них отмечаются примеси Mn, Fe, Mg и Zn (рисунок 5.33 Б). Агрегаты с удлиненно-волосовидными и радиальнолучистыми кристаллами встречаются в новом хвостохранилище (рисунок 5.33 В).

В старом хвостохранилище КОФ выявлены разности розенитов с повышенным содержанием фтора и магния. В химическом составе фторсодержащих розенитов концентрации F до 4,56–4,84 масс. %, Mg (2,23–3,53 масс. %), Al (4,40–4,45 масс. %), Mn (13,70–16,59 масс. %), Fe (0,93–1,82 масс. %) и Zn (3,94–4,01 масс. %). Рассчитанная кристаллохимическая формула имеет вид (F_{0,36}Mn_{0,31}Al_{0,13}Mg_{0,11}Zn_{0,07}Fe_{0,03})[SO₄]·4H₂O (усредненная по 2 анализам). Данный минеральный вид образует мелкую вкрапленность в виде зерен, размером до 2 мµ, в кристаллах алюминиевых розенитов.

Рисунок 5.33 – Морфоструктуры и энергодисперсионные спектры розенита

Примечание: А, Б – старое хвостохранилище КОФ; В – новое хвостохранилище КОФ.

Микрокристаллический магнийсодержащий розенит (размер кристаллов до 1–2 мµ), встречается в ассоциации с илезитом, а в химическом составе установлены такие элементы как Mg (6,55 масс. %), Al (4,58 масс. %), Mn (4,90 масс. %), Fe (1,86 масс. %) и Zn (7,50 масс. %). Рассчитанная кристаллохимическая формула имеет следующий вид: (Mg_{0,37}Zn_{0,21}Al_{0,20}Mn_{0,16}Fe_{0,06})[SO₄]·4H₂O.

Таким образом, водорастворимые сульфаты группы розенита старого хвостохранилища КОФ представлены следующими разностями: собственно розенит, бойлеит, илезит, а также алюминий-, магний-, и фторсодержащие розениты. В новом хвостохранилище выделены собственно розениты и алюминиевые розениты.

Данные рентгеноструктурного анализа свидетельствуют о том, что на территории объектов нашего исследования обнаружены водные сульфаты не только Fe^{2+} , но и достаточно часто встречаются сульфаты Fe^{3+} , содержащие в качестве дополнительного аниона гидроксил. К данной группе относятся бутлерит $Fe^{3+}[SO_4]OH\cdot 2H_2O$, амарантит $Fe^{3+}[SO_4]OH\cdot 3H_2O$, гогманнит $Fe^{3+}[SO_4]OH\cdot 4H_2O$ и фиброферрит Fe^{3+} [SO4]OH·5H₂O (Белогуб и др., 2007; 2009; Peterson, 2003; Jerz et al., 2003; Lombardo, 2010). В хвостохранилищах Дальнегорского района установлены сульфатные минералы представленные бутлеритом и фиброферритом.

Бутлерит Fe³⁺[SO₄]OH-2H₂O образует кристаллические корки желто-оранжевого и коричневого цвета и встречен в ассоциации с кальцитом и ярозитом. По свидетельствам (Lausen, 1928; Fanfani et al., 1971; A vibrational spectroscopic study..., 2011), бутлерит образуется в зонах окисления пиритных руд, также может формироваться как твердый продукт фумарольной деятельности вулканов и шахтных пожаров. Кроме этого, некоторые исследователи рассматривают бутлерит как продукт обезвоживания фиброферрита (Johannesson et al., 2000). Немаловажная роль в образовании водных сульфатов отводится процессам биоминерализации. По данным Л.К. Яхонтовой (Яхонтова и др., 1982; 2000), при окислении сульфидных минералов с помощью тионовых бактерий продукты деструкции сульфидов накапливаются в гипергенном растворе в форме кислых сульфатных комплексов типа [Me(HSO₄)_n]^{+m}, которые подвергаясь гидролизу, дают материальную основу для формирования таких минералов, как ярозит, брошантит и бутлерит. Впервые бутлерит был описан в 1928 г в шахте Верде в штате Аризона (США), в химическом составе которого установлены SO₃ (38,63 масс. %), Al₂O₃ (0,55 масс. %), FeO (0,41 масс. %), Fe₂O₃ (36,31 масс. %), Na₂O (2,73 масс. %), H₂O (22,83 масс. %). Теоретический состав бутлерита содержит SO₃ (39,07 масс. %), Fe₂O₃ (38,96 масс. %), H₂O (21,97 масс. %). Химический состав бутлерита хвостохранилищ КОФ представлен на рисунке 5.34 и в таблице 5.23.

Рисунок 5.34 – Тройная диаграмма Mn+Zn–Fe–Al составлена по формульным единицам бутлерита Дальнегорского района

Примечание. Составы сульфатов группы бутлерита: 1 – старое хвостохранилище КОФ; 2 – новое хвостохранилище КОФ.

№ п.п.	Al	S	Mn	Fe	Zn	Si	As	Ca	Σ*				
			Ста	рое хвосто	охранилин	це							
1.	1,28	22,70	0,60	24,10	2,47	0	4,59	0	55,73				
2.	0,70	22,24	0	30,33	0	1,94	0	0	55,20				
3.	0,53	22,02	0,85	24,32	2,73	0	2,02	3,98	56,45				
4.	0	19,49	0	36,98	0,46	0	2,42	0	59,35				
5.	0,82	20,23	0,93	29,65	3,36	0	3,34	0	58,33				
6.	0	23,61	0	31,90	0	0	0	0	55,51				
Кристаллохимические формулы													
1.	$(Fe_{0,75}As_{0,10}Zn_{0,07}Al_{0,06}Mn_{0,02})(SO_4)(OH) \cdot 2H_2O$												
2.	$(Fe_{0,90}Si_{0,07}Al_{0,03})(SO_4)(OH) \cdot 2H_2O$												
3.	$(Fe_{0,69}Ca_{0,15}Zn_{0,07}As_{0,04}Al_{0,02}Mn_{0,02})(SO_4)(OH) \cdot 2H_2O$												
4.	$(Fe_{0,95}As_{0,04}Zn_{0,01})(SO_4) (OH) \cdot 2H_2O$												
5.	$(Fe_{0,79}Zn_{0,79}$,08As0,06Al0,0	$_{3}Mn_{0,02})(SO)$	O4) (OH)·2H	H_2O								
6.	Fe _{1,0} (SO ₄	$(OH) \cdot 2H_2C$)										
			Ho	вое хвосто	хранилиц	te							
1.	1,07	21,21	0,75	27,84	3,53	0	2,91	0	57,31				
2.	0	21,74	0	35,54	0	0	0	0	57,28				
3.	0	20,98	0	28,29	1,77	0	1,93	4,63	57,60				
			Криста	ллохимич	еские фор	мулы							
1.	$(Fe_{0,79}Zn_{0,79}$,09As0,06Al0,0	$_{4}Mn_{0,02})(SO)$	O4) (OH)·2H	I_2O								
2.	Fe _{1,0} (SO ₄	$(OH) \cdot 2H_2C$)										
3.	$(Fe_{0,76}Ca_0)$	$_{,16}Zn_{0,04}As_{0,0}$	$(SO_4)(OI)$	H) \cdot 2H ₂ O									

Таблица 5.23 -	- Химический	состав бу	утлерита,	масс.	%
----------------	--------------	-----------	-----------	-------	---

Примечание:* - в сумму не включено содержание кислорода и водорода.

Изучение морфологических особенностей на сканирующем электронном микроскопе дают основания полагать, что основными формами выделения бутлерита являются агрегаты «кружевного» рисунка, имеющие пластинчатые кристаллики и кристаллы изометричной формы, размер которых не превышает 10 µm (рисунок 5.35).

Рисунок 5.35 – Морфоструктуры и энергодисперсионные спектры бутлерита

Таким образом, в исследуемых техногенных объектах нами впервые обнаружен и исследован водорастворимый сульфат бутлерит, в химическом составе которого преобладающим элементом является железо.

Группа фиброферрита М³⁺[SO₄]OH·5H₂O является замыкающим в группе водных сульфатов трехвалентного железа. Образование фиброферрита связано с окислением железосодержащих сульфидов, таких как пирит, марказит, пирротин и халькопирит (Яхонтова и др., 2000; Белогуб и др., 2007; Peterson, 2003; Jerz et al., 2003; Lombardo, 2010).

Окисление пирита и марказита идет по схеме: $FeS_2 + 15/4O_2 + 7/2H_2O=Fe (OH)_3 + H_2SO_4$ (Jerz et al., 2003). Реакция, описывающая окисление пирротина, выглядит следующим образом: $FeS_{1-x} + 4O_2 + 2H_2O = Fe (OH)_3 + H_2SO_4$ (Jerz et al., 2003).

Детально изучены и описаны образцы фиброферрита как продукты изменения мелантерита, найденные в каменноугольном бассейне Кейп-Бретона в Канаде (Zodrow et al., 1979, 1980). На Урале, при изучении сульфатов Fe³⁺, обнаружены корочки фиброферрита в виде игольчатых кристаллов, образующиеся при подсыхании на мелантерите (Чесноков, 1983). Кроме этого, фиброферрит может формироваться в процессе гидролиза при нейтральном pH факторе в отвалах, содержащих лепидокрокит Fe³⁺O(OH) (Burns, 1987).

В процессе экспериментальных исследований гидролиза мелантерита установлено, что кристаллизация фиброферрита происходит при температуре 15 °C и ниже (выше 50 °C он не стабилен), при величине pH < 5 и относительной влажности 63–88 % (Posnjak et al.,1922; Jerz et al., 2003; Xu et al., 2009).

В Дальнегорском районе фиброферрит обнаружен лишь в пределах старого хвостохранилища КОФ, он образует мономинеральные кристаллы светло-желтого и светло-коричневого цвета. Однако довольно часто встречаются взаимные прорастания фиброферрита с копиапитом, алуногеном, галотрихитом, славикитом и гипсом (Parafiniuk, 1991). По преобладанию основных элементов выделяются собственно фиброферриты, алюминий- и марганецсодержащие разности. Химический состав и рассчитанные кристаллохимические формулы исследуемых образцов фиброферрита представлены на рисунке 5.36 и в таблице 5.24.

Рисунок 5.36 – Тройная диаграмма Al–Fe–Mn+Mg составлена по формульным единицам фиброферритов старого хвостохранилища КОФ Дальнегорского района

Анализ данных таблицы 5.24. свидетельствует о том, что содержание железа изменяется в диапазоне от 5,82 до 63,89 масс. %. В образцах фиброферрита Вишневых гор на Урале содержание Fe – 22,19 масс. % (Чесноков, 1983), в составе фиброферрита из каменноугольного бассейна Кейп-Бретона (Канада) Fe – 0,34 масс. % (Zodrow, 1978). Концентрации алюминия варьируют от 0 до 8,26 масс. %. О значительных содержаниях алюминия (3,36–3,38 масс. %) в фиброферритах из Wiesciszowice (Польша) отмечено в
работе J. Parafiniuk (Parafiniuk, 1991). Концентрации марганца в фиброферритах хвостохранилищ КОФ изменяются в диапазоне от 0 до 11,76 масс. %.

№	Al	S	Mn	Fe	Zn	Mg	Si	As	K	Cu	Σ*
	Старое хвостохранилище										
1.	1,94	20,92	0,59	33,09	0	0	0,37	0	0	0	56,90
2.	1,28	19,22	2,01	63,89	1,57	0	2,21	0	0,73	0	90,91
3.	0,89	0,89 24,72 1,66 21,68 1,21 1,90 0 1,46 0 0 53,51									
4.	0	17,90	0,48	42,50	0	0	0	0	0	0	60,89
5.	0,67	14,79	0,51	46,70	0	0	0,50	0	0	0	63,17
6.	0,45	20,33	0	37,61	0	0	0	0	0	0	58,39
7.	0,36	15,86	1,02	45,40	0	0	0	0	0	0	62,64
8.	2,45	5,88	7,18	55,52	0	0	0	0	0	0	71,01
9.	1,21	17,38	0,40	34,00	0	0,48	4,15	0	0,34	0	57,95
10.	0,43	23,45	2,39	25,31	1,30	0,89	0,22	1,07	0	0	55,07
11.	8,26	26,87	5,71	5,82	1,96	0	0	0	0	0	48,62
12.	5,23	20,71	1,62	25,33	0,61	0	0,49	1,03	0,47	0	55,49
13.	3,60	24,30	2,83	17,45	1,60	1,71	0	1,21	0	0	52,69
14.	0,30	23,69	11,76	10,52	5,18	2,71	0	0	0	0,49	54,65
15.	4,10	21,22	11,69	15,71	3,19	0	0	0	0	0	55,91
	1			Кристал	лохими	ческие ф	ормулы				
1.	$(Fe_{0,90}A)$	$l_{0,07}Mn_{0,07}$	$_{2}Si_{0,01})[SC$	D ₄]OH·5H	I_2O						
2.	(Fe _{0,84} S	i _{0,07} Al _{0,05}]	$K_{0,03} Mn_{0,3}$	$_{02})[SO_4]C$	H·5H ₂ O						
3.	$(Fe_{0,72}N)$	$Ig_{0,11}Mn_{0,1}$	$_{06}Al_{0,04}Zn$	10,04AS0,04)	[SO ₄]OH	$\cdot 5H_2O$					
4.	$(Fe_{0,99}N)$	In _{0,01})[SO	4]OH·5H	$_{2}O$							
5.	(Fe _{0,96} A	l _{0,02} Si _{0,01} N	$Mn_{0,01})[SC]$	D ₄]OH·5H	I_2O						
6.	(Fe _{0,98} A	1 _{0,02})[SO ₄]OH·5H ₂	С							
7.	(Fe _{0,97} N	In _{0,02} Al _{0,02}	1)[SO ₄]OI	H∙5H ₂ O							
8.	(Fe _{0,84} N	$In_{0,11}Al_{0,02}$	5)[SO ₄]Ol	$H \cdot 5H_2O$							
9.	(Fe _{0,80} S	i _{0,12} Al _{0,04} N	$Mg_{0,02}Mn_0$	$M_{0,01}K_{0,01})[S$	SO ₄]OH·5	H ₂ O					
10.	$(Fe_{0,79}N)$	In _{0,08} Mg _{0,0}	$_{05}Zn_{0,04}Al$	0,02As0,02	Si _{0,01})[SO	4]OH·5H	$_{2}O$				
11.	(Al _{0,47} F	e _{0,23} Mn _{0,23}	$_{3}Zn_{0,07})[S$	O4]OH·5I	H_2O						
12.	(Fe _{0,69} A	$l_{0,20}Mn_{0,04}$	$_{4}Si_{0,02}As_{0,0}$	$_{02}Zn_{0,01})$ [S	SO ₄]OH·:	5H ₂ O					
13.	(Fe _{0,58} A	$l_{0,17}Mg_{0,10}$	$_0Mn_{0,09}Zn$	$A_{0,05}As_{0,01}$	[SO ₄]OH	$\cdot 5H_2O$					
14.	(Mn _{0,36} I	$Fe_{0,32}Mg_{0,32}$	$15\overline{Zn_{0,14}Al}$	$u_{0,01}Cu_{0,01})$	[SO ₄]OH	I·5H ₂ O					
15.	$(Fe_{0.43}N)$	$In_{0.33}Al_{0.10}$	$_{6}Zn_{0.08})[S]$	O ₄]OH·5I	H_2O						

Таблица 5.24 – Химический состав фиброферрита, масс. %

Примечание:* - в сумму не включено содержание кислорода и водорода.

Изучение морфоструктур фиброферритов указывает на наличие разнообразных форм (рисунок 5.37). Алюминиевые разности представлены тонковолокнистыми, игольчатыми и асбестовидными агрегатами (рисунок 5.37 А). Марганецсодержащие фиброферриты образуют преимущественно глобулярные (рисунок 5.37 А) и мелкозернистые агрегаты (рисунок 5.37 Б). Фиброферриты, обогащенные магнием, представлены листоватыми, пластинчатыми агрегатами (рисунок 5.37 В).

Рисунок 5.37 – Морфоструктуры и энергодисперсионные спектры фиброферрита (A–B)

Таким образом, в результате исследований установлены собственно фиброферриты, а также алюминий-, марганец- и магнийсодержащие разновидности, с широко проявленными процессами изоморфизма.

Ярозит КFe³⁺(**SO**₄)₂(**OH**)₆. По данным рентгеноструктурного анализа (Приложение 4) в пробах старого хвостохранилища выделены сульфаты группы ярозита, характеризующиеся общей формулой $M^{1+}M_3^{3+}(SO_4)_2(OH)_6$. В позиции M^{1+} присутствуют Na⁺, K⁺, Ag⁺, NH₄⁺, H₃O⁺. Позиция M^{3+} обычно занята Fe³⁺ или Al³⁺ (Белогуб и др., 2007; Яхонтова и др., 2007; Jambor et al., 2000). Сульфаты группы ярозита являются довольно распространенными минеральными образованиями и, по представлениям (Sasaki et al., 2000; Dutrizac et al., 2000; Basciano et al., 2010), могут формироваться в разнообразных

146

природных условиях при Т 25 – 110 °C, при более высоких температурах ярозит неустойчив. Длительное время ярозит рассматривали только как вторичный минерал, формирующий корки и натеки в зонах окисления сульфидных руд в кислой среде (pH < 3) в результате окисления пирита, марказита и пирротина, а также в почвах и глинистых отложениях имеющих значительные вкрапления пирита (Sasaki et al., 2000; Dutrizac et al., 2000). Но, в последние годы все чаще в литературе можно встретить свидетельства гипогенного генезиса ярозита. Так С. Verati et al. (1999) и К. Sasaki et al. (2000), полагают, что термофильные бактерии Acidanus briery активно вовлечены в формирование ярозита в гидротермальных системах черных курильщиков. Наличие ярозита в горячих источниках Курильских островов (Вулкан Менделеева), в Японии и на о-ве Ява, также могут указывать на гидротермальное происхождение ярозита. Еще в 1966 г во Франции описан ярозит, обнаруженный в гранитном массиве, в котором не наблюдалось признаков окисления пирита. По представлениям A.P. Berzina et al. (Berzina et al., 1966), J.E. Dutrizac et al. (Dutrizac et al., 2000), формирование ярозита происходило в условиях гипогенной кристаллизации во время альбитизации гранитного массива. К сожалению, нам не удалось определить ярозит в результате изучения сульфатов на сканирующем электронном микроскопе, поэтому нет данных о его составе.

Таким образом, в результате изучения вещественного и минерального состава отложений хвостохранилищ можно сделать следующие выводы. Все рассматриваемые воды неравновесны с первичными алюмосиликатами (альбит, анортит, анальцим) и другими гипогенными минералами, но равновесны с вторичными глинистыми (каолинитом, иллитом, Са-, Мg-, Na-монтмориллонитом), а также сульфатными минералами (таблица 5.25).

Водорастворимые сульфаты выступают как основные концентраторы токсичных элементов, таких как Zn, As, Cu, Fe, Mn, Pb, Al, Co, которые поступают в минералообразующую систему вследствие сернокислотного разложения первичных минералов. Преобладающие токсичные элементы в исследуемых объектах показаны на рисунке 5.38. Гидрогенное минералообразование приводит к дальнейшему растворению водовмещающих пород и является неотъемлемой частью формирования химического состава вод.

		Старое	Новое		
	Минеральные ассоциации	хвостохранилише КОФ	хвостохранилище		
			КОФ		
		Пирит, марказит, галенит, сфал	ерит, касситерит,		
	Гипогенные минералы	пирротин, арсенопирит, фрейбо	ергит. Кварц, хлорит,		
		биотит, полевые шпаты. Монан	цит, апатит		
	Вторичные минералы,				
	образующиеся в результате	Англезит, плюмбоярозит,	Гипе, кальнит		
	процессов выветривания и	гипс, кальцит. Базалюминит			
	окисления				
ПЫ	Вторичные минералы в виде				
epa	каймы замещения по	Fe-соединения с примесями Si, Al, Zn, As, Mn, Pb, Co			
ИНИ	сульфидным минералам				
le M		Мелантерит, марганец-			
IHE		цинковые мелантериты,			
OLEF	Мицераци	алюмомелантериты; розенит,			
Пер		бойлеит, илезит, алюминий-,	Мелантерит розенит		
Ги		магний -, фторсодержащие	бутлерит		
	геохиминеском барьере	розениты; бутлерит; ярозит;	буплерит		
	теохимическом барвере	алюминий-, марганец- и			
		магнийсодержащие			
		фиброферриты			

Таблица 5.25 – Минеральные ассоциации техногенных отложений КОФ

Рисунок 5.38 – Тройная диаграмма Mn+Zn–Fe–Al составлена по формульным единицам сульфатных выцветов хвостохранилищ Дальнегорского района

Примечание: треугольник – мелантерит, ромб – розенит, круг – бутлерит, квадрат – фиброферрит. Хвостохранилища КОФ: 1 – старое; 2 – новое.

По результатам выполненных рентгеноспектральных анализов выяснены особенности химических составов минералов в хвостохранилище КОФ, на основании чего рассчитаны их кристаллохимические формулы и определены формы вхождения экологически опасных элементов в кристаллические структуры – собственная минеральная или изоморфная (таблица 5.26).

Таблица 5.26 – Формы вхождения экологически опасных элементов в гипогенные и гипергенные минералы техногенных отложений КОФ

Элементы		Форма
(класс опасности)	Собственная минеральная	Изоморфная и микропримесная
Pb (2)	Галенит, плюмбоярозит, англезит	FeSO ₄
Zn (3)	Сфалерит, цинкмелантерит, бойлеит	Хлорит, биотит, вермикулит, гипс, плюмбоярозит, FeSO4, розенит, илезит, бутлерит, фиброферрит
As (3)	Арсенопирит	Пирит, биотит, гипс, плюмбоярозит, мелантерит, бутлерит, фиброферрит
Cu (3)	Фрейбергит	Галенит, фиброферрит
Fe (4)	Пирит, пирротин, арсенопирит, фрейбергит, биотит, плюмбоярозит, мелантерит, ярозит, розенит, фиброферрит, бутлерит	Сфалерит, галенит, кварц, апатит, монацит, гипс, базалюминит, илезит, бойлеит
Sb (2)	Фрейбергит	Галенит, FeSO ₄
Ag (3)	Фрейбергит	Пирит
Mn (4)	Илезит	Сфалерит, гипс, FeSO4, розенит
Al (4)	Хлорит, биотит, ПШ, базалюминит, ярозит	Касситерит, FeSO ₄ , апатит, гипс, плюмбоярозит, мелантерит, розенит, илезит, бойлеит, бутлерит, фиброферрит

Сделанные выводы подтверждены ниже результатами физико-химического моделирования.

5.2. Физико-химическое моделирование ионного состава раствора при изменяющихся объемных соотношениях «вода-порода»

Физико-химическое моделирование позволяет выполнить качественную и, с некоторой долей условности, количественную оценку закономерностей геохимических процессов, изучить пути изменения состава рассматриваемых вод и необратимого природного минералообразования в районах природно-техногенных геологических систем Кавалеровского и Дальнегорского районов Приморского края. Для понимания особенностей формирования химического состава поверхностных и подземных вод, закономерностей переноса и распределения элементов в водном потоке, большое значение имеют знания о формах миграции элементов. Знания о подвижности химических элементов и формах их миграции необходимы также для изучения механизмов взаимодействия элементов в техногенных и природных средах в системе «вода-порода-газ».

В числе основных миграционных форм выделены простые, сложные И комплексные ионы. последние образуются при взаимодействии ионакомплексообразователя И (ионов или молекул органического лигандов или 1987). неорганического происхождения) (Крайнов И др., В результате комплексообразования значительно возрастает миграционная способность металлов и повышается их устойчивость в растворенном состоянии (Линник и др., 1986).

В поверхностных и подземных водах формы миграции и их трансформация зависят не только от свойств самих элементов (соотношение анионов и катионов, наличие элементов-гидролизаторов), но и от процессов, влияющих на трансформацию их соединений (адсорбция, гидролиз и комплексообразование). Формы миграции элементов определяются также внешними геохимическими факторами среды, такими как окислительно-восстановительный потенциал, определяющий валентное состояние компонентов вод и кислотно-щелочные условия, формирующиеся в зависимости от состава руд и вмещающих пород (Колотов и др. 1974; Линник и др. 2006; Чечель, 2009).

В большой настоящее время существует набор отечественных специализированных программ, предназначенных для физико-химического моделирования, основанных на методе минимизации энергии Гиббса (GIBBS (HCh) (Шваров, 1999); Селектор (Казьмин и др., 1975; Карпов, 1981)) и базирующихся на методе констант равновесия (МІГ (Соломин, 1988); SOXXXX (В.Н. Озябкин, С.В. Озябкин. 1996); HydroGeo (Букаты, 1997)). Среди зарубежных программ преобладают статические, гидрогеохимического направления не учитывающие раствора: WATERQ4F, SOLMINEQ, Geochemists Workbentch движение И др. (Геологическая эволюция и самоорганизация..., 2005). Выбор того или иного программного продукта определяется главным образом характером решаемой задачи. Основная задача настоящих исследований заключалась в определении закономерностей минералого-геохимических преобразований и путей изменения состава природных вод в условиях природно-техногенных геологических систем Дальнегорского района, вероятных направлений преобразования минерального вещества и ассоциаций, стабильных в условиях той или иной гидрохимической среды.

Для достижения этой цели принято решение использовать программный «Селектор-С», реализующий подход выпуклого программирования к комплекс вычислению равновесия В гетерогенных системах минимизацией изобарноизотермического потенциала (потенциала Гиббса). Комплекс содержит все необходимые структуры данных и алгоритмы, объединенные в интегрированную оболочку, работающую в среде Microsoft Windows (Чудненко, Карпов, 2003; Авченко и 2009). Аппарат химической термодинамики Гиббса позволяет др., давать формализованное описание гидрохимических процессов И выражать ИХ R соответствующих физико-химических моделях.

Методика физико-химического моделирования гидрогеохимических комплексов заключалась в выполнении серии расчетов равновесного состояния системы «вода-порода-газ». Задавались внешние условия, при которых находится система (температура, общее давление и химические потенциалы каждого вполне подвижного компонента). Известно, что для температур до 40° С температурная поправка невелика. Поэтому при моделировании использовалась наименьшая принятая в программе Селектор-С температура – 25° С.

Для изучения миграционных форм химических элементов в природных и техногенных водах были поставлены следующие задачи:

1. Создать физико-химические модели реально существующих ионных растворов, формирующихся в техногенной системе хвостохранилища Дальнегорского района, в результате геохимических процессов, протекающих в единой системе «вода-порода-газ» (атмосферный). Выявить концентрации и формы нахождения химических элементов в формирующемся ионном растворе.

2. Определить показатели основных физико-химических параметров моделируемой среды (pH, Eh, TDS), обусловливающих условия и возможности миграции химических элементов.

3. Выявить формы нахождения химических элементов в растворе при изменении величины соотношения твердой и жидкой фазы (Т/Ж).

151

4. Установить состав равновесных с ионным раствором возможных минеральных новообразований.

5. Определить потенциальную опасность хвостов обогащения сульфидных руд, основываясь на данных ионного состава миграционного потока, на экосистему реки Рудной.

Следует отметить, несмотря на то, что в термодинамических расчетах используются подлинные аналитические данные химического состава пород, результаты физико-химического моделирования могут быть использованы лишь для приблизительной оценки и вероятного прогнозирования геохимических процессов, протекающих в реальной системе.

При формировании физико-химической модели мы исходили из предположения, что растворы формируются в условиях термодинамического равновесия в открытой системе «вода-порода-газ» при T= +25 °C и P = 1 атм. Большая достоверность результатов равновесно-неравновесного состояния между водой и породой определялась именно тем, что в расчетах констант равновесия учитывались не валовые массы химических компонентов, а реальные концентрации ионов. Вводился природный химический состав водовмещающих пород (таблица 2.1–2.2 приложения 2, проба Кс 27/14), пересчитанный на количество молей каждого компонента.

Список веществ, появление которых можно ожидать в условиях химического равновесия системы, включал 332 компонента водного раствора, 62 компонента твердой фазы и газов (NH₃, CO₂, CO, H₂, H₂S, N₂, NO, NO₂, N₂O, O₂, H₂O, S₂, SO₂). Общее число зависимых (вероятных) компонентов, включенных в модель – 410, число независимых компонентов равно 62 (Si-Ti-Al-Fe-Mn-Mg-Ca-Na-K-P-Ag-As-Au-Be-Cd-Co-Cr-Cu-Hg-Li-Ni-Pb-Zn-Ba-Cs-Ga-Hf-Mo-Nb-Rb-Sc-Sn-Sr-Ta-V-W-Y-Zr-Ce-Dy-Er-Eu-Gd-Ho-La-Nd-Pr-Sm-Tb-Th-Tl-U-Lu-Tm-Yb-S-Cl-C-N-H-O-е).

При формировании физико-химической модели ионных растворов использовались следующие термодинамические базы данных: a_sprons98,DB, a_sprons.DB, a_Shock.DB (для водных компонентов) (Shock et al., 1992); g_sprons98,DB (для газовых компонентов) (Johnson et al., 1992); s dump.DB, s sprons07,DB, s_sprons98,DB, s_Yokokawa.DB (для твердых фаз) (Yokokawa, 1988). Кроме этого, для вторичных минеральных фаз термодинамические данные взяты из литературных источников (Чарыкова, 2009).

При моделировании выбраны следующие соотношения масс Т/Ж: 1 г.п./1 кг H₂O, 12 г.п./1 кг H₂O, 14 г.п./1 кг H₂O, 20 г.п./1 кг H₂O, 30 г.п./1 кг H₂O и 50 г.п./1 кг H₂O.

Достоверность результатов моделирования оценивалась по соответствию pH среды, TDS, мг/кг H₂O и составу новообразующихся минеральных фаз природным параметрам. Результаты физико-химического моделирования форм миграции основных макро- и микрокомпонентов водных растворов представлены в приложении 3 и таблице 5.27.

Анализ результатов таблиц 5.27 и 5.28 показал, что в пресных слабощелочных водах (модель 1.1), имеющих низкие положительные значения окислительновосстановительного потенциала (0,7475 В) и невысокие значения ионной силы раствора – 0,0026, преобладающими формами существования элементов, определяющих макрокомпонентный состав раствора, являются анионные и простые катионные формы. К второстепенным формам относятся карбонатные, гидрокарбонатные, сульфатные и гидроксокомплексы.

В пресных слабощелочных водах характерно преобладание анионов HCO_3^- и SO_4^2 , кроме этого в комплексообразовании участвуют NO_3^- , CO_3^{2-} и OH^- . Простые незакомплексованные катионные формы миграции характерны для Ca^{2+} , Mg^{2+} , Na^+ и K^+ .

По данным таблицы 5.28 видно, что в случае с кальцием и магнием наибольший $CaCO_3^0$, $MgCO_3^0$ комплексообразование вносят карбонатные вклад В И гидрокарбонатные CaHCO₃⁺, MgHCO₃⁺ ионы. В комплексе с гидроксид-ионом происходит миграция натрия и калия NaOH⁰, KOH⁰. Модель ионного раствора показала, что в данных геохимических условиях миграция кальция и калия осуществляется также сульфатных комплексов CaSO₄⁻, KSO₄⁻. Результаты В форме моделирования микрокомпонентов показывают, миграционных форм ЧТО при существующих геохимических условиях среды (pH – 7,93, Eh – 0,7475) доминирующими формами их существования и миграции являются свободные (незакомплексованные) ионы. Простые катионные формы характерны для миграции Ag⁺, Au⁺, Ba⁺², Cd⁺², Ga⁺³, Co⁺², Cs⁺, Li⁺, Mn^{+2} , Ni^{+2} , Rb^+ , Sc^{+3} , Sr^+ , Zn^{+2} , Y^{+3} . Миграция в виде карбонатных комплексов $Ag(CO_3)^{-}$, BaCO₃⁰, SrCO₃⁰. В комплексе с гидроксид-ионом характерна для осуществляется миграция Al(OH)₃⁰, BeOH⁺, CuOH⁺, CoOH⁺, NiOH⁺, PbOH⁺, SnOH⁺, $ZnOH^+$, FeOH⁺².

H	Модель 1.1	Модель 2.1	Модель 3.1	Модель 4.1	Модель 5.1	Модель 6.1
Параметры	(1 г. п.)	(12 г. п.)	(14 г. п.)	(20 г. п.)	(30 г. п.)	(50 г. п.)
		Водный раств	ор, мг/кг Н ₂ О	· · · ·	· · · · ·	/
TDS	180,21	9614,95	10474,88	13316,39	17273,00	25634,22
pH	7,93	2,48	2,47	2,47	2,48	2,46
Eh, B	0,7475	1,0698	1,0703	1,0703	1,0695	1,0715
HCO ₃ -	2,3988e+01	9,0638e-05	8,7723e-05	8,4383e-05	8,1377e-05	6,4886e-05
SO 4 ²⁻	1,5094e+01	5,3242e+03	5,7074e+03	6,9319e+03	8,6149e+03	1,1801e+04
HSO ₄ -	1,4208e-05	8,3168e+02	9,1420e+02	1,1337e+03	1,4405e+03	2,4603e+03
N_2^0	1,4109e+01	1,4524e+01	1,4544e+01	1,4588e+01	1,4684e+01	1,4806e+01
NO ₂ ⁻	8,2312e-04	3,0806e-09	2,9962e-09	2,9322e-09	2,8886e-09	2,4373e-09
NO ₃ -	4,7455e-02	1,8219e-07	1,7782e-07	1,7606e-07	1,7608e-07	1,5431e-07
HNO ₃ ⁰	1,9612e-11	2,0402e-11	2,0531e-11	2,0985e-11	2,1566e-11	2,3168e-11
Ca ⁺²	5,6009e+00	3,0491e+01	4,0493e+01	9,2785e+01	1,0256e+02	1,1137e+02
$Ca(CO_3)^0$	1,1315e-01	7,6590e-13	9,5330e-13	2,0600e-12	2,2565e-12	1,9268e-12
$Ca(HCO_3)^+$	4,9542e-02	4,3070e-07	5,5244e-07	1,2236e-06	1,3459e-06	1,3096e-06
CaSO ₄ ⁰	2,4748e-01	7,9055e+01	1,1148e+02	3,0828e+02	4,3983e+02	7,8633e+02
Mg ⁺²	3,4457e+00	3,2605e+01	4,4458e+01	7,4204e+01	1,4072e+02	2,7228e+02
Mg(HCO ₃) ⁺	4,1357e-02	6,2617e-07	8,2478e-07	1,3312e-06	2,5139e-06	4,3644e-06
$Mg(CO_3)^0$	1,3786e-02	5,5157e-13	7,0900e-13	1,1352e-12	2,1910e-12	3,5154e-12
Na ⁺	6,5476e+00	6,1681e+01	8,4105e+01	2,1057e+02	2,6621e+02	3,9334e+02
NaAlO ₂ ⁰	9,0381e-04	-	-	-	-	8,7467e-14
NaHSiO ₃ ⁰	1,6616e-03	4,0340e-07	7,3330e-07	3,0564e-06	7,5529e-06	2,0294e-05
NaOH ⁰	1,5232e-06	4,2354e-11	5,6830e-11	1,4463e-10	1,9415e-10	2,8604e-10
K ⁺	9,9922e+00	9,1822e+01	1,2412e+02	3,0194e+02	3,6551e+02	4,8907e+02
KOH ⁰	1,6284e+00	3,5632e-05	4,6635e-05	1,0994e-04	1,3118e-04	1,5090e-04
KSO4 ⁻	3,2948e-02	4,5205e+01	6,5379e+01	1,9417e+02	3,0157e+02	6,2184e+02
Ag^+	9,8686e-04	9,8661e-02	9,8655e-02	9,8797e-02	9,8610e-02	9,8870e-02
Ag(CO ₃) ⁻	1,1113e-06	-	-	-	-	-
$Ag(CO3)_{2}^{-3}$	1,0393e-12	-	-	-	-	-
Al ⁺³	1,8572e-09	7,2351e+01	9,8657e+01	1,6467e+02	3,1229e+02	6,0429e+02
$Al(OH)^{+2}$	1,9611e-06	6,3746e-02	8,2805e-02	1,2908e-01	2,3326e-01	3,8302e-01
$Al(OH)_3^0$	3,5713e+00	4,8116e-07	5,9049e-07	8,8936e-07	1,6518e-06	2,3038e-06
AlO ₂ -	1,4099e+01	6,5349e-12	7,7372e-12	1,1117e-11	1,9612e-11	2,1268e-11
Au ⁺	5,8107e-04	5,8050e-02	5,8046e-02	5,8130e-02	5,8020e-02	5,8173e-02
Au ⁺³	-	6,1496e-12	6,6531e-12	7,2873e-12	7,5100e-12	9,5234e-12
Ba ⁺²	2,2619e-02	2,2609e+00	2,2608e+00	2,2640e+00	2,2597e+00	2,2657e+00
$Ba(CO_3)^0$	1,7349e-05	-	-	-	-	-
BaOH ⁺	5,9712e-08	9,0355e-12	8,7231e-12	8,4416e-12	8,3671e-12	7,5218e-12
Be ⁺²	2,1673e-12	1,3648e-04	1,4075e-04	1,4422e-04	1,4250e-04	1,5380e-04
BeOH ⁺	2,9116e-04	2,8693e-02	2,8679e-02	2,8711e-02	2,8661e-02	2,8705e-02
Cd ⁺²	2,8588e-03	2,8560e-01	2,8558e-01	2,8599e-01	2,8545e-01	2,8621e-01
Ga ⁺³	7,3055e-04	7,2983e-02	7,2979e-02	7,3084e-02	7,2946e-02	7,3138e-02
Cu ⁺	2,3603e-13	-	-	-	-	-
Cu ⁺²	2,3751e-03	2,6542e+00	2,6541e+00	2,6579e+00	2,6529e+00	2,6599e+00
CuO^0	2,7661e-02	9,9050e-11	9,1785e-11	8,3911e-11	7,8766e-11	5,6221e-11

Таблица 5.27 – Результаты моделирования ионного состава растворов в системе хвостохранилищ Дальнегорского района

Продолжение таблицы 5.27

CuOH ⁺	2,6572e-03	4,3494e-06	4,1889e-06	4,0250e-06	3,9456e-06	3,4696e-06
Co ⁺²	7,7320e-04	7,7860e-02	7,7855e-02	7,7967e-02	7,7820e-02	7,8025e-02
CoO^0	8,7423e-07	-	-	-	-	-
CoOH ⁺	7,0490e-06	1,0560e-09	1,0170e-09	9,7712e-10	9,5772e-10	8,4194e-10
Cs ⁺	8,1120e-04	8,1040e-02	8,1036e-02	8,1152e-02	8,0999e-02	8,1212e-02
Li^+	2,7255e-03	2,7228e-01	2,7227e-01	2,7266e-01	2,7214e-01	2,7286e-01
Mn ⁺²	8,6525e+00	1,0765e+02	1,1475e+02	1,2633e+02	1,5154e+02	1,6476e+02
MnO ₄ -	1,6990e+00	-	-	-	-	-
MnO ₄ ⁻²	1,0577e-03	-	-	-	-	-
$MnSO_4^0$	5,4009e-01	4,0374e+02	4,5782e+02	6,1151e+02	9,5455e+02	1,7369e+03
MoO4 ⁻²	1,3016e-04	1,3003e-02	1,3002e-02	1,3021e-02	1,2997e-02	1,3031e-02
Ni ⁺²	3,4587e-03	3,4594e-01	3,4592e-01	3,4642e-01	3,4576e-01	3,4667e-01
NiO^0	5,2745e-08	-	-	-	-	-
NiOH ⁺	5,2120e-06	7,5247e-10	7,2378e-10	6,9284e-10	6,7519e-10	5,8682e-10
O_2^0	8,0913e+00	8,4958e+00	8,5528e+00	8,7485e+00	9,0077e+00	9,6979e+00
Pb ⁺²	6,5513e-03	3,1942e+01	3,1940e+01	3,1986e+01	3,1926e+01	3,2010e+01
PbO^0	5,4860e-04	9,4058e-12	8,7767e-12	8,1898e-12	7,9370e-12	6,0372e-12
PbOH ⁺	3,3835e-01	2,1354e-03	2,0375e-03	1,9048e-03	1,7890e-03	1,4447e-03
PO4 ⁻³	1,2755e-03	3,8292e-12	4,9637e-12	8,0368e-12	1,4763e-11	1,7355e-11
HPO ₄ ⁻²	2,3629e+01	6,7323e-03	8,8531e-03	1,4258e-02	2,6017e-02	3,6996e-02
$H_3PO_4^0$	6,1167e-06	8,0991e+01	1,1289e+02	1,9304e+02	3,7433e+02	8,3233e+02
$H_2PO_4^-$	3,7466e+00	1,8003e+02	2,4305e+02	4,0110e+02	7,5250e+02	1,3491e+03
\mathbf{Rb}^+	6,2599e-03	6,2538e-01	6,2534e-01	6,2625e-01	6,2506e-01	6,2671e-01
Sc ⁺³	5,4878e-04	5,4825e-02	5,4822e-02	5,4901e-02	5,4797e-02	5,4941e-02
SiO ₂ ⁰	8,4682e+00	8,0602e+01	1,0990e+02	1,8344e+02	3,4788e+02	6,7310e+02
HsiO ₃ -	1,1267e-01	4,0626e-06	5,3827e-06	8,7519e-06	1,6295e-05	2,6178e-05
Sn ⁺²	1,6811e-11	7,4204e-01	7,4305e-01	7,4514e-01	7,4401e-01	7,4901e-01
SnO^0	8,7698e-03	1,4027e-03	1,3139e-03	1,2363e-03	1,2118e-03	9,4586e-04
SnOH ⁺	4,9809e-07	3,2960e-02	3,1845e-02	3,0800e-02	3,0448e-02	2,7320e-02
Sr ⁺²	3,5711e-03	3,5707e-01	3,5705e-01	3,5757e-01	3,5689e-01	3,5783e-01
SrCO ₃ ⁰	5,3275e-06	-	-	-	-	-
VO_{2}^{+}	6,2061e-12	7,2847e-01	7,2866e-01	7,2980e-01	7,2832e-01	7,3116e-01
VO ⁺²	-	1,1167e-06	1,1569e-06	1,1982e-06	1,2046e-06	1,3445e-06
$H_2VO_4^-$	5,4924e-03	6,8373e-03	6,5139e-03	6,3871e-03	6,5279e-03	5,2362e-03
WO4 ⁻²	3,7819e-04	3,7782e-02	3,7780e-02	3,7834e-02	3,7763e-02	3,7862e-02
Zn ⁺²	3,9596e-01	8,2270e+01	8,2265e+01	8,2384e+01	8,2228e+01	8,2444e+01
ZnO ⁰	3,4914e-03	2,8760e-12	2,7081e-12	2,5952e-12	2,6218e-12	2,1664e-12
ZnO_2^{-2}	1,0206e-09	_	_	_	_	-
ZnOH ⁺	5,3521e-01	1,7913e-04	1,7376e-04	1,7053e-04	1,7276e-04	1,6222e-04
AsO ₄ -3	4,8748e-05	5,9124e-12	5,6894e-12	5,6279e-12	5,5583e-12	3,7317e-12
H ₂ AsO ₄	9,5518e-03	1,7988e+01	1,7987e+01	1,8013e+01	1,7979e+01	1,8026e+01
HasO ₄ ⁻²	1,6925e-01	-	-	-	-	1,4040e-03
Cr ⁺³	-	1,2327e-02	1,3792e-02	1,4816e-02	1,4272e-02	2,0315e-02
$Cr_2O_7^{-2}$	3,5526e-11	5,7460e-01	5,7164e-01	5,7053e-01	5,7069e-01	5,6041e-01
CrO ⁺	-	2,0546e-08	2,1083e-08	2,0273e-08	1,8244e-08	1,9259e-08
CrO ₄ ⁻²	6,4898e-03	3,5358e-03	3,4062e-03	3,2477e-03	3,0704e-03	2,3108e-03
CrOH ⁺²	-	8,4562e-05	9,0002e-05	8,9918e-05	8,2013e-05	9,7800e-05
Fe ⁺³	1,6855e-09	1,3861e+03	1,4442e+03	1,5731e+03	1,8192e+03	2,3633e+03
Fe ⁺²	2,8544e-09	2,0000e-03	1,9867e-03	2,0245e-03	2,2404e-03	2,4810e-03

Продолжение таблицы 5.27

FeO ⁺	2,3651e+01	2,4058e+01	2,3020e+01	2,2534e+01		2,3891e+01
FeO ₂ ⁻	2,3582e+01	2,3842e-10	2,1622e-10	2,0421e-10	2,2220e-10	1,6547e-10
FeOH ⁺	1,3416e-10	1,3671e-10	1,3073e-10	1,2762e-10	1,3836e-10	1,3373e-10
FeOH ⁺²	9,1276e-04	6,3953e+02	6,3576e+02	6,4973e+02	7,2120e+02	8,0661e+02
Hg^{+2}	-	1,9219e-03	1,9264e-03	1,9334e-03	1,9307e-03	1,9489e-03
HgO ⁰	2,2033e-05	3,1125e-05	2,9216e-05	2,7614e-05	2,7224e-05	2,1595e-05
HgOH ⁺	1,5628e-10	9,5277e-05	9,2178e-05	8,9351e-05	8,8550e-05	8,0197e-05
UO2 ⁺²	1,0515e-04	1,0977e-02	1,0976e-02	1,0992e-02	1,0971e-02	1,1000e-02
UO4 ⁻²	5,2877e-06	-	-	-	-	-
Zr ⁺⁴	-	3,6682e-03	3,9714e-03	4,5349e-03	5,0891e-03	6,7896e-03
ZrO ⁺²	5,5477e-11	1,0932e-01	1,0522e-01	9,9178e-02	9,3846e-02	7,9931e-02
ZrO_2^0	3,4914e-03	3,5399e-05	3,2344e-05	2,9878e-05	2,9700e-05	2,2450e-05
$Zr(OH)^{+3}$	-	2,4384e-01	2,4760e-01	2,5355e-01	2,5760e-01	2,7058e-01
Y ⁺³	6,3309e-04	6,3247e-02	6,3243e-02	6,3334e-02	6,3214e-02	6,3381e-02
La ⁺³	1,1701e-04	2,2730e-02	2,1992e-02	1,9666e-02	1,6577e-02	1,1487e-02
LaCO ₃ ⁺	2,1693e-03	4,3743e-13	3,8290e-13	2,9416e-13	2,1761e-13	-
LaH ₂ PO ₄ ⁺²	1,8812e-06	3,8526e-03	4,9313e-03	6,9680e-03	1,0672e-02	1,3494e-02
LaHCO ₃ ⁺²	4,6416e-06	7,9154e-10	7,2948e-10	6,0853e-10	4,8873e-10	2,8595e-10
LaO ⁺	4,2881e-07	-	_	_	_	-
LaO_2H^0	7,2067e-09	-	_	_	_	-
LaOH ⁺²	1,9941e-05	3,3674e-09	3,1128e-09	2,6220e-09	2,1345e-09	1,2891e-09
LaSO ₄ ⁺	6,9786e-05	2,4426e-01	2,4442e-01	2,4674e-01	2,4773e-01	2,5429e-01
Ce ⁺³	1,3659e-04	3,2817e-01	3,2007e-01	3,0276e-01	2,6895e-01	2,2417e-01
CeCO ₃ ⁺	4,8016e-03	1,2134e-11	1,0709e-11	8,7069e-12	6,7934e-12	3,6966e-12
$CeH_2PO_4^{+2}$	1,8519e-06	4,7063e-02	6,0748e-02	9,0900e-02	1,4698e-01	2,2433e-01
CeHCO ₃ ⁺²	4,5731e-06	9,6745e-09	8,9906e-09	7,9417e-09	6,7328e-09	4,7539e-09
CeO ⁺	2,8787e-05	-	-	-	-	-
CeO_2H^0	4,8330e-07	-	-	-	-	-
CeOH ⁺²	3,8651e-05	8,0887e-08	7,5389e-08	6,7225e-08	5,7746e-08	4,2051e-08
$CeSO_4^+$	3,8002e-12	1,6461e-07	1,6605e-07	1,7737e-07	1,8778e-07	2,3210e-07
Pr ⁺³	2,1083e-10	1,6079e-02	1,6525e-02	1,7176e-02	1,7666e-02	1,9208e-02
PrCO ₃ ⁺	1,0440e-08	8,4975e-13	7,9013e-13	7,0571e-13	6,3736e-13	4,5215e-13
PrHCO ₃ ⁺²	7,0466e-12	4,4084e-10	4,2939e-10	4,1028e-10	3,9305e-10	3,4488e-10
PrNO ₃ ⁺²	5,1603e-04	2,8399e-02	2,7754e-02	2,6890e-02	2,6088e-02	2,4003e-02
PrO ⁺	5,8631e-12	-	-	-	-	-
PrOH ⁺²	8,3609e-11	5,5452e-09	5,4452e-09	5,3335e-09	5,3025e-09	5,0325e-09
$PrSO_4^+$	-	8,0640e-09	8,5726e-09	1,0065e-08	1,2346e-08	1,9933e-08
Nd ⁺³	5,8705e-10	1,4396e-02	1,4179e-02	1,3127e-02	1,1530e-02	8,4768e-03
NdCO ₃ ⁺	4,0446e-08	1,0592e-12	9,4393e-13	7,5113e-13	5,7938e-13	2,7800e-13
NdHCO ₃ ⁺²	1,6467e-11	3,5509e-10	3,3321e-10	2,8805e-10	2,4138e-10	1,5025e-10
NdNO ₃ ⁺²	1,8672e-03	3,4558e-02	3,2369e-02	2,7944e-02	2,3166e-02	1,4428e-02
NdO ⁺	2,7015e-11	-	_	-	_	-
NdOH ⁺²	3,2541e-10	6,9456e-09	6,5369e-09	5,7049e-09	4,8446e-09	3,1109e-09
NdSO ₄ ⁺	3,4536e-10	1,5310e-01	1,5600e-01	1,6322e-01	1,7104e-01	1,8688e-01
Sm ⁺³	3,3368e-06	3,5165e-03	3,4137e-03	3,0707e-03	2,6186e-03	1,8259e-03
SmCO ₃ ⁺	3,5339e-04	3,5801e-13	3,1445e-13	2,4305e-13	-	-
SmHCO ₃ ⁺²	7,8050e-08	7,2238e-11	6,6804e-11	5,6081e-11	4,5596e-11	2,6881e-11
SmO ⁺	5,8989e-07	-	-	-	-	-

Продолжение таблицы 5.27

SmO ₂ -	1,4339e-09	-	-	-	_	-
SmO_2H^0	1,9353e-08	_	_	_	_	-
SmOH ⁺²	2,5813e-06	2,3639e-09	2,1926e-09	1,8584e-09	1,5314e-09	9,3162e-10
$SmSO_4^+$	1,9315e-06	3,6810e-02	3,6976e-02	3,7600e-02	3,8260e-02	3,9671e-02
Eu ⁺³	6,1618e-07	8,3592e-04	8,1117e-04	7,2915e-04	6,2154e-04	4,3301e-04
EuCO ₃ ⁺	8,4171e-05	_	_	-	_	-
EuHCO ₃ ⁺²	1,0186e-08	1,2167e-11	1,1244e-11	9,4238e-12	7,6477e-12	4,4928e-12
EuO ⁺	1,5149e-07	-	-	-	-	-
EuO ₂ -	8,5651e-10	-	-	-	-	-
EuO_2H^0	1,1561e-08	-	-	-	-	-
EuOH ⁺²	5,6262e-07	6,6243e-10	6,1405e-10	5,1972e-10	4,2759e-10	2,5934e-10
$EuSO_4^+$	3,5298e-07	8,7182e-03	8,7580e-03	8,9064e-03	9,0630e-03	9,3972e-03
Gd ⁺³	2,6236e-06	2,0775e-02	2,0774e-02	2,0804e-02	2,0764e-02	2,0819e-02
GdCO ₃ ⁺	2,7976e-04	2,0920e-12	1,8925e-12	1,6285e-12	1,4278e-12	9,3451e-13
GdHCO ₃ ⁺²	5,1246e-08	3,5707e-10	3,4015e-10	3,1800e-10	3,0295e-10	2,5729e-10
GdO^+	6,4822e-07	-	-	-	-	-
GdO_2^-	4,3236e-09	-	-	-	-	-
GdO_2H^0	6,9017e-08	-	-	-	-	-
GdOH ⁺²	2,3937e-06	1,6499e-08	1,5763e-08	1,4877e-08	1,4360e-08	1,2578e-08
$GdSO_4^+$	-	9,9951e-09	1,0338e-08	1,1695e-08	1,3929e-08	2,0752e-08
Tb ⁺³	3,3017e-07	4,3836e-04	4,2545e-04	3,8266e-04	3,2648e-04	2,2796e-04
TbCO ₃ ⁺	4,3349e-05	-	-	-	-	-
TbHCO ₃ ⁺²	5,9171e-09	6,9390e-12	6,3796e-12	5,2659e-12	4,1723e-12	2,3386e-12
TbO ⁺	1,0877e-07	-	_	-	_	-
TbO ₂ -	8,2635e-10	-	_	-	_	-
TbOH ⁺²	3,5573e-07	4,0893e-10	3,7911e-10	3,2099e-10	2,6419e-10	1,6047e-10
TbSO ₄ ⁺	1,7888e-07	4,4794e-03	4,4998e-03	4,5759e-03	4,6563e-03	4,8280e-03
Dy+3	1,3214e-06	2,0132e-03	1,9541e-03	1,7576e-03	1,4991e-03	1,0455e-03
DyCO ₃ ⁺	1,9867e-04	2,8003e-13	2,4585e-13	_	_	-
DyHCO ₃ ⁺²	2,5637e-08	3,3937e-11	3,1364e-11	2,6284e-11	2,1322e-11	1,2512e-11
DyO ⁺	5,4111e-07	-	-	-	-	-
DyO ₂ -	1,9484e-08	-	-	-	-	-
DyO ₂ H ⁰	9,5450e-08	-	-	-	-	-
DyOH ⁺²	1,4234e-06	1,8712e-09	1,7346e-09	1,4681e-09	1,2075e-09	7,3177e-10
DySO ₄ ⁺	7,4540e-07	2,0446e-02	2,0539e-02	2,0885e-02	2,1252e-02	2,2036e-02
Ho ⁺³	2,8658e-07	5,2481e-04	5,0966e-04	4,5932e-04	3,9268e-04	2,7544e-04
HoCO ₃ ⁺	4,4604e-05	-	-	-	-	-
HoHCO ₃ ⁺²	4,5225e-09	8,8194e-12	8,1574e-12	6,8529e-12	5,5712e-12	3,2912e-12
HoO ⁺	1,3161e-07	-	-	-	-	-
HoO ₂ -	3,4063e-09	-	-	-	-	-
HoOH ⁺²	3,6549e-07	5,7719e-10	5,3552e-10	4,5434e-10	3,7451e-10	2,2849e-10
$HoSO_4^+$	1,2383e-07	4,4743e-03	4,4980e-03	4,5853e-03	4,6807e-03	4,8802e-03
Er ⁺³	5,3428e-07	1,3306e-03	1,2923e-03	1,1650e-03	9,9691e-04	6,9932e-04
ErCO ₃ ⁺	1,1321e-04	2,5669e-13	-	-	-	-
ErHCO ₃ ⁺²	1,2302e-08	2,6212e-11	2,4230e-11	2,0329e-11	1,6514e-11	9,7126e-12
ErO ⁺	3,0745e-07	-	-	-	-	-
ErOH ⁺²	6,7914e-07	1,4567e-09	1,3509e-09	1,1454e-09	9,4432e-10	5,7468e-10
$ErSO_4^+$	2,5413e-07	1,1286e-02	1,1345e-02	1,1565e-02	1,1804e-02	1,2308e-02

				п	пололжение	таблины 5.2
T +3	0.0000 11	1 1070 00	1.0164 00	10455 00		1 2201 02
Tm ⁺³	2,8883e-11	1,19/2e-03	1,2164e-03	1,2455e-03	1,2665e-03	1,3291e-03
$TmCO_3^+$	6,1490e-09	2,7281e-13	2,5094e-13	-	-	-
TmHCO ₃ ⁺²	6,5541e-13	2,3519e-11	2,2768e-11	2,1691e-11	2,0829e-11	1,8305e-11
TmNO ₃ ⁺²	2,3486e-05	7,1033e-04	6,8401e-04	6,4759e-04	6,1448e-04	5,3505e-04
TmOH ⁺²	4,3446e-11	1,5481e-09	1,5036e-09	1,4471e-09	1,4098e-09	1,2809e-09
Yb ⁺³	1,4373e-10	1,2905e-03	1,2598e-03	1,1472e-03	9,9198e-04	7,0855e-04
YbCO ₃ ⁺	3,6482e-08	3,4628e-13	3,0570e-13	2,3891e-13	-	-
YbHCO ₃ ⁺²	3,7899e-12	2,9488e-11	2,7400e-11	2,3232e-11	1,9084e-11	1,1444e-11
YbNO ₃ ⁺²	1,1951e-04	7,6232e-04	7,0631e-04	5,9629e-04	4,8231e-04	2,8674e-04
YbO ⁺	1,3625e-10	-	-	-	-	-
YbOH ⁺²	2,5572e-10	1,9748e-09	1,8408e-09	1,5767e-09	1,3138e-09	8,1430e-10
$YbSO_4^+$	6,7047e-11	1,0794e-02	1,0905e-02	1,1226e-02	1,1572e-02	1,2273e-02
Lu^{+3}	3,2010e-08	1,6684e-04	1,6262e-04	1,4690e-04	1,2466e-04	8,6649e-05
LuCO ₃ ⁺	1,4022e-05	-	-	-	-	-
LuHCO ₃ ⁺²	1,4416e-09	4,5031e-12	4,1858e-12	3,5100e-12	2,8163e-12	1,6198e-12
LuO^+	6,2179e-08	-	-	-	-	-
LuO ₂ -	2,8153e-08	-	-	-	-	-
LuO_2H^0	2,9929e-08	-	-	-	-	-
LuOH ⁺²	9,4462e-08	2,5240e-10	2,3540e-10	1,9951e-10	1,6252e-10	9,6765e-11
$LuSO_4^+$	1,9850e-08	1,3942e-03	1,4006e-03	1,4274e-03	1,4587e-03	1,5219e-03

Для ряда элементов высока доля миграции в виде: AlO_2^- , CuO^0 , MnO_4^- , MoO_4^2 , H₂VO₄⁻, WO₄⁻², SiO₂⁰, HsiO₃⁻, SnO⁰, HasO₄⁻², CrO₄⁻², FeO⁺, FeO₂⁻, UO₂⁺², ZrO₂⁰, HgO⁰. Для редкоземельных элементов основными формами миграции являются карбонатные комплексы: LaCO₃⁺, CeCO₃⁺, SmCO₃⁺, EuCO₃⁺, GdCO₃⁺, TbCO₃⁺, DyCO₃⁺, HoCO₃⁺, $ErCO_3^+$, $LuCO_3^+$.

1,0385e-02

1,4559e-08

5,0388e-08

5,3225e+00

1,0000e+00

1,0400e-02

1,6035e-08

4,7538e-08

5,4864e+00

1,0000e+00

1,0380e-02

1,6671e-08

4,4408e-08

5,5594e+00

1,0000e+00

1,0407e-02

2,1511e-08

3,3390e-08

6,4496e+00

1,0000e+00

Таблица 5.28 – Результаты расчета основных форм миграции химических элементов в водном растворе (модель 1.1), в % от валового содержания

Параметры	% от валового содержания элемента	% от суммы элемента	Параметры	% от валового содержания элемента	% от суммы элемента
HCO ₃ -	13,31114	99,99	Cs ⁺	0,000	99,999
SO 4 ²⁻	8,37578	99,99	Li ⁺	0,002	99,999
HSO ₄ ⁻	0,00001	0,000	Mn ⁺²	4,775	79,434
N_2^0	7,82920	99,659	MnO ₄ ⁻	0,938	15,598
NO ₂ -	0,00046	0,006	MnO ₄ ⁻²	0,001	0,010
NO ₃ -	0,02633	0,335	MnSO ₄ ⁰	0,298	4,958
HNO ₃ ⁰	0,00000	0,000	MoO4 ⁻²	0,000	99,999
Ca ⁺²	3,10799	93,193	Ni ⁺²	0,002	99,848

 Tl^+

 Tl^{+3}

OH-

H₂O

 \mathbf{H}^+

1,0396e-04

1,5966e-02

1,2306e-05

1,0000e+00

1,0385e-02

1,3433e-08

5,2420e-08

5,1548e+00

1,0000e+00

				Продолжени	ие таблицы 5.28
$Ca(CO_3)^0$	0,06279	1,883	NiO ⁰	0,000	0,002
$Ca(HCO_3)^+$	0,02749	0,824	NiOH ⁺	0,000	0,150
CaSO ₄ ⁰	0,13733	4,118	O_2^0	4,465	
Mg ⁺²	1,91205	98,449	Pb ⁺²	0,004	1,896
Mg(HCO ₃) ⁺	0,02295	1,182	PbO ⁰	0,000	0,159
$Mg(CO_3)^0$	0,00765	0,394	PbOH ⁺	0,187	97,945
Na ⁺	3,63332	99,963	PO ₄ -3	0,001	0,005
NaAlO ₂ ⁰	0,00050	0,014	HPO ₄ ⁻²	13,040	86,310
NaHSiO ₃ ⁰	0,00092	0,025	$H_3PO_4^0$	0,000	0,000
NaOH ⁰	0,00000	0,000	$H_2PO_4^-$	2,068	13,685
K ⁺	5,54475	85,403	Rb ⁺	0,003	99,999
KOH ⁰	0,90361	13,918	Sc ⁺³	0,000	99,999
KSO4 ⁻	0,01828	0,282	SiO ₂ ⁰	4,673	98,687
Ag ⁺	0,00055	99,885	HsiO ₃ -	0,062	1,313
Ag(CO ₃) ⁻	0,00000	0,112	Sn ⁺²	0,000	0,000
$Ag(CO3)_2^{-3}$	0,00000	0,000	SnO ⁰	0,005	99,994
Al ⁺³	0,00000	0,000	SnOH ⁺	0,000	0,006
Al(OH) ⁺²	0,00000	0,000	Sr ⁺²	0,002	99,851
Al(OH) ₃ ⁰	1,98174	20,177	SrCO ₃ ⁰	0,000	0,149
AlO ₂ -	7,82365	79,655	VO_2^+	0,000	0,000
Au ⁺	0,00032	99,999	VO ⁺²	-	-
Au ⁺³	-	_	$H_2VO_4^-$	0,003	99,999
Ba ⁺²	0,01255	99,999	WO4 ⁻²	0,000	99,999
$Ba(CO_3)^0$	0,00001	0,077	Zn ⁺²	0,219	42,364
BaOH ⁺	0,00000	0,000	ZnO ⁰	0,002	0,374
Be ⁺²	0,00000	0,000	ZnO ₂ ⁻²	0,000	0,000
BeOH ⁺	0,00016	99,999	ZnOH ⁺	0,295	57,262
Cd ⁺²	0,00159	99,999	AsO4 ⁻³	0,000	0,027
Ga ⁺³	0,00041	99,999	H ₂ AsO ₄ ⁻	0,005	5,341
Cu ⁺	0,00000	0,000	HasO ₄ ⁻²	0,093	94,632
Cu ⁺²	0,00132	7,265	Cr ⁺³	-	-
CuO^0	0,01535	84,608	$Cr_2O_7^{-2}$	0,000	0,000
CuOH ⁺	0,00147	8,128	CrO ⁺	-	-
C0 ⁺²	0,000	98,986	CrO ₄ ⁻²	0,004	99,999
CoO^0	0,000	0,112	CrOH ⁺²	-	-
CoOH ⁺	0,000	0,902	Fe ⁺³	0,000	0,000
Fe ⁺²	0,000	0,000	SmO_2^-	0,00000	0,000
FeO ⁺	13,12413	50,108	SmO_2H^0	0,00000	0,005
FeO ₂ -	13,08584	49,962	SmOH ⁺²	0,00000	0,713
FeOH ⁺	0,00000	0,000	$SmSO_4^+$	0,00000	0,534
FeOH ⁺²	0,00051	0,002	Eu ⁺³	0,00000	0,718
Hg ⁺²	-	-	EuCO ₃ ⁺	0,00005	98,014
HgO ⁰	0,00001	99,999	EuHCO ₃ ⁺²	0,00000	0,012
HgOH ⁺	0,00000	0,001	EuO ⁺	0,00000	0,176
UO2 ⁺²	0,00006	95,212	EuO2 ⁻	0,00000	0,001
UO4 ⁻²	0,00000	4,788	EuO ₂ H ⁰	0,00000	0,013
Zr ⁺⁴	-	-	EuOH ⁺²	0,00000	0,655
ZrO ⁺²	0,00000	0,000	EuSO ₄ ⁺	0,00000	0,411
ZrO_2^0	0,00194	99,999	\mathbf{Gd}^{+3}	0,00000	0,919

				Продолжен	ние таблицы 5.28
$Zr(OH)^{+3}$	_	-	GdCO ₃ ⁺	0,00016	97,972
Y ⁺³	0,00035	99,99	GdHCO ₃ ⁺²	0,00000	0,018
La ⁺³	0,00006	4,910	GdO^+	0,00000	0,227
LaCO ₃ ⁺	0,00120	91,032	GdO2 ⁻	0,00000	0,002
$LaH_2PO_4^{+2}$	0,00000	0,079	GdO ₂ H ⁰	0,00000	0,024
LaHCO ₃ ⁺²	0,00000	0,195	GdOH ⁺²	0,00000	0,838
LaO ⁺	0,00000	0,018	$GdSO_4^+$	-	-
LaO_2H^0	0,00000	0,000	Tb ⁺³	0,00000	0,745
LaOH ⁺²	0,00001	0,837	TbCO ₃ ⁺	0,00002	97,789
$LaSO_4^+$	0,00004	-	TbHCO ₃ ⁺²	0,00000	0,013
Ce ⁺³	0,00008	2,725	TbO ⁺	0,00000	0,245
CeCO ₃ ⁺	0,00266	95,792	TbO ₂ -	0,00000	0,002
$CeH_2PO_4^{+2}$	0,00000	0,037	TbOH ⁺²	0,00000	0,802
CeHCO ₃ ⁺²	0,00000	0,091	TbSO_4^+	0,00000	0,404
CeO ⁺	0,00002	0,574	Dy ⁺³	0,00000	0,651
CeO_2H^0	0,00000	0,010	DyCO ₃ ⁺	0,00011	97,943
CeOH ⁺²	0,00002	0,771	DyHCO ₃ ⁺²	0,00000	0,013
$CeSO_4^+$	0,00000	0,000	DyO ⁺	0,00000	0,267
Pr ⁺³	0,00000	0,000	DyO ₂ -	0,00000	0,010
PrCO ₃ ⁺	0,00000	0,002	DyO_2H^0	0,00000	0,047
PrHCO ₃ ⁺²	0,00000	0,000	DyOH ⁺²	0,00000	0,702
PrNO ₃ ⁺²	0,00029	99,998	$DySO_4^+$	0,00000	0,367
PrO ⁺	0,00000	0,000	Ho ⁺³	0,00000	0,630
PrOH ⁺²	0,00000	0,000	HoCO ₃ ⁺	0,00002	97,989
PrSO ₄ ⁺	-	-	HoHCO ₃ ⁺²	0,00000	0,010
Nd ⁺³	0,00000	0,000	HoO ⁺	0,00000	0,289
NdCO ₃ ⁺	0,00000	0,002	HoO2 ⁻	0,00000	0,007
NdHCO ₃ ⁺²	0,00000	0,000	HoOH ⁺²	0,00000	0,803
NdNO ₃ ⁺²	0,00104	99,998	HoSO ₄ ⁺	0,00000	0,272
NdO ⁺	0,00000	0,000	Er ⁺³	0,00000	0,465
NdOH ⁺²	0,00000	0,000	ErCO ₃ ⁺	0,00006	98,446
NdSO ₄ ⁺	0,00000	0,000	ErHCO ₃ ⁺²	0,00000	0,011
Sm ⁺³	0,00000	0,922	ErO ⁺	0,00000	0,267
SmCO ₃ ⁺	0,00020	97,641	ErOH ⁺²	0,00000	0,591
SmHCO ₃ ⁺²	0,00000	0,022	ErSO ₄ ⁺	0,00000	0,221
SmO ⁺	0,00000	0,163	Tm ⁺³	0,00000	0,000
TmCO ₃ ⁺	0,00000	0,026	YbSO ₄ ⁺	0,00000	0,000
TmHCO ₃ ⁺²	0,00000	0,000	Lu ⁺³	0,00000	0,224
$TmNO_3^{+2}$	0,00001	99,974	LuCO ₃ ⁺	0,00001	98,124
TmOH ⁺²	0,00000	0,000	LuHCO ₃ ⁺²	0,00000	0,010
Yb ⁺³	0,00000	0,000	LuO ⁺	0,00000	0,435
YbCO ₃ ⁺	0,00000	0,031	LuO ₂ -	0,00000	0,197
YbHCO ₃ ⁺²	0,00000	0,000	LuO ₂ H ⁰	0,00000	0,209
YbNO ₃ ⁺²	0,00007	99,969	LuOH ⁺²	0,00000	0,661
YbO ⁺	0,00000	0,000	LuSO ₄ ⁺	0,00000	0,139
YbOH ⁺²	0,00000	0,000	Tl+	0,00006	99,999

Преимущественно в нитратной форме мигрируют: $PrNO_3^{+2}$, $NdNO_3^{+2}$, $TmNO_3^{+2}$, $YbNO_3^{+2}$. Результаты моделирования ионного раствора (см. приложение 3) показали, что в данных геохимических условиях набор равновесных с раствором минералов, представлен: FeOOH (гетит) – 54,67 %; Al(OH)₃ (гидраргиллит) – 23,71 %; Al_{0,1384}Al_{1,29}Fe_{0,335}Mg_{0,445}(Al_{0,18}Si_{3,82}O₁₀)(OH)₂ (монтмориллонит) – 18,87; ZnSO₄·6H₂O (бианкит) – 2,68 %; Cu₄Al₂[SO₄](OH)₁₂·4H₂O (вудвардит) – 0,05 %; PbCO₃ (церуссит) – 0,0 % и указывают на соответствие составам минеральных ассоциаций, характерных для системы хвостохранилица.

Таким образом, результаты моделирования ионного состава слабощелочных вод свидетельствуют о том, что основными формами миграции макрокомпонентов являются свободные (незакомплексованные) ионы и комплексы-ассоциаты с участием анионов HCO_3^- , CO_3^{2-} , OH^- редко SO_4^{2-} . Доминирующими формами миграции микрокомпонентов являются незакомплексованные катионные формы, а для ряда элементов карбонатные, оксидные, нитратные и в виде гидроксокомлексов.

Физико-химическая модель ионного раствора прудковой зоны хвостохранилища (модель 2.1) показывает, что при взаимодействии 12 г породы и 1 кг H₂O, приведенной в равновесие с атмосферой формируются сильнокислые (pH – 2,48), сильносолоноватые (TDS – 9614,95 мг/кг H₂O) воды, с величиной Eh – 1,0698 вольт. При заданных геохимических условиях среды увеличивается миграция химических элементов в виде простых катионных форм, роль HCO₃⁻ и CO₃²-ионов в комплексообразовании заметно снижается, возрастает роль SO₄²⁻иона и как следствие в растворе преобладают комплексы-ассоциаты с его участием (таблица 5.29). Простые катионные формы миграции характерны как для элементов, относящихся к группе главных ионов химического состава – Ca²⁺, Mg²⁺, Na⁺ и K⁺, так и для элементов, формирующих микрокомпонентный состав водного раствора. По данным таблицы 5.29 видно, что значительная металлов представлена свободными часть ионами, степень незакомплексованности которых, достигает 67,62 – 99,99 % валового содержания растворенных форм данных элементов.

В отличие от слабощелочного раствора, в водах с низкими значениями pH, доминирующими формами, кроме уже названных Ag^+ , Au^+ , Ba^{+2} , Cd^{+2} , Ga^{+3} , Co^{+2} , Cs^+ , Li^+ , Ni^{+2} , Rb^+ , Sc^{+3} , Sr^+ , Y^{+3} , являются свободные незакомплексованные ионы Al^{+3} , Cu^{+2} , Pb^{+2} , Sn^{+2} , Zn^{+2} , Fe^{+3} , Hg^{+2} , Ce^{+3} и Gd⁺³. Миграция в виде гидроксокомплексов характерна для Al(OH)⁺², BeOH⁺, PbOH⁺, SnOH⁺, CrOH⁺², FeOH⁺², HgOH⁺ и Zr(OH)⁺³. Значительные концентрации в растворе SO_4^{2-} иона предопределили существенную долю миграции металлов в виде сульфатных комплексов. Из главных металлов, формирующих химический состав воды, это CaSO₄⁰ и KSO₄⁻, микроэлементы, образующие комплексы с SO_4^{2-} ионом представлены MnSO₄⁰, LaSO₄⁺, NdSO₄⁺, SmSO₄⁰, TbSO₄⁺, DySO₄⁺, ErSO₄⁺, YbSO₄⁺, LuSO₄⁺. Основными миграционными формами ванадия, мышьяка, хрома и циркония, в заданных геохимических условиях среды, являются VO₂⁺, H₂AsO₄⁻, Cr₂O₇⁻², ZrO⁺². В нитратной форме осуществляется миграция PrNO₃⁺², TmNO₃⁺², YbNO₃⁺².

При увеличении объемных соотношений «вода-порода» до 12 г / 1 кг H₂O, формируются сильнокислые растворы (pH 2,48), в которых устанавливается равновесие с вторичными минеральными фазами, представленными: CaSO₄·2H₂O (гипс) – 70,08 %; Fe[SO₄](OH)·5H₂O (фиброферрит) – 14,06 %; Al₂[SO₄]₃·18H₂O (алуноген) – 13,61 %; Al_{0,1384}Al_{1,29}Fe_{0,335}Mg_{0,445}(Al_{0,18}Si_{3,82}O₁₀)(OH)₂ (монтмориллонит) – 2,19 %; ZnSO₄·6H₂O (бианкит) – 0,07 %.

Таким образом, основными формами миграции В сильнокислом свободные высокоминерализованном растворе являются незакомплексованные катионные формы, а в комплексообразовании значительная доля приходится на SO4²ион. При изменении объемных соотношений вода-порода, что по данным С.Р. Крайнова и др. (Крайнов и др., 1987; 2004), И.А. Тарасенко (Тарасенко, 2014) «...приобретает смысл времени взаимодействия (условно, времени водообмена) породы и водного раствора», были смоделированы системы, в которых последовательно увеличивалась масса породы на 1 кг H₂O. В созданных моделях использовались следующие объемные соотношения вода-порода: 14 г/кг H₂O (модель 3.1); 20 г/кг H₂O (модель 4.1); 30 г/кг H₂O (модель 5.1); 50 г/кг H₂O (модель 6.1).

Анализ результатов моделирования показал, что вследствие увеличения объемной массы породы формируются сильнокислые (pH 2,46 – 2,48) растворы, минерализация которых изменяется от 10474,88 до 25634,22 мг/кг H₂O, а величина Eh = 1,0695 – 1,0715 вольт. В данных растворах основной формой миграции химических элементов являются простые катионные формы. Видно, что содержание главных ионов, с увеличением массы породы, закономерно увеличивается (мг/кг H₂O): SO_4^2 -ион (1,5094e+01–1,1801e+04), Mg²⁺ (3,4457e+00–2,7228e+02), Na⁺ (6,5476e+00–3,9334e+02), K⁺ (9,9922e+00–4,8907e+02).

Таблица 5.29 – Результаты расчета основных форм миграции химических элементов (модель 2.1), в % от валового содержания

	% от			% от	
Попомотри	валового	% от суммы	Пополотти	валового	% от суммы
Параметры	содержания	элемента	параметры	содержания	элемента
	элемента			элемента	
HCO ₃ ⁻	0,00000	-	Cs ⁺	0,00084	99,999
SO4 ²⁻	55,37418	86,490	Li ⁺	0,00283	99,999
HSO ₄ ⁻	8,64986	13,510	Mn ⁺²	1,11961	21,050
N_2^0	0,15106	99,999	MnO ₄ -	-	-
NO_2^-	0,00000	0,000	MnO ₄ ⁻²	-	-
NO ₃ -	0,00000	0,000	$MnSO_4^0$	4,19909	78,950
HNO_3^0	0,00000	0,000	MoO4 ⁻²	0,00014	99,999
Ca ⁺²	0,31712	27,834	Ni ⁺²	0,00360	99,999
$Ca(CO_3)^0$	0,00000	0,000	NiO ⁰	-	-
$Ca(HCO_3)^+$	0,00000	0,000	NiOH ⁺	0,00000	0,000
$CaSO_4^0$	0,82221	72,166	O_2^0	0,08836	99,999
Mg^{+2}	0,33911	99,999	Pb ⁺²	0,33221	99,993
Mg(HCO ₃) ⁺	0,00000	0,000	PbO ⁰	0,00000	0,000
$Mg(CO_3)^0$	0,00000	0,000	PbOH ⁺	0,00002	0,007
Na ⁺	0,64151	99,999	PO4 ⁻³	0,00000	0,000
NaAlO ₂ ⁰	-	-	HPO ₄ ⁻²	0,00007	0,003
NaHSiO ₃ ⁰	0,00000	0,000	$H_3PO_4^0$	0,84234	31,028
NaOH ⁰	0,00000	0,000	$H_2PO_4^-$	1,87240	68,970
K ⁺	0,95499	67,010	Rb ⁺	0,00650	99,999
KOH ⁰	0,00000	0,000	Sc ⁺³	0,00057	99,999
KSO4 ⁻	0,47015	32,990	SiO ₂ ⁰	0,83830	99,999
Ag ⁺	0.00103	99,999	HSiO ₃ ⁻	0.00000	0.000
Ag(CO ₃) ⁻	-	-	Sn ⁺²	0,00772	95,574
$Ag(CO3)_{2}^{-3}$	-	-	SnO ⁰	0,00001	0,181
Al ⁺³	0,75248	99,912	SnOH ⁺	0,00034	4,245
Al(OH) ⁺²	0,00066	0,088	Sr ⁺²	0,00371	99,999
Al(OH) ₃ ⁰	0,00000	0,000	SrCO ₃ ⁰	-	-
AlO ₂	0,00000	0,000	VO_{2}^{+}	0,00758	99,070
Au ⁺	0,00060	99,999	VO^{+2}	0,00000	0,000
Au ⁺³	0,00000	0,000	$H_2VO_4^-$	0,00007	0,930
Ba ⁺²	0,02351	99,999	WO4 ⁻²	0,00039	-
$Ba(CO_3)^0$	-	-	Zn ⁺²	0,85565	99,999
BaOH ⁺	0,00000	0,000	ZnO^0	0,00000	0,000
Be ⁺²	0,00000	0,473	ZnO_2^{-2}	-	-
BeOH ⁺	0,00030	99,527	ZnOH ⁺	0,00000	0,000
Cd ⁺²	0,00297	99,999	AsO ₄ -3	0,00000	0,000
Ga ⁺³	0.00076	99,999	H ₂ AsO ₄ ⁻	0.18708	99,999
Cu ⁺	_	_	HAsO ₄ ⁻²	0.00000	0.000
Cu ⁺²	0.02760	99,999	Cr ⁺³	0.00013	2.087
CuO ⁰	0,00000	0.000	$Cr_2O_7^{-2}$	0,00598	97.300
CuOH ⁺	0.00000	0.000	CrO ⁺	0.00000	0.000
C0 ⁺²	0,00081	99.999	CrO_4^{-2}	0,00004	0.599
$C_0 O^0$	-	-	CrOH ⁺²	0,00000	0.014
CoOH ⁺	0.00000	0.000	Fe ⁺³	14,41609	67.625
	-,	3,000		,	01,020

Продолжение таблицы 5.29

Fe ⁺²	0,00002	0,000	SmO ₂ -	-	-
FeO ⁺	0,25021	1,174	SmO_2H^0	-	-
FeO ₂ -	0,00000	0,000	SmOH ⁺²	0,00000	0,000
FeOH ⁺	0,00000	0,000	$SmSO_4^+$	0,00038	91,280
FeOH ⁺²	6,65141	31,201	Eu ⁺³	0,00001	8,749
Hg ⁺²	0,00002	93,829	EuCO ₃ ⁺	-	-
HgO ⁰	0,00000	1,520	EuHCO ₃ ⁺²	0,00000	0,000
HgOH ⁺	0,00000	4,652	EuO ⁺	-	-
UO2 ⁺²	0,00011	99,999	EuO ₂ -	-	-
UO4 ⁻²	-	-	EuO_2H^0	-	-
Zr ⁺⁴	0,00004	1,028	EuOH ⁺²	0,00000	0,000
ZrO ⁺²	0,00114	30,634	EuSO ₄ ⁺	0,00009	91,251
ZrO_2^0	0,00000	0,010	Gd ⁺³	0,00022	99,999
$Zr(OH)^{+3}$	0,00254	68,329	GdCO ₃ ⁺	0,00000	0,000
Y ⁺³	0,00066	99,999	GdHCO ₃ ⁺²	0,00000	0,000
La ⁺³	0,00024	8,392	GdO^+	-	-
LaCO ₃ ⁺	0,00000	0,000	GdO_2^-	-	-
$LaH_2PO_4^{+2}$	0,00004	1,422	GdO_2H^0	-	-
LaHCO ₃ ⁺²	0,00000	0,000	GdOH ⁺²	0,00000	0,000
LaO ⁺	-	-	$GdSO_4^+$	0,00000	0,000
LaO_2H^0	-	-	Tb ⁺³	0,00000	8,914
LaOH ⁺²	0,00000	0,000	TbCO ₃ ⁺	-	-
$LaSO_4^+$	0,00254	90,185	TbHCO ₃ ⁺²	0,00000	0,000
Ce ⁺³	0,00341	87,458	TbO ⁺	-	-
CeCO ₃ ⁺	0,00000	0,000	TbO ₂ -	-	-
CeH ₂ PO ₄ ⁺²	0,00049	12,542	TbOH ⁺²	0,00000	0,000
CeHCO ₃ ⁺²	0,00000	0,000	$\mathrm{TbSO_4^+}$	0,00005	91,086
CeO ⁺	-	-	D y ⁺³	0,00002	8,964
CeO_2H^0	-	-	DyCO ₃ ⁺	0,00000	0,000
CeOH ⁺²	0,00000	0,000	DyHCO ₃ ⁺²	0,00000	0,000
CeSO ₄ ⁺	0,00000	0,000	DyO ⁺	-	-
Pr+3	0,00017	36,150	DyO ₂ -	-	-
PrCO ₃ ⁺	0,00000	0,000	DyO ₂ H ⁰	-	-
PrHCO ₃ ⁺²	0,00000	0,000	DyOH ⁺²	0,00000	0,000
PrNO ₃ ⁺²	0,00030	63,850	DySO ₄ ⁺	0,00021	91,036
PrO ⁺	-	_	Ho ⁺³	0,00001	10,498
PrOH ⁺²	0,00000	0,000	HoCO ₃ ⁺	-	-
PrSO ₄ ⁺	0,00000	0,000	HoHCO ₃ ⁺²	0,00000	0,000
Nd ⁺³	0,00015	7,125	HoO^+	-	-
NdCO ₃ ⁺	0,00000	0,000	HoO ₂ ⁻	-	-
NdHCO ₃ ⁺²	0,00000	0,000	HoOH ⁺²	0,00000	0,000
NdNO ₃ ⁺²	0,00036	17,103	HoSO ₄ ⁺	0,00005	89,502
NdO ⁺	-	-	Er ⁺³	0,00001	10,546
NdOH ⁺²	0,00000	0,000	ErCO ₃ ⁺	0,00000	0,000
NdSO ₄ ⁺	0,00159	75,772	ErHCO ₃ ⁺²	0,00000	0,000
Sm ⁺³	0,00004	8,720	ErO ⁺	-	-
SmCO ₃ ⁺	0,00000	0,000	ErOH ⁺²	0,00000	0,000
SmHCO ₃ ⁺²	0,00000	0,000	ErSO ₄ ⁺	0,00012	89,454

SmO ⁺	-	-	Tm ⁺³	0,00001	62,762
TmCO ₃ ⁺	0,00000	0,000	Lu ⁺³	0,00000	10,688
TmHCO ₃ ⁺²	0,00000	0,000	LuCO ₃ ⁺	-	-
TmNO ₃ ⁺²	0,00001	37,238	LuHCO ₃ ⁺²	0,00000	0,000
TmOH ⁺²	0,00000	0,000	LuO^+	-	-
Yb ⁺³	0,00001	10,045	LuO_2^-	-	-
YbCO ₃ ⁺	0,00000	0,000	LuO_2H^0	-	-
YbHCO ₃ ⁺²	0,00000	0,000	LuOH ⁺²	0,00000	0,000
YbNO ₃ ⁺²	0,00001	5,934	$LuSO_4^+$	0,00001	89,312
YbO ⁺	-	-	Tl ⁺	0,00011	99,999
YbOH ⁺²	0,00000	0,000	Tl ⁺³	0,00000	0,000
YbSO ₄ ⁺	0,00011	84,021			

Продолжение таблицы 5.29

По мере увеличивающейся минерализации раствора возрастает концентрация и микрокомпонентов (мг/кг H₂O): Ag⁺ (9,8686e-04–9,8870e-02); Al⁺³ (1,8572e-09–6,0429e+02); Ba⁺² (2,2619e-02–2,2657e+00); Cd⁺² (2,8588e-03–2,8621e-01); Cu⁺² (2,3751e-03–2,6599e+00); Co⁺² (7,7320e-04–7,8025e-02); Li⁺ (2,7255e-03–2,7286e-01); Mn⁺² (8,6525e+00–1,6476e+02); Ni⁺² (3,4587e-03–3,4667e-01); Pb⁺² (6,5513e-03–3,2010e+01); Rb⁺ (6,2599e-03–6,2671e-01); Sn⁺² (7,4204e-01–7,4901e-01); Zn⁺² (3,9596e-01–8,2444e+01); Fe⁺³ (1,3861e+03–2,3633e+03); Hg⁺² (1,9219e-03–1,9489e-03).

Преобладающими формами нахождения и миграции молибдена, вольфрама, ванадия и мышьяка, в сильнокислых водах, являются MoO_4^{-2} , VO_2^+ , WO_4^{-2} , H_2AsO_4 . Увеличение в растворе концентраций SO_4^2 -иона обуславливают значительную долю миграции марганца и редкоземельных элементов в виде соответствующих комплексов.

Таким образом, изучение равновесно-неравновесного состояния сильнокислых водных растворов в системе «вода-порода-газ» позволило установить следующие особенности. По мере увеличения минерализации в водном растворе достигается равновесие с гипсом, алуногеном, монтмориллонитом, бианкитом и фиброферритом. При объемных изменении соотношений «вода-порода» В водном растворе увеличивается содержание алуногена от 12,38 до 20,66 %, монтмориллонита от 1,99 до 3,85 % и фиброферрита от 12,79 до 19,48 %. Однако содержание бианкита и гипса наоборот, постепенно снижается и составляет 0,06-0,00 % - бианкит, и 72,78-56,01 % гипс.

Проведенные исследования эволюции химического состава водного раствора и форм миграции элементов, в системе хвостохранилища Дальнегорского района, позволяют сделать следующие выводы.

В слабощелочных водах основные химические элементы солевого состава мигрируют преимущественно в форме незакомплексованных ионов, среди второстепенных форм миграции преобладают комплексы-ассоциаты с участием анионов HCO_3^- , CO_3^{2-} , OH^- , реже SO_4^{2-} . Миграция микрокомпонентов также осуществляется в форме простых катионных ионов, а для ряда элементов характерны карбонатные, оксидные, нитратные и гидроксокомплексы.

По мере изменения объемных соотношений вода-порода, имитирующих увеличение времени взаимодействия растворов с породой, наблюдается закономерное увеличение минерализации растворов, снижение значений pH и как следствие изменение основных форм миграции элементов. В сильнокислых соленых растворах увеличиваются концентрации и миграция химических элементов в виде простых катионных форм, роль HCO_3^- и CO_3^2 -ионов в комплексообразовании заметно снижается, возрастает роль SO_4^{-2} -иона, что приводит к росту комплексов-ассоциатов с его участием.

В результате взаимодействия в системе «вода-порода-газ» происходит активное преобразование породообразующих минералов во вторичные минеральные фазы, а их растворенные формы переходят в раствор, обогащая его широким спектром элементов. Миграционный поток, сформированный в системе хвостохранилища, выносит значительное количество химических элементов (SO_4^{2-} -ион, Ag^+ , Al^{+3} , Ba^{+2} , Cd^{+2} , Cu^{+2} , Co^{+2} , Li^+ , Mn^{+2} , Ni^{+2} , Pb^{+2} , Rb^+ , Sn^{+2} , Zn^{+2} , Fe^{+3} , Hg^{+2}) на водосборную площадь и непосредственно в воды реки Рудной.

Следовательно, накопленные в хвостохранилищах отходы обогащения сульфидных руд являются мощным и долговременно действующим источником токсичных элементов. Учитывая, что гипергенные изменения техногенных продуктов (хвостохранилища КОФ Дальнегорский район) протекают с большими скоростями, чем в естественных геологических условиях (штольни Кавалеровского района), мощность потока металлоносных вод, скорее всего, будет увеличиваться, усугубляя и без того не простую экологическую обстановку, сложившуюся в Дальнегорском районе.

6. ОЦЕНКА ГЕОХИМИЧЕСКИХ ПРЕОБРАЗОВАНИЙ ТЕХНОГЕННО-ЗАГРЯЗНЕННЫХ ПОВЕРХНОСТНЫХ ВОД

Согласно многолетним наблюдениям (Доклад об экологической ситуации в Приморском крае..., 2013, 2016) качество воды в р. Рудной в период с 2008 по 2016 гг. в фоновом створе выше п. Краснореченский оценивается 2-м классом слабозагрязненных вод. В створе ниже п. Краснореченский и в г. Дальнегорске, в 9 км ниже сброса сточных вод ЗАО «ГХК «Бор», качество воды характеризуется 4-м классом как «грязная» и «очень грязная». В связи с этим необходимо провести оценку гидрогеохимических преобразований техногенно-загрязненных поверхностных вод.

6.1. Геохимия техногенно-загрязненных поверхностных вод

Эколого-гидрогеохимические исследования позволяют сделать вывод о том, что Рудной основным источником загрязнения вод р. являются миграционные металлоносные потоки продуцируемые объектами горнопромышленного техногенеза. Так, изучение макро - и микрокомпонентного состава техногенных вод Дальнегорского района позволило установить, что сульфат-ион обнаруживается во всех исследуемых водах, а его содержание изменяется закономерно в соответствии с общей минерализацией раствора. Наиболее высокие концентрации SO₄²⁻-иона выявлены в водах прудковой зоны старого хвостохранилища, предельно-допустимые концентрации которого, превышены в 52,5–93,64 раза, а в дренажных стоках хвостохранилища в 1,02– 9.34 раза.

Анализ распределения основных катионов указывает на превышение в тех же водах Mg в 2,14–5,22 раза и Ca в 1,27–3,43 раза (рисунок 6.1).

Уровни содержания микроэлементов в техногенно-трансформированных водах различны. Основными загрязнителями, поступающими с миграционными потоками в воды р. Рудной, являются: Fe (1,74–152,1 ПДК), Ni (5,9–104,0 ПДК), Co (2,7–70,3 ПДК), Cu (1,3–8450,0 ПДК), Zn (2,8–1041,0 ПДК), Pb (6,33–255,0 ПДК), As (1,03–4,12 ПДК), Cd (1,74 ПДК), Mn (27,0–3960,0 ПДК), Al (3,93–737,75 ПДК), Li (7,0–150,14 ПДК), Be (4,7–7,0 ПДК), в единичных пробах Se (1,11–2,8 ПДК), V (3,37 ПДК) и B (1,43 ПДК).

Рисунок 6.1 – Схема распределения макрокомпонентов в водах среднего течения р. Рудной

Примечание: 1– контуры I – старого хвостохранилища КОФ; II – нового хвостохранилища КОФ; III – старого хвостохранилища ЦОФ; IV – нового хвостохранилища ЦОФ; 2 – озеро (прудок); 3 – точки отбора проб воды.

С целью изучения распределения микроэлементов в водном потоке р. Рудной построены диаграммы, позволяющие визуально выявить участки с наибольшими концентрациями токсичных элементов (рисунок 6.2).

Рисунок 6.2 – Распределение микрокомпонентов в водах среднего течения р. Рудной Примечание: по горизонтали указан номер пробы воды.

Анализ полученных диаграмм свидетельствует о неравномерном распределении элементов в водном потоке. Наиболее высокие концентрации выявлены в точках наблюдения, расположенных в непосредственной близости от хвостохранилищ КОФ и ЦОФ, т.е. в зоне активно развивающихся процессов окисления и растворения минералов горных пород и сульфидных руд. По мере удаления от зоны обогащения (источника загрязнения) содержание элементов в водном потоке уменьшается.

В результате физико-химического моделирования ионного состава раствора при изменяющихся объемных соотношениях Т/Ж (от 1 г породы до 50 г на 1 кг H₂O), установлено, что формирующийся раствор обогащается широким спектром элементов. Подсчитано, в данных геохимических условиях среды в раствор могут поступать макрои микрокомпоненты в концентрациях, значительно превышающих предельнодопустимые концентрации: Mg²⁺ в 1,11–6,81 раза, Na⁺ в 1,17–3,28 раза и K⁺ в 1,84–9,78 раза. Содержание SO4²⁻ -иона превышено в 5,32–11,80 раз. По мере увеличивающейся минерализации раствора возрастает концентрация и микрокомпонентов: Ag⁺ (1,97 ПДК); Al⁺³ (1808,75–15107,25 ПДК); Ba⁺² (3,05 ПДК); Cd⁺² (57,0 ПДК); Cu⁺² (2653,0 ПДК); Co⁺² (7,78–7,82 ПДК); Li⁺ (388,57 ПДК); Mn⁺² (10765,0–16476,0 ПДК); Ni⁺² (34,0 ПДК); Pb⁺² (5320,0–5335,0 ПДК); Rb⁺ (6,26 ПДК); Sn⁺² (6,62–6,68 ПДК); Zn⁺² (8222,8– 8244,4 ПДК); Fe⁺³ (1386,1–2363,3 ПДК); Hg⁺² (192,0–194,0 ПДК).

Преобладающими формами нахождения и миграции молибдена, вольфрама, ванадия и мышьяка, в сильнокислых водах, являются MoO_4^{-2} , VO_2^+ , WO_4^{-2} , $H_2AsO_4^-$, при этом концентрации данных ионов в растворе превышены в десятки и сотни раз: MoO_4^{-2} (в пересчете на Mo^{6+}) в 7,79 раза, VO_2^+ (в пересчете на V^{+4}) в 447–449 раза, WO_4^{-2} (в пересчете на W^{6+}) в 35,0 раза, а $H_2AsO_4^-$ (в пересчете на As^{3+}) в 191,2–191,6 раза.

Таким образом, формирование химического состава техногенных потоков происходит в процессе эволюции системы «вода-порода» и связано с окислением и растворением сульфидсодержащих отходов, накопленных в хвостохранилищах. Дренажные стоки характеризуются экстремальными показателями физико-химических параметров и аномально высокими концентрациями подвижных форм токсичных химических элементов в растворах. Учитывая постоянное взаимодействие отходов обогащения с водой и кислородом, можно предположить, что продуцирование сильнокислых высокоминерализованных растворов и обогащение вод р. Рудной сульфатами и токсичными металлами продлится еще не один десяток лет.

Анализ химического состава рудничных вод в Кавалеровском районе указывает на превышение в пробах воды SO_4^2 -иона в 1,7–9,6 раза, в рудничных водах штольни 4 зафиксировано превышение Mg в 1,2 раза. Изучение микрокомпонентного состава показало, что практически во всех пробах превышены содержания таких элементов как Fe (2,2–29,56 ПДК), Cu (2,0–9,9 ПДК), Zn (2,56–22,1 ПДК), Pb (2,05–6,07 ПДК), Mn (2,06–24,88 ПДК) и Li (48,1–651 ПДК). В единичных пробах в повышенных количествах обнаруживаются Si (1,2 ПДК), Co (1,64 ПДК) и Ni (1,69–4,82 ПДК). В результате миграционные потоки вещества выносят в р. Хрустальную и р. Высокогорскую значительное количество соединений тяжелых металлов, формируя гидрогеохимические аномалии.

Таким образом, в результате проведенных исследований установлено следующее.

В природно-техногенных геологических системах в результате минералогогеохимических преобразований формируются воды, которые своим химическим составом инициируют очаг загрязнения. Загрязненные воды оказывают влияние на безопасность поверхностных водотоков, имеющих важное рыбохозяйственное значение. Наблюдаемые загрязнения природных водоносных комплексов и поверхностных водотоков носят локальный в пространстве характер (~ 1–2 км). Они определяются объемами загрязненных вод, близостью или удаленностью источника и водностью рекиприемника.

Более высокое насыщение токсичными элементами техногенных вод, вытекающих из штолен Кавалеровского района, возможно лишь в результате активизации геомеханических процессов, дополнительных сдвижений земной поверхности и увеличения времени взаимодействия воды с горной породой.

Насыщение токсичными элементами техногенных вод хвостохранилищ КОФ возможно в результате увеличения соотношений масс Т/Ж. На основании выполненного физико-химического моделирования (см. таблицу 5.27, гл. 5) можно утверждать, что при T/K > 0,02 > 0,05 в хвостохранилище КОФ, минерализация воды составит > 13,32 > 25,63 г/дм³. Это отразится, в первую очередь, на качестве воды в р. Рудная. Возможно формирование новых участков разгрузки техногенных вод комплекса, что приведет к изменению состава грунтовых и поверхностных вод и, как следствие, к трансформации гидрохимического типа природных вод.

6.2. Расчет массы выноса загрязняющего вещества поверхностным стоком с территории хвостохранилища

С целью качественной и количественной оценки вероятного загрязнения вод р. Рудной поверхностным стоком с хвостохранилища КОФ, было выполнено физикохимическое моделирование процессов преобразования наиболее распространенных рудных и техногенных минералов с использованием программного комплекса «Селектор-С» (таблица 13-27 приложения 3). При моделировании процессов гипергенного преобразования изучалось поведение отдельного минерала BO взаимодействии с природными водами и условия образования возможных вторичных минеральных парагенезисов в данных геохимических условиях среды, а также устанавливались формы нахождения вещества в растворе и их количественное содержание.

Расчет равновесного фазового состава системы «вода-порода-газ» производился в открытых по отношению к атмосфере условиях. Для моделирования были выбраны единые термо-барометрические условия – T = +25 °C и P = 1 атм., соотношения масс вода – порода принималось 10 кг H₂O/10 г минерального вещества.

В результате проведенного физико-химического моделирования установлен состав равновесных с ионным раствором возможных минеральных новообразований, который представлен преимущественно водорастворимыми сульфатами и в целом соответствует минеральным ассоциациям, установленным в хвостохранилищах и геохимическим барьерам, возникающим на путях миграции дренажных вод. Установлено, что в гипергенных условиях кристаллизация вторичных минеральных фаз происходит в растворах со значениями pH 2,37–6,94 и величиной Eh от 0,8063 до 1,0762 (таблица 6.1).

Анализ моделей гипергенного преобразования минералов показал, что при окислении сульфидных и техногенных минералов в раствор поступают ионы токсичных элементов: Al^{+3} , Fe^{+3} , Pb^{+2} , Cu^{+2} , Ag^+ , CuO^+ , $CuOH^+$, $FeOH^{+2}$, PbO^+ , $SO4^{-2}$, $HSO4^-$, $SbO2^-$, ZnO^0 , $ZnO2^{-2}$, $HAsO4^{-2}$, $AlOH^{+2}$, $HSO2^0$, $AgOH^0$, Ce^{+3} , CeO^+ , $CeOH^{+2}$, $HPO4^{-2}$, $HSiO3^-$, La^{+3} , $LaCO3^+$, LaH_2PO4^{+2} , LaO^+ , $LaOH^{+2}$, Nd^{+3} , $NdCO3^+$, Pr^{+3} , PrO^+ , PrO_2H^0 , Sr^{+2} и др. При этом установлено, что наибольшую экологическую опасность представляют техногенные минералы, которые в гипергенных условиях неустойчивы, полностью растворяются и в процессе самопроизвольной миграции токсиканты поступают в водные объекты.

	Физико-химические параметры				
Модель	модели			Минеральная ассоциация	
	pH Eh, B TDS, mg/kg		TDS, mg/kgH2O		
Vou conunt				Познякит Cu ₄ (OH) ₆ [SO ₄](H ₂ O),	
лалькопирит-	4,0475	0,9772	862,3429130	роуволфит Cu4(OH)6 [SO4] 2H2O,	
вода				фиброферрит Fe[SO ₄](OH) 5H ₂ O	
Арсенопирит -	2 4007	1 0005	007 8212645	Фиброферрит, скородит	
вода	5,4997	1,0095	997,0313043	FeAsO42H2O	
Пирит-вода	2,5410	1,0661	837,3671361	Фиброферрит	
Галенит-вода	2,3707	1,0762	566,5814936	Англезит PbSO4, фиброферрит	
Касситерит-вода	5,7099	0,8792	876,6514644	Алуноген Al ₂ [SO4] ₃ 18H ₂ O	
Пирротин-вода	2,6335	1,0606	129,5856650	Фиброферрит	
Сфалерит-вода	5,5033	0,8912	15,7798148	Бианкит Zn[SO ₄] 6H ₂ O, фиброферрит	
Плюмбоярозит-	1 0201	0 07/0	673 1514464	Алуноген, англезит, бианкит,	
вода	ода 4,0894		023,1314404	фиброферрит	
Апатит-вода	5,8716	0,8697	1159,5537606	-	
Монацит-вода	6,9444	0,8063	1033,5248940	Ярозит КFe ₃ [SO ₄] ₂ (OH) ₆	
Фрейбергит-	4 4004	0.0511	1057 2756081	Познякит, роуволфит, бианкит,	
вода	4,4904	0,9311	1037,2730081	фиброферрит	
Zn-мелантерит	3,7729	0,9935	175,9770729	Бианкит	
Розенит-вода	4,2609	0,9647	722,4721122	-	
Фиброферрит-	6 9272	0,8132	672 2477076		
вода	0,8272		075,5477970	-	
Илезит-вода	3,7180	0,9968	690,7392062	-	
Бианкит-вода	5.7177	0.8787	598.9218426	-	

Таблица 6.1 – Результаты моделирования процессов гипергенного преобразования минералов в хвостохранилище КОФ

Следовательно, хвостохранилища, содержащие отходы обогащения сульфидных руд, представляют серьезную экологическую опасность, а окисляющиеся сульфиды и техногенные сульфаты можно рассматривать как источник активного загрязнения окружающей среды. В связи с этим, возникает необходимость в проведении исследований, направленных на расчет массы поступающих токсичных металлов с поверхностным стоком с территории хвостохранилища на водосборную площадь и непосредственно в воды р. Рудной.

Расчет выноса массы загрязняющего вещества поверхностным стоком с территории хвостохранилища проводился в соответствии с «Методические Указания по расчету платы за неорганизованный сброс загрязняющих веществ в водные объекты», утвержденных Госкомэкологией РФ 29.12.1998 г.

Масса выноса загрязняющих веществ поверхностным стоком с территории хвостохранилища, определена по формуле:

$$\mathbf{M}_{i} = \mathbf{S} \cdot \left(\mathbf{W}_{\mathcal{A}} \cdot \mathbf{m}_{i\mathcal{A}} + \mathbf{W}_{\mathsf{T}} \cdot \mathbf{m}_{i\mathsf{T}} \right) \cdot 10^{-6},\tag{1}$$

где: S – площадь хвостохранилища, га; W_{π} – объем стока дождевых вод, м³/га; W_{τ} – объем стока талых вод, м³/га; m_{id} , $m_{i\tau}$ – концентрация i-го загрязняющего вещества в стоке дождевых и талых вод, мг/л.

S – 800 м · 340 м = 272000 м² = 27,2 га. Размеры хвостохранилища по данным И.А. Тарасенко с соавторами (Тарасенко и др., 2001).

Объем стока дождевых вод определяется по формуле:

$$W_{\pi} = 2.5 \cdot H_{\pi} \cdot K_{g} \cdot K_{BH}, \qquad (2)$$

где: H_д – слой осадков за теплый период со средними температурами выше 0 °С, мм; (для Дальнегорского района Приморского края H_д – 722 мм/год), по данным И.В. Садардинова с соавторами (Садардинов и др., 2004).

К_g – коэффициент, учитывающий объем стока дождевых вод в зависимости от интенсивности дождя для данной местности продолжительностью 20 мин при периоде однократного превышения расчетной интенсивности дождя равном 1 году (q₂₀); (K_g – 0,78, по (Методические Указания..., 1998)).

К_{вн} – коэффициент, учитывающий интенсивность формирования дождевого стока в зависимости от степени распространения водонепроницаемых поверхностей (дороги, площадки и т.п.) на площади хвостохранилища (К_{вн} – 0,2, по (Методические Указания..., 1998)).

Объем стока талых вод определяется по формуле:

$$W_{\rm T} = H_{\rm T} \cdot K_{\rm T} \cdot K_{\rm B} \tag{3}$$

где: H_т – слой осадков за холодный период со средними температурами ниже 0 °С, мм; (для Дальнегорского района Приморского края H_т – 127 мм/год), по данным И.В. Садардинова с соавторами (Садардинов и др., 2004).

К_т – коэффициент, учитывающий объем стока талых вод в зависимости от условий снеготаяния; (К_т – 0,77, по (Методические Указания..., 1998)).

К_в – коэффициент, учитывающий вывоз снега с территории хвостохранилища. При отсутствии вывоза коэффициент принимается равным 10 (Методические Указания..., 1998).

Таким образом, объем стока дождевых вод составил:

 $W_{\mu} = 2.5 \cdot 722 \cdot 0.78 \cdot 0.2 = 281.58 \text{ m}^3/\text{ra}.$

Объем стока талых вод составил:

$$W_{\rm T} = 127 \cdot 0,77 \cdot 10 = 977,9 \text{ m}^3/\Gamma a.$$

Ниже представлены количественные расчеты массы выноса загрязняющих веществ с поверхностным стоком с территории хвостохранилища, проведенные по формуле 1:

Модель «галенит (Pb0.91Fe0.05Cu0.02Sb0.02S1.00) - вода» $M_{Pb}^{+2} = 27.2 \cdot (281.58 \cdot 2.7274 + 977.9 \cdot 2.7274) \cdot 10^{-6} = 0.093435 \text{ kg/rog}$ $M_{Cu}^{+2} = 27,2 \cdot (281,58 \cdot 7,3696 + 977,9 \cdot 7,3696) \cdot 10^{-6} = 0,252467$ кг/год $M_{Sb}^{+3} = 27,2 \cdot (281,58 \cdot 226,0 + 977,9 \cdot 226,0) \cdot 10^{-6} = 7,742275$ кг/год $M_{SO4}^{-2} = 27,2 \cdot (281,58 \cdot 204,40 + 977,9 \cdot 204,40) \cdot 10^{-6} = 7,002306$ кг/год Модель «сфалерит (Zn0,78Fe0,22Mn0,01S1,00) - вода» $M_{Mn}^{+3} = 27,2 \cdot (281,58 \cdot 5,6774 + 977,9 \cdot 5,6774) \cdot 10^{-6} = 0,194494$ кг/год $M_{SO4}^{-2} = 27.2 \cdot (281.58 \cdot 10.009 + 977.9 \cdot 10.009) \cdot 10^{-6} = 0.342887 \text{ Ke/form}$ Модель «пирит (Fe1,02As0,03S1,95) - вода» $M_{As}^{+3} = 27.2 \cdot (281.58 \cdot 14.597 + 977.9 \cdot 14.597) \cdot 10^{-6} = 0.500062$ кг/год $M_{SO4}^{-2} = 27,2 \cdot (281,58 \cdot 513,60 + 977,9 \cdot 513,60) \cdot 10^{-6} = 17,59483$ кг/год Модель «пирит (Fe0,96Ag0,04S2,0) - вода» $M_{Ag}^{+} = 27,2 \cdot (281,58 \cdot 7,1666 + 977,9 \cdot 7,1666) \cdot 10^{-6} = 0,245512$ кг/год M_{SO4} -2 = 27,2 · (281,58 · 534,68 + 977,9 · 534,68) · 10⁻⁶ = 18,31699 кг/год Модель «арсенопирит (Fe0,37As0,35S0,38) – вода» $M_{As}^{+3} = 27,2 \cdot (281,58 \cdot 44,588 + 977,9 \cdot 44,588) \cdot 10^{-6} = 1,527489$ кг/год $M_{SO4}^{-2} = 27,2 \cdot (281,58 \cdot 18,073 + 977,9 \cdot 18,073) \cdot 10^{-6} = 0,619142$ кг/год Модель «пирротин (FeS) – вода» $M_{SO4}^{-2} = 27,2 \cdot (281,58 \cdot 109,30 + 977,9 \cdot 109,30) \cdot 10^{-6} = 3,744384$ кг/год Модель «халькопирит (CuFeS₂) – вода» $M_{Cu}^{+2} = 27,2 \cdot (281,58 \cdot 340,73 + 977,9 \cdot 340,73) \cdot 10^{-6} = 11,67268$ кг/год $M_{SO4}^{-2} = 27,2 \cdot (281,58 \cdot 518,62 + 977,9 \cdot 518,62) \cdot 10^{-6} = 17,76681$ кг/год Модель «фрейбергит (Cu4,12Ag4,85Zn0,20Fe3,08Sb3,61S13,13) - вода» $M_{Cu}^{+2} = 27,2 \cdot (281,58 \cdot 69,363 + 977,9 \cdot 69,363) \cdot 10^{-6} = 2,376228$ кг/год $M_{Ag}^{+} = 27,2 \cdot (281,58 \cdot 314,44 + 977,9 \cdot 314,44) \cdot 10^{-6} = 10,77204$ кг/год $M_{SO4}^{-2} = 27,2 \cdot (281,58 \cdot 534,35 + 977,9 \cdot 534,35) \cdot 10^{-6} = 18,30569$ кг/год Модель «монацит ((Ce0,48La0,20Nd0,14Pr0,04Ca0,05Fe0,08Th0,01K0,01)(P0,95Si0,07)O4) - вода» $M_{Ce}^{+3} = 27,2 \cdot (281,58 \cdot 198,94 + 977,9 \cdot 198,94) \cdot 10^{-6} = 6,815258$ кг/год $M_{La}^{+3} = 27.2 \cdot (281.58 \cdot 79.752 + 977.9 \cdot 79.752) \cdot 10^{-6} = 2.732133$ кг/год $M_{Nd}^{+3} = 27.2 \cdot (281.58 \cdot 71.666 + 977.9 \cdot 71.666) \cdot 10^{-6} = 2.455125$ кг/год $M_{Pr}^{+3} = 27,2 \cdot (281,58 \cdot 20,003 + 977,9 \cdot 20,003) \cdot 10^{-6} = 0,68526$ кг/год $M_{Th}^{+4} = 27.2 \cdot (281.58 \cdot 8.2349 + 977.9 \cdot 8.2349) \cdot 10^{-6} = 0.28211 \text{ kg/rog}$ $M_{Fe}^{+2} = 27.2 \cdot (281,58 \cdot 0.9784 + 977.9 \cdot 0.9784) \cdot 10^{-6} = 0.033518$ кг/год $M_{Fe}^{+3} = 27,2 \cdot (281,58 \cdot 8,9314 + 977,9 \cdot 8,9314) \cdot 10^{-6} = 0,305971$ кг/год Модель «апатит ((Ca3,71Si0,62Fe0,33Al0,28K0,11Ce0,02Nd0,02)(P2,62O11,82)F1,59) - вода» $M_{A1}^{+3} = 27.2 \cdot (281.58 \cdot 19.546 + 977.9 \cdot 19.546) \cdot 10^{-6} = 0.669604 \text{ kg/rog}$ $M_{Ce}^{+3} = 27.2 \cdot (281.58 \cdot 3.8988 + 977.9 \cdot 3.8988) \cdot 10^{-6} = 0.133565$ кг/год $M_{Nd}^{+3} = 27,2 \cdot (281,58 \cdot 7,4636 + 977,9 \cdot 7,4636) \cdot 10^{-6} = 0,255687$ кг/год

 $M_{Fe}^{+3} = 27.2 \cdot (281.58 \cdot 47.212 + 977.9 \cdot 47.212) \cdot 10^{-6} = 1.617382$ кг/год

Модель «касситерит (SnO₂) – природная вода» $M_{Sn}^{+2} = 27,2 \cdot (281,58 \cdot 572,39 + 977,9 \cdot 572,39) \cdot 10^{-6} = 19,60885$ кг/год Модель «плюмбоярозит ((Pb0,12Fe0,76Zn0,05K0,05Al0,02)[SO4]4(OH)12) - вода» $M_{Pb}^{+2} = 27.2 \cdot (281,58 \cdot 1,8713 + 977,9 \cdot 1,8713) \cdot 10^{-6} = 0.064107$ кг/год $M_{SO4}^{-2} = 27,2 \cdot (281,58 \cdot 343,3 + 977,9 \cdot 343,3) \cdot 10^{-6} = 11,76072$ кг/год Модель «англезит (PbSO₄) – природная вода» $M_{Pb}^{+2} = 27.2 \cdot (281,58 \cdot 27,102 + 977,9 \cdot 27,102) \cdot 10^{-6} = 0.928456$ кг/год $M_{SO4}^{-2} = 27,2 \cdot (281,58 \cdot 12,563 + 977,9 \cdot 12,563) \cdot 10^{-6} = 0,430381$ кг/год Модель «мелантерит (Fe0,97As0,02Si0,01[SO4]·7H2O) - вода» $M_{Fe}^{+3} = 27,2 \cdot (281,58 \cdot 171,60 + 977,9 \cdot 171,60) \cdot 10^{-6} = 5,878648$ кг/год $M_{SO4}^{-2} = 27,2 \cdot (281,58 \cdot 447,53 + 977,9 \cdot 447,53) \cdot 10^{-6} = 15,33142$ кг/год Модель «бианкит Zn[SO4] 6H2O – вода» $M_{Zn}^{+2} = 27,2 \cdot (281,58 \cdot 242,5 + 977,9 \cdot 242,5) \cdot 10^{-6} = 8,30753$ кг/год $M_{SO4}^{-2} = 27,2 \cdot (281,58 \cdot 356,21 + 977,9 \cdot 356,21) \cdot 10^{-6} = 12,20299$ кг/год Модель «илезит (Mn_{0.64}Mg_{0.15}Zn_{0.15}Fe_{0.03}Al_{0.02}[SO₄]·4H₂O) - вода» $M_{Mn}^{+2} = 27.2 \cdot (281.58 \cdot 160.53 + 977.9 \cdot 160.53) \cdot 10^{-6} = 5.499414$ кг/год $M_{7n}^{+2} = 27.2 \cdot (281.58 \cdot 44.784 + 977.9 \cdot 44.784) \cdot 10^{-6} = 1.534204 \text{ Ke/form}$ $M_{Fe}^{+3} = 27.2 \cdot (281.58 \cdot 7.6490 + 977.9 \cdot 7.6490) \cdot 10^{-6} = 0.262038$ кг/год $M_{Al}^{+3} = 27,2 \cdot (281,58 \cdot 2,4638 + 977,9 \cdot 2,4638) \cdot 10^{-6} = 0,084405$ кг/год $M_{SO4}^{-2} = 27,2 \cdot (281,58 \cdot 453,01 + 977,9 \cdot 453,01) \cdot 10^{-6} = 15,51915$ кг/год Модель «розенит (Fe0,79Mg0,11Mn0,06Zn0,04[SO4]·4H2O) - вода» $M_{Fe}^{+3} = 27.2 \cdot (281,58 \cdot 169,74 + 977,9 \cdot 169,74) \cdot 10^{-6} = 5,814928$ кг/год ${M_{Mn}}^{+2} = 27,2 \cdot (281,58 \cdot 12,685 + 977,9 \cdot 12,685) \cdot 10^{-6} = 0,434561$ кг/год $M_{7n}^{+2} = 27.2 \cdot (281.58 \cdot 10.065 + 977.9 \cdot 10.065) \cdot 10^{-6} = 0.344805 \text{ Ke/form}$ $M_{SO4}^{-2} = 27,2 \cdot (281,58 \cdot 517,89 + 977,9 \cdot 517,89) \cdot 10^{-6} = 17,7418$ кг/год Модель «фиброферрит (Fe0.97Mn0.02Al0.01[SO4]OH·5H2O) - вода» $M_{Fe}^{+3} = 27.2 \cdot (281,58 \cdot 174,29 + 977,9 \cdot 174,29) \cdot 10^{-6} = 5,970802$ кг/год $M_{Fe}^{+2} = 27.2 \cdot (281,58 \cdot 14,119 + 977,9 \cdot 14,119) \cdot 10^{-6} = 0,483687$ кг/год $M_{Mn}^{+2} = 27.2 \cdot (281.58 \cdot 3.8215 + 977.9 \cdot 3.8215) \cdot 10^{-6} = 0.130916$ кг/год

 $M_{SO4}^{-2} = 27.2 \cdot (281.58 \cdot 479.05 + 977.9 \cdot 479.05) \cdot 10^{-6} = 16.41123$ кг/год

Вышеприведенные расчеты показали, что масса загрязняющих веществ выносимых стоком талых вод на порядок выше, чем вынос со стоком дождевых вод (таблица 6.2 и рисунок 6.3).

Таблица 6.2 – Показатели суммарного годового выноса загрязняющи
веществ поверхностным стоком с хвостохранилища Дальнегорского района

Macca	Ионы								
выноса, кг/год	Pb^{+2}	Cu^{+2}	Fe ⁺³	Fe ⁺²	Mn ⁺²	Zn^{+2}	Al^{+3}	As ⁺³	
Мд	0,242795	3,197336	4,437782	0,115631	1,399401	2,277389	0,168573	0,453297	
Мт	0,843203	11,10404	15,41198	0,401574	4,859985	7,90915	0,585436	1,574255	
$\sum M$	1,085998	14,30137	19,84977	0,517205	6,259387	8,30753	0,754008	2,027551	

Macca	Ионы								
выноса, кг/год	Sb^{+3}	$\mathrm{Ag}^{\scriptscriptstyle +}$	Ce ⁺³	La ⁺³	Nd ⁺³	Pr^{+3}	Th^{+4}		
M_{μ}	1,730929	2,463177	1,553538	0,610819	0,606052	0,153203	0,063071		
Мт	6,011347	8,554376	5,395284	2,121314	2,104759	0,532057	0,219039		
∑M	7,742275	11,01755	6,948822	2,732133	2,71081	0,68526	0,28211		

Продолжение таблицы 6.2

Результаты моделирования процессов гипергенного преобразования рудных и техногенных минералов в системе хвостохранилища КОФ показывают, что с поверхностным стоком в водные объекты в значительных количествах поступают ионы токсичных металлов, наиболее распространенными из которых являются Cu^{+2} , Fe^{+3} , Mn^{+2} , Sb^{+3} , Ag^+ , Zn^{+2} , Pb^{+2} , As^{+3} .

Рисунок 6.3 – Суммарный годовой вынос токсичных элементов поверхностным стоком с хвостохранилища Дальнегорского района

Таким образом, на современном уровне развития горнопромышленного комплекса, первостепенными должны быть мероприятия не только обеспечивающие экологическую безопасность производства, но и способствующие переходу на ресурсосберегающее производство, предусматривающее широкое вовлечение как твердых, так и жидких техногенных отходов в процессы рециклинга, что позволит снизить техногенную нагрузку на природные экосистемы в постэксплуатационной стадии производства.

ЗАКЛЮЧЕНИЕ

На основании проведенных исследований получены результаты, которые можно квалифицировать как решение задачи, имеющей существенное значение для экологической науки при изучении минералого-геохимических преобразований в природно-техногенных геологических системах на территории горнорудных районов Приморского края. Основные результаты заключаются в следующем:

1. Ha общем фоне природных вод, выделяются участки техногенномакрокомпонентного (SO_4^{2-}) трансформированных спектру элементов И ПО микрокомпонентного состава (Zn, Pb, Cd, As, Cu, Fe, Mn, Al, Li). Распределение микроэлементов в водных потоках зависит от близости или удаленности источника (рудной зоны, хвостохранилища), кислотности-щелочности растворов и наличия геохимических барьеров (щелочного, карбонатного и др.), на которых происходит массовое осаждение элементов.

2. Установлено, что в природно-техногенной системе хвостохранилища в слабощелочных водах химические элементы мигрируют в форме незакомплексованных ионов и комплексов-ассоциатов с участием анионов HCO_3^- , CO_3^{2-} и OH^- . В сильнокислых высокоминерализованных растворах преобладают катионные ионы в количествах, значительно превышающих фоновые и предельно-допустимые, а в комплексообразовании значительная доля приходится на SO_4^{-2} -ион.

По результатам физико-химического моделирования показано, что наибольшую опасность для экосистемы реки Рудной представляют ионные и комплексные соединения, главными из которых являются Cd^{+2} , Cu^{+2} , Co^{+2} , Li^+ , Mn^{+2} , $MnSO_4^0$, Pb^{+2} , Zn^{+2} , Fe^{+3} , $FeOH^{+2}$, Hg^{+2} , Al^{+3} , Ni^{+2} , $BeOH^+$, SnO^0 , $H_2AsO_4^-$, $Cr_2O_7^{-2}$, SO_4^{2-} , HSO_4^- , MoO_4^{-2} , WO_4^{-2} , VO_2^+ , UO_2^{+2} , $Zr(OH)^{+3}$, $LaSO_4^+$, Ce^{+3} , $NdSO_4^+$, $SmSO_4^+$, $EuSO_4^+$, Gd^{+3} , $TbSO_4^+$, $DySO_4^+$, $ErSO_4^+$, $YbSO_4^+$, $LuSO_4^+$, формирующиеся в результате гипергенного преобразования рудных и техногенных минералов.

3. Выявлено, что в хвостохранилищах сконцентрированы потенциально опасные для природной экосистемы химические элементы, концентрации которых значительно превышают кларки в литосфере. К ним относятся вещества I класса опасности – Pb, Zn, Cd и As, степень вредного воздействия которых на окружающую природную среду очень высока, II класса – Cu и Co, III класса – Mn и W, характеризующие отходы как высоко и умеренно опасные для окружающей среды. Анализ распределения элементов

на глубину показал, что концентрации всех элементов, за исключением Ве и Li, с глубиной увеличиваются.

4. Данные о содержании РЗЭ в техногенных отложениях КОФ свидетельствуют о том, что максимальные концентрации РЗЭ для старого хвостохранилища характерны для глубинных интервалов от 0 до 1,0 м (∑РЗЭ 101,92–103, 12 г/т), а для нового – от 0,5 до 1,0 м (∑РЗЭ 103,46 г/т). Профили распределения РЗЭ для старого и нового хвостохранилищ имеют схожие черты с выраженными положительными аномалиями Eu, Tb, Yb и слабо выраженными отрицательными аномалиями Nd, Gd и Tm при небольшом дефиците церия. В толще хвостохранилищ происходит фракционирование РЗЭ, с глубиной наблюдается незначительное снижение величины (LREE/HREE)^N.

5. На основе изучения гипергенных минералов из хвостов обогащения установлено три минеральные ассоциации, обусловленные различными механизмами гипергенной трансформации: 1) вторичные минералы, образующиеся в результате процессов выветривания и окисления; 2) вторичные минералы в виде каймы замещения, вокруг сульфидных минералов; 3) минералы, кристаллизующиеся на испарительном геохимическом барьере. Выполненные рентгеноспектральные анализы минералов позволили выяснить особенности их химического состава, на основании чего были рассчитаны кристаллохимические формулы и определены количества и формы вхождения различных токсичных элементов (Pb, Zn, As, Cu, Sb, Ag, Mn, Al, Fe) в их кристаллические структуры.

6. Механизмы взаимодействия природных и рудничных вод с вмещающими породами и моделирование равновесий в системе «вода-порода» указывают на четко выраженный равновесно-неравновесный характер. Рудничные воды Кавалеровского района равновесны с каолинитом, иллитом, Na-, Mg-, Ca- разностями монтмориллонита, кальцитом и неравновесны с первичными алюмосиликатами.

Моделирование равновесного с ионным раствором минерального состава в техногенной системе хвостохранилища КОФ позволило установить, что в слабощелочном растворе достигается равновесие с гетитом, гидраргиллитом, монтмориллонитом, бианкитом и вудвардитом и церусситом. Сильнокислые высокоминерализованные растворы равновесны с алуногеном, монтмориллонитом и фиброферритом, содержание которых увеличивается при изменении объемных соотношений вода-порода, а также с гипсом и бианкитом, концентрации которых в тех же геохимических условиях среды, снижаются.

На основании вышеприведенных данных можно констатировать, несмотря на то, что в настоящее время прекращена эксплуатация большинства горнопромышленных объектов, это не означает прекращения воздействия геологических объектов (горные породы, минералы) и горнорудных объектов (горные выработки, хвостохранилища) на окружающую среду. Оно продолжается в результате гипергенной переработки выработками сульфидов, вскрытых горными или складированных в виде сульфидсодержащих отходов. Учитывая, что в зоне гипергенеза изменения протекают с большими скоростями, чем в естественных геологических условиях, их воздействие на природные ландшафты, скорее всего, будет увеличиваться. А проблемы, связанные с загрязнением окружающей среды В районах развития горнопромышленного производства, еще длительное время не утратят своей актуальности.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. О Кавалеровском муниципальном районе (с изменениями на 05.05.2015): закон Приморского края от 6 декабря 2004 года № 180-КЗ // Ведомости Законодательного собрания Приморского края. – 2004. – № 76. – 55 с.

2. ГОСТ 14180-80. Руды и концентраты цветных металлов. Методы отбора и подготовки проб для химического анализа и определения влаги. – М. : Стандартинформ, 2010. – 20 с.

3. ГОСТ 17.1.5.01-80. Охрана природы. Гидросфера. Общие требования к отбору проб донных отложений водных объектов для анализа на загрязненность. – М. : Изд-во стандартов, 2000. – 5 с.

4. ГОСТ 17.1.5.04-81. Охрана природы. Гидросфера. Приборы и устройства для отбора, первичной обработки и хранения проб природных вод. Общие технические условия. – М. : Изд-во стандартов, 2003. – 6 с.

5. ГОСТ 17.4.1.02-83. Охрана природы. Почвы. Классификация химических веществ для контроля загрязнения. – М.: Стандартинформ, 2008. – 4 с.

6. ГОСТ 17.5.1.01-83. Охрана природы. Рекультивация земель. Термины и определения. – М. : Изд-во стандартов, 2002. – 10 с.

7. СанПин 2.1.4.1074-01. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. – М. : Федеральный центр Госсанэпидемнадзора Минздрава России, 2002. – 62 с.

8. ГН 2.1.5.1315-03. Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования. – М. : Нефтяник, 2003. – 154 с.

9. Абрамова, В.А. Геоинформационное и физико-химическое моделирование геолого-геохимических процессов на сульфидных месторождениях в криолитозоне : автореф. дис. ... канд. геол.-минерал. наук : 25.00.35 / В.А. Абрамова. – Иркутск, 2015. – 25 с.

10. Абросимова, Н.А. Формы нахождения потенциально токсичных элементов в отвальных породах Ведугинского месторождения золота / Н.А. Абросимова, С.Б. Бортникова, А.В. Еделев // Горный журнал. – 2013. – № 5. – С. 35–42.

11. Авдонин, В.Н. Современное (техногенное) минералообразование на колчеданных месторождениях Урала / В.Н. Авдонин, Т.В. Федорова // Новые и малоизученные минералы и минеральные ассоциации Урала. – Свердловск: УНЦ АН СССР. – 1986. – С. 203–205.

12. Авченко, О.В. Основы физико-химического моделирования минеральных систем / О.В. Авченко, К.В. Чудненко, И.А. Александров; отв. ред. С.А. Щека; Дальневост. геол. ин-т ДВО РАН. – М. : Наука, 2009. – 229 с.

13. Алекин, О.А. Основы гидрохимии / О.А. Алекин – Л. : Гидрометеоиздат, 1970. – 440 с.

14. Анучин, А.М. Редкоземельные элементы в живых системах / А.М. Анучин // Вопросы биологической, медицинской и фармацевтической химии. – 2014. – Т. 12, № 9. – С. 39–46.

15. Аржанова, В.С. Влияние горнопромышленного техногенеза на речные воды / В.С. Аржанова // География и природные ресурсы. – 2010. – № 1. – С. 39–44.

16. Аржанова, В.С. Геохимия ландшафтов и техногенез / В.С. Аржанова, П.В. Елпатьевский – М. : Наука, 1990. – 195 с.

17. Бакланов, П.Я. Анализ состояния и перспектив развития муниципального образования Дальнегорский городской округ [Электронный ресурс] / П.Я. Бакланов. – Владивосток, 2014. – URL: http://dalnegorsk-mo.ru_2014.doc (дата обращения: 23.01.2017).

18. Балашов, Ю.А. Геохимия редкоземельных элементов / Ю.А. Балашов – М. : Наука, 1976. – 256 с.

19. Баскина, В.А. Магматизм рудоконтролирующих структур Приморья / В.А. Баскина – М. : Наука, 1982. – 260 с.

20. Беликов, С.Е. Водоподготовка : справочник / под ред. С.Е. Беликова. – М. : Аква-Терм, 2007. – 240 с.

21. Белогуб, Е.В. Гипергенез сульфидных месторождений Южного Урала : автореф. дис. ... д-ра геол.-минерал. наук : 25.00.05 / Е. В. Белогуб. – СПб., 2009. – 40 с.

22. Белогуб, Е.В. Сульфаты Урала: распространенность, кристаллохимия, генезис / Е.В. Белогуб, Е.П. Щербакова, Н.К. Никандрова. – М. : Наука, 2007. – 160 с.

23. Благодарева, Н.С. Микроминералы сульфидных руд Дальнегорского района / Н.С. Благодарева // Геохимия вулканоплутонических ассоциаций и эндогенные месторождения Дальнего Востока. – Владивосток : ДВНЦ АН СССР, 1977. – С. 69–74.

24. Блинов, И.А. Зональность техногенных сульфатных выцветов Блявинского и Яман-Касинского колчеданных месторождений: природные данные и эксперимент / И.А. Блинов, Е.В. Белогуб, М.Н. Маляренок // Литосфера. – 2013. – № 5. – С. 111–121.

25. Бобров, В.А. Редкоземельные элементы в магматических породах / отв. ред.: В.А. Бобров, Ю.Г. Щербаков // Сборник научных трудов АН СССР. – Новосибирск, 1988. – 155 с.

26. Бортникова, С.Б. Геохимия техногенных систем / С.Б. Бортникова, О.Л. Гаськова, Е.П. Бессонова. – Новосибирск: ГЕО, 2006. – 169 с.

27. Бортникова, С.Б. Геохимия тяжелых металлов в техногенных системах (вопросы формирования, развития и взаимодействия с компонентами экосферы) : автореф. дис. д-ра. геол.-минерал. наук : 25.00.09 / С. Б. Бортникова. – Новосибирск, 2001. – 48 с.

28. Брилев, Ю.Н. Особенности геохимических полей скарновополиметаллических месторождений Дальнегорского рудного поля / Ю.Н. Брилев // Новое в геологии Дальнегорского рудного района. – Владивосток, 1984. – С. 137–143.

29. Букаты, М.Б. Разработка программного обеспечения в области нефтегазовой гидрогеологии / М.Б. Букаты // Разведка и охрана недр. – 1997. – № 2. – С. 37–39.

30. Булавко, Н.В. Минералогия скарновых месторождений Дальнегорского рудного поля (Приморье) / Н.В. Булавко – Владивосток : Дальневост. кн. изд-во, 2000. – 219 с.

31. Булах, А.Г. Руководство и таблицы для расчета формул минералов / А.Г. Булах – М. : Недра, 1967. – 144 с.

32. Бычинский, В.А. Физико-химическое моделирование в нефтегазовой геохимии. Ч. 1 : Теория и методология физико-химического моделирования : учеб. пособие / В.А. Бычинский, В.П. Исаев, А.А. Тупицын. – Иркутск : Иркут. ун-т, 2004[а]. – 131 с.

33. Бычинский, В.А. Физико-химическое моделирование в нефтегазовой геохимии. Ч. 2 : Модели гетерогенных систем : учеб. пособие / В.А. Бычинский, В.П. Исаев, А.А. Тупицын. – Иркутск : Иркут. ун-т, 2004[б]. – 158 с.

34. Валуй, Г.А. Петрологические особенности гранитоидов Восточно-Сихотэ-Алинского вулканического пояса / Г.А. Валуй // Тихоокеанская геология. – 2004. – Т. 23, № 3. – С. 37–51.

35. Валуй, Г.А. Петрология малоглубинных гранитоидов Восточно-Сихотэ-Алинского вулканического пояса : дис... д-ра геол.-минерал. наук : 04.00.08 / Г.А. Валуй. – Владивосток, 1999. – 171 с.

36. Василенко, Г.П. Николаевское месторождение / Г.П. Василенко, С.П. Гарбузов // Геодинамика, магматизм и металлогения Востока России : в 2 кн. Кн. 2 / под ред. А.И. Ханчука. – Владивосток : Дальнаука, 2006. – С. 643–647.

37. Вах, Е.А. Геохимия и распределение редкоземельных элементов в подземных водах и водовмещающих породах Фадеевского месторождения минеральных вод / Е.А. Вах, Н.А. Харитонова // Региональная геология и металлогения. – 2010. – № 43. – С.106–113.

38. Вах, Е.А. Редкоземельные элементы в природных и техногенных водах Дальнего Востока России : автореф. дис. ...канд. геол.-минерал. наук : 25.00.09 / Е.А. Вах. – Томск, 2012. – 21 с.

39. Вернадский, В.И. Биосфера. I-II // Избр. соч. Т. 5 / [под ред. А.П. Виноградова]. – М. : Изд-во АН СССР, 1960. – С. 5–102.

40. Вернадский, В.И. Химическое строение биосферы Земли и ее окружения / В.И. Вернадский. – М. : Наука, 1965. – 374 с.

41. Гаев, А.Я. Техногенез и формирование геологической среды на примере Гайского горно-обогатительного комбината / А.Я. Гаев, Т.И. Якшина. – Пермь : Изд-во Перм. ун-та, 1996. – 200 с.

42. Гарбузов, П.С. Морфология и степень минерализации – главнейшие факторы систематики промышленных типов месторождений Дальнегорского района / П.С. Гарбузов // Новое в геологии Дальнегорского рудного района. – Владивосток, 1984. – С. 111–124.

43. Гаськова, О.Л. Геохимический состав природных вод в районе расположения пункта хранения низкоактивных радиоактивных отходов / О.Л. Гаськова, А.Е. Богуславский, Т.Г. Сиротенко // Водные ресурсы. – 2011. – Т. 38, № 5. – С. 553–563.

44. Гаськова, О.Л. Процессы химического выветривания минералов сульфидсодержащих хвостохранилищ: моделирование состава вадозовых вод и вторичных фаз / О.Л. Гаськова, С.Б. Бортникова, Г.П. Широносова // Химия в интересах устойчивого развития. – 2007. – Т. 15, № 3.– С. 333–346.

45. Геологическая эволюция и самоорганизация системы «вода-порода» : в 5 т. Т. 1 : Система «вода-порода» в земной коре: взаимодействие, кинетика, равновесие, моделирование / В.А. Алексеев [и др.] ; отв. ред. С.Л. Шварцев; ОИГГМ СО РАН [и др.]. – Новосибирск : Изд-во СО РАН, 2005. – 244 с.

46.Геологическая эволюция и самоорганизация системы «вода-порода»: в 5 т. Т. 2: Система «вода-порода» в условиях зоны гипергенеза / С.Л. Шварцев [и др.]; отв. ред. Б.Н. Рыженко; ИНГГ СО РАН [и др.]. – Новосибирск: Изд-во СО РАН, 2007. – 389 с.

47. Геология и полезные ископаемые Приморского края / А.И. Ханчук [и др.]. – Владивосток : Дальнаука, 1995. – 66 с.

48. Геохимия подземных вод. Теоретические, прикладные и экологические аспекты / С.Р. Крайнов, Б.Н. Рыженко, В.М. Швец; отв. ред. Н.П. Лаверов. – М.: Наука, 2004. – 677 с.

49. Гидрогеология СССР : Сводный том в 5-ти вып. Вып. 1 : Основные закономерности распространения подземных вод на территории СССР. – М. : Недра, 1976. – 656 с.

50. Гидрогеология СССР. Т. 25 : Приморский край. – М. : Недра, 1968. – 520 с.

51. Гидрогеохимические поиски в условиях Приморского края / Б.А. Колотов [и др.]. – Владивосток, 1970. – 224 с.

52. Гладковский, А.К. О минералах, образовавшихся при выветривании бокситов Североуральского бассейна / А.К. Гладковский, Е.С. Гуткин // Труды Свердловского горного института. – 1960. – № 35. – С. 120–144.

53. Глазовская, М.А. Геохимия природных и техногенных ландшафтов СССР / М.А. Глазовская – М. : Высшая школа, 1988. – 328 с.

54. Глотов, В.Е. Хвостохранилище Карамкенского горнометаллургического комбината: инженерно-геологические проблемы и причины аварийного разрушения / В.Е. Глотов, Л.П. Глотова, А.П. Бульбан, И.Д. Митрофанов // Вестник ДВО РАН. – 2010. – № 3 (151). – С. 31–39.

55. Говоров, И.Н. Геохимические основы металлогении олова / И.Н. Говоров // Основные проблемы металлогении Тихоокеанского рудного пояса. – Владивосток, 1970. – С. 85–92.

56. Говоров, И.Н. Геохимия рудных районов Приморья / И.Н. Говоров. – М. : Наука, 1977. – 252 с.

57. Говорушко, С.М. Влияние человека на природу : иллюстрированный атлас мира / С.М. Говорушко. – Владивосток : Изд-во Дальневост. федерал. ун-та, 2016. – 375 с.

58. Говорушко, С.М. Эколого-географические основы оценки взаимодействия природы и общества : автореф. дис. ... д-ра геогр. наук : 25.00.36 / С.М. Говорушко. – Барнаул, 2002. – 50 с.

59. Голозубов, В.В. Тектоника юрских и нижнемеловых комплексов северозападного обрамления Тихого океана : дис. ... д-ра геол.-минерал. наук : 25.00.03 / В.В. Голозубов. – Владивосток, 2004. – 326 с.

60. Гольдберг, В.М. Взаимосвязь загрязнения подземных вод и природной среды / В.М. Гольдберг. – Л. : Гидрометеоиздат, 1987. – 248 с.

61. Гоневчук, В.Г. Оловоносные системы Дальнего Востока: магматизм и рудогенез / В.Г. Гоневчук – Владивосток : Дальнаука, 2002. – 295 с.

62. Горбачев, И.В. Влияние хвостохранилищ Алтайского горнообогатительного комбината на окружающую среду / И.В. Горбачев, С.В. Бабошкина // Ползуновский вестник. – 2005. – № 4, ч. 2. – С. 179–182.

63. Грехнев, Н.И. Геохимическая трансформация гипогенных минералов в хвостохранилищах юга Дальнего Востока / Н.И. Грехнев // Экологическая геохимия. – 2011. – № 1 (11). – С. 17–23.

64. Грехнев, Н.И. Геохимия техногенеза Дальнегорского горнопромышленного района южного Приморья России / Н.И. Грехнев, Э.Я. Жовинский // Минералогический журнал. – 2009. – № 4. – С. 77–82.

65. Грехнев, Н.И. Эколого-геохимические аспекты оценки техногенного загрязнения геосистем горнорудных районов юга Дальнего Востока / Н.И. Грехнев // Влияние процессов горного производства на объекты природной среды. – Владивосток : Дальнаука, 1998. – С. 32–45.

66. Гробов, С.П. Зональность, литологический и структурный контроль промышленных руд на Смирновском месторождении / С.П. Гробов // Генетические модели месторождений и прогнозирование в оловорудных районах. – Владивосток : ДВО АН СССР, 1989. – С. 117–119.

67. Доклад об экологической ситуации в Приморском крае в 2012 году / Администрация Приморского края. – Владивосток, 2013. – 158 с.

68. Доклад об экологической ситуации в Приморском крае в 2015 году / Администрация Приморского края. – Владивосток, 2016. – 269 с.

69. Дривер, Дж. Геохимия природных вод / Дж. Дривер – М. : Мир, 1985. – 440 с.

70. Дубинин, А.В. Геохимия редкоземельных элементов в океане / А.В. Дубинин ; [отв. ред. И.И. Волков] ; Ин-т океанологии им. П.П. Ширшова РАН. – М. : Наука, 2006. – 360 с.

71. Еделев, А.В. Прогнозная оценка состава дренажных вод, взаимодействующих с сульфидсодержащим веществом / А.В. Еделев // Геология и геофизика. – 2013. – Т. 54, № 1.– С. 144–157.

72. Еделев, А.В. Эколого-геохимическая прогнозная оценка состава дренажных вод (на примере отвальных пород Ведугинского и Тасеевского месторождений) : автореф. дис. ... канд. геол.-минерал. наук : 25.00.09 / А.В. Еделев. – Новосибирск, 2013. – 17 с.

73. Елохина, С.Н. Техногенез затопленных рудников Урала : дис. ...д-ра. геол.минерал. наук : 25.00.36 / С.Н. Елохина. – Екатеринбург, 2014. – 352 с.

74. Елпатьевский, П.В. Геохимические особенности природных и техногенноизмененных геосистем / П.В. Елпатьевский, В.С. Аржанова // Вестник ДВО РАН. – 1996. – № 3. – С. 53–61.

75. Елпатьевский, П.В. Горнопромышленный комплекс как фактор формирования химического состава вод (на примере Краснореченского ГОКа) / П.В. Елпатьевский, Т.Н. Луценко // Международное совещание «Научные и практические аспекты добычи цветных и благородных металлов». Т. 2 : тез. докл. – Хабаровск, 2000. – С. 407–415.

76. Елпатьевский, П.В. Мышьяк в техногенных и природно-техногенных компонентах в долине реки Рудной (Приморский край) / П.В. Елпатьевский, Л.Т. Ковековдова // Вестник ДВО РАН. – 2001. – № 5. – С. 78–86.

77. Емлин, Э.Ф. Техногенез колчеданных месторождений Урала / Э.Ф. Емлин. – Свердловск : Изд-во Урал. ун-та, 1991. – 254 с.

78. Зверев, В.П. Роль подземных вод в миграции химических элементов / В.П. Зверев – М. : Недра, 1982. – 182 с.

79. Зверева, В.П. Редкоземельные элементы в рудничных, шламовых и речных водах Кавалеровского и Дальнегорского районов Дальнего Востока / В.П. Зверева, Л.Т. Крупская // Экологическая химия. – 2014. – № 23 (4). – С. 191–197.

80. Зверева, В.П. Техногенные воды Комсомольского, Кавалеровского и Дальнегорского горнорудных районов Дальнего Востока и их воздействие на гидросферу / В.П. Зверева, Л.Т. Крупская // Экологическая химия. – 2012. – Т. 21, № 3. – С. 144–153.

81. Зверева, В.П. Физико-химическое моделирование гипергенных процессов, протекающих в сульфидсодержащих горнопромышленных техногенных системах юга Дальнего Востока: монография / В.П. Зверева, А.М. Костина, А.Д. Пятаков, К.Р. Фролов, А.И. Лысенко. – Владивосток : Изд-во Дальневост. федерал. ун-та, 2013. – 228 с.

82. Зверева, В.П. Экологические последствия гипергенных процессов на оловорудных месторождениях Дальнего Востока / В.П. Зверева – Владивосток : Дальнаука, 2008. – 165 с.

83. Зональность и глубинность оловянного оруденения (на примере Кавалеровского района) / Е.А. Радкевич [и др.]. – М. : Наука, 1980. – 200 с.

84. Иванов, В.В. Экологическая геохимия элементов : справочник : в 6-ти кн. Кн.6: Редкие *f*–элементы / В.В. Иванов ; [под ред. Э.К. Буренкова]. – М. : Экология, 1997. – 607 с.

85. Индуцированный лантаном и церием окислительный стресс у погруженных водных растений Hydrilla Verticillata / К. Ван [и др.] // Физиология растений. – 2007. – Т. 54, № 5. – С. 781–785.

86. Интерпретация геохимических данных : учеб. пособие / [под ред. Е.В. Склярова]. – М. : Интермет Инжиниринг, 2001. – 288 с.

87. Казаченко, В.Т. Марганцовистые и железистые метасоматиты Южного Приморья / В.Т. Казаченко – М. : Наука, 1979. – 153 с.

88. Казаченко, В.Т. Петрология и минералогия гидротермальных марганцевых пород Востока России / В.Т. Казаченко. – Владивосток : Дальнаука, 2002. – 250 с.

89. Казаченко, В.Т. Южное свинцово-цинковое месторождение / В.Т. Казаченко // Геодинамика, магматизм и металлогения Востока России : в 2 кн. Кн. 2 / [под ред. А.И. Ханчука]. – Владивосток : Дальнаука, 2006. – С. 673–676.

90. Казьмин, Л.А. Расчет химических равновесий поликомпонентных гетерогенных систем, когда число фаз превышает число независимых компонентов в исходных условиях методом минимизации свободной энергии (Программа «Селектор») / Л.А. Казьмин, О.А. Халиуллина, И.К. Карпов // Алгоритмы и программы. – 1975. – № 3. – С. 18–19.

91. Калинников, В.Т. Пути снижения отрицательного влияния на окружающую среду сульфидсодержащих отходов / В.Т. Калинников, В.Н. Макаров, Д.В. Макаров // Геоэкология. – 2002. – № 5. – С. 425–435.

92. Карпов, И.К. Физико-химическое моделирование на ЭВМ в геохимии / И.К. Карпов. – Новосибирск : Наука, 1981. – 247 с.

93. Кемкин, И.В. Геодинамическая эволюция Сихотэ-Алиня и Япономорского региона в мезозое / И.В. Кемкин ; [отв. ред. А.И. Ханчук] – М. : Наука, 2006. – 258 с.

94. Кемкин, И.В. Строение и возраст кремнисто-терригенных отложений нижней структурной единицы Таухинского террейна (Южный Сихотэ-Алинь) / И.В. Кемкин, Р.А. Кемкина // Тихоокеанская геология. – 2004. – Т. 23, № 5. – С. 68–80.

95. Кемкина, Р.А. Вещественный состав руд и минералого-геохимическая методика оценки потенциального загрязнения окружающей среды токсичными

элементами (на примере Прасоловского Au-Ag месторождения) / Р.А. Кемкина, И.В. Кемкин. – Владивосток : Дальнаука, 2007. – 212 с.

96. Кемкина, Р.А. Оценка и прогноз загрязнения окружающей среды токсичными элементами при отработке золоторудных объектов (на примере Прасоловского месторождения, о. Кунашир) : автореф. дис. ... канд. геол.-минерал. наук : 25.00.36 / Р.А. Кемкина. – Владивосток, 2006. – 25 с.

97. Кирюхин, В.А. Особенности миграции рудных элементов в условиях Нижнего Приамурья / В.А. Кирюхин, Н.Б. Никитина, В.Н. Шемякин // Гидрогеохимические методы поисков рудных месторождений. – Новосибирск : Наука, 1982. – С. 54–57.

98. Колотов, Б.А. О специфике форм миграции микрокомпонентов в подземных водах / Б.А. Колотов, А.М. Эленбоген // Доклады АН СССР. – 1974. – Т. 216, № 1. – С. 187–190.

99. Копылова, Г.Н. О генезисе и механизмах формирования гидрогеохимических аномалий в изменениях состава подземных вод под влиянием сейсмичности / Г.Н. Копылова, Ю.Г. Копылова, Н.В. Гусева // Материалы региональной научной конференции «Вулканизм и связанные с ним процессы». – Петропавловск-Камчатский : ИвиС ДВО РАН, 2014. – С. 181–186.

100. Кораблев, Г.Г. Современное минералообразование в хранилищах отходов обогащения колчеданных руд Южного Урала / Г.Г. Кораблев, С.М. Ледин, М.Л. Усманов, Е.П. Щербакова // Уральский минералогический сборник. – 1995. – № 4. – С. 127–137.

101. Корнеева, Т.В. Геохимия взаимодействия рудничного дренажа с природными водоемами как естественными гидрогеохимическими барьерами : автореф. дис. ... канд. геол.-минерал. наук : 25.00.09 / Т.В. Корнеева. – Новосибирск, 2010. – 19 с.

102. Король, Р.В. Связь полиметаллических месторождений Тетюхинского района с вулканизмом / Р.В. Король // Вопросы геологии, геохимии и металлогении северозападного сектора Тихоокеанского пояса. – Владивосток, 1970. – С. 199–301.

103. Король, Р.В. Структура, магматизм и свинцово-цинковое оруденение Дальнегорского рудного района Приморья : автореф. дис. ... канд. геол.-минерал. наук : 04.00.14 / Р.В. Король. – Владивосток, 1975. – 25 с.

104. Костина, А.М. Оценка экологического состояния горнопромышленной техногенной системы оловосульфидных месторождений Комсомольского района Дальнего Востока методом физико-химического моделирования : автореф. дис. ... канд. хим. Наук : 03.02.08 / А.М. Костина. – Владивосток, 2011. – 24 с.

105. Крайнов, С.Р. Геохимия подземных вод хозяйственно-питьевого назначения / С.Р. Крайнов, В.М. Швец. – М. : Недра, 1987. – 237 с.

106. Крайнов, С.Р. Геохимия подземных вод. Теоретические, прикладные и экологические аспекты / С.Р. Крайнов, Б.Н. Рыженко, В.М. Швец. – М. : Наука, 2004. – 677 с.

107. Кринари, Г.А. Роль окислительных процессов при выветривании слюд / Г.А. Кринари, Л.И. Бакирова, Р.А. Манапов // Кристаллофизика минералов. – Казань, 1976. – С. 26–30.

108. Кроик, А.А. Физико-химические процессы в окружающей среде и использование горных пород для снижения загрязнения тяжелыми металлами в условиях техногенеза : дис. ... д-ра геол. наук : 21.06.01 / А.А. Кроик. – Днепропетровск, 2004. – 290 с.

109. Крысанов, Е.Ю. Влияние низких концентраций нанокристаллического диоксида церия на эмбриотоксичность доксорубицина для рыб / Е.Ю. Крысанов, Т.Б. Демидова // Доклады Рос. акад. наук. – 2012. – Т. 443, № 4. – С. 523-525.

110. Линник, П.Н. Формы миграции металлов в пресных поверхностных водах / П.Н. Линник, Б.И. Набиванец. – Л. : Гидрометеоиздат, 1986. – 272 с.

111. Линник, Р.П. Методы исследования сосуществующих форм металлов в природных водах / Р.П. Линник, П.Н. Линник, О.А. Запорожец // Методы и объекты химического анализа. – 2006. – № 1. – С. 4–26.

112. Липина, Л.Н. Геоэкологическая оценка состояния компонентов природной среды при рудной золотодобыче (на примере Многовершинного ГОКа) : автореф. дис. ... канд. техн. наук : 25.00.36 / Л.Н. Липина. – Иркутск, 2012. – 20 с.

113. Лукьянова, С.Ю. Геоэкологическое обоснование технологии фильтрационной очистки карьерных вод в массивах вскрышных пород : автореф. дис. ... канд. техн. наук : 25.00.16 / С.Ю. Лукьянова. – Кемерово, 2013. – 18 с.

114. Мазухина, С.И. Влияние техногенных стоков на физико-химические характеристики пресноводного водоема / С.И. Мазухина // Вестник МГТУ. – 2002. – Т. 5, № 2. – С. 253–260.

115. Мазухина, С.И. Формирование химического состава природных и антропогенно измененных вод Кольского полуострова : автореф. дис. ... д-ра техн. наук: 25.00.27 / С.И. Мазухина. – Апатиты, 2016. – 56 с.

116. Макаров, А.Б. Техногенные месторождения / А.Б. Макаров // Соросовский образовательный журнал. – 2000. – № 9/10. – С. 65–74.

117. Макарова, Ю.А. Техногенез геологической среды Верхне-Пышминского узла: Средний Урал : автореф. дис. ... канд. геол.-минерал. наук / Ю.А. Макарова. – Екатеринбург, 2004. – 141 с.

118. Манзырев, Д.В. Вещественный состав и строение лежалых хвостов обогащения руд месторождения Шахтаминское / Д.В. Манзырев, А.Ю. Лавров // Вестник Забайкальского государственного ун-та. – 2016. – Т. 22, № 1. – С. 17–27.

119. Матюнин, А.П. Магматизм Кавалеровского и Верхне-Арминского оловорудных районов : автореф. дис. ...канд. геол.-минерал. наук : 04.00.08 / А.П. Матюнин. – Владивосток, 1988. – 22 с.

120. Методические указания по расчету платы за неорганизованный сброс загрязняющих веществ в водные объекты, утвержденных Госкомэкологией РФ 29.12.1998 г. – М., 1998. – 18 с.

121. Минеев, Д.А. Лантаноиды в минералах / Д.А. Минеев – М. : Недра, 1969. – 267 с.

122. Митрофанов, Н.П. Модель месторождения олова касситерит-силикатносульфидной формации / Н.П. Митрофанов, А.И. Федотов // Генетические модели месторождений и прогнозирование в оловорудных районах. – Владивосток : ДВО АН СССР, 1989. – С. 67–74.

123. Михайлов, В.А. Горбушинская серия Дальнегорского рудного района / В.А. Михайлов, Ю.Г. Волохин, В.П. Парняков // Новые данные по стратиграфии

Приморского сектора Япономорского региона. – Владивосток : ДВНЦ АН СССР, 1986. – С. 28–36. – (Препринт / ДВНЦ АН СССР).

124. Михайлов, В.А. Магматизм вулканотектонических структур южной части Восточно-Сихотэ-Алинского вулканического пояса / В.А. Михайлов. – Владивосток : ДВО АН СССР, 1989. – 172 с.

125. Михайлов, В.А. Строение и условия становления покровных структур Прибрежной зоны Приморья / В.А. Михайлов, А.А. Врублевский, Ю.П. Юшманов // Тихоокеанская геология. – 1987. – № 1.– С. 83–91.

126. Моисеенко, В.Г. Редкие и рассеянные элементы скарново-полиметаллических руд – резерв комплексного освоения Николаевского месторождения Приморья / В.Г. Моисеенко, Л.И. Рогулина // Доклады Рос. акад. наук. – 2003. – Т. 389, № 3. – С. 387–389.

127. Морозова, О.В. Разработка метода снижения загрязнения окружающей среды стоками хвостохранилищ с применением технологии кислотного выщелачивания : автореф. дис. ... канд. геол.-минерал. наук : 25.00.36 / О.В. Морозова. – М., 2007. – 115 с.

128. Неволин, П.Л. Геодинамика формирования структур месторождений Кавалеровского рудного района / П.Л. Неволин. – Владивосток : Дальнаука, 1995. – 132 с.

129. Недоливко, Н.М. Петрографические исследования терригенных и карбонатных пород-коллекторов : учеб. пособие / Н.М. Недоливко, А.В. Ежова. – Томск: Изд-во Томск. политехн. ун-та, 2012. – 172 с.

130.Оводова, Е.В. Геохимия металлов в гидрогеосистемах Дальнегорского рудного района (Приморский край, Россия) / Е.В. Оводова, А.В. Зиньков, Л.А. Сальникова // Современные технологии и развитие политехнического образования : Междунар. науч. конф. – Владивосток, 2015. – С. 224–227.

131. Оводова, Е.В. Геохимия хвостохранилищ Краснореченской обогатительной фабрики (Дальнегорский район, Приморский край) / Е.В. Оводова, И.А. Тарасенко, Н.А. Нагорнова, Л.А. Сальникова // Вестник ДВО РАН. – 2016. – № 5. – С. 43–51.

132. Оводова, Е.В. Гидрогеохимические особенности природных и техногенных вод Дальнегорского рудного района (Приморье) / Е.В. Оводова, А.В. Зиньков, Л.А. Сальникова // Геологическая эволюция взаимодействия воды с горными породами : материалы Второй Всерос. конф. с междунар. участием. – Владивосток, 2015. – С. 298–301.

133. Оводова, Е.В. Оценка влияния горнопромышленного комплекса Кавалеровского рудного района на состояние подземных вод / Е.В. Оводова, Е.В. Горобейко // Вестник Инженерной школы ДВФУ. – 2014. – № 1. – С. 40–46.

134. Оводова, Е.В. Распределение редкоземельных элементов в природных и техногенных водах бассейна реки Рудной (Приморье) / Е.В. Оводова, Е.В. Горобейко // Современные исследования в геологии. – СПб., 2015. – С. 100–102.

135. Оводова, Е.В. Техногенное минералообразование в хвостохранилищах Краснореченской обогатительной фабрики (Приморский край, Россия) / Е.В. Оводова, И.А. Тарасенко, А.В. Поселюжная, Я.Е. Тагильцев // Технологическая платформа «Твердые полезные ископаемые»: технологические и экологические проблемы отработки природных и техногенных месторождений : II междунар. науч.-практ. конф. – Екатеринбург : ИГД УрО РАН, 2015. – С. 147–154.

136. Озябкин, В.Н. Программные имитаторы для моделирования геохимической миграции неорганических загрязнений / В.Н. Озябкин, С.В. Озябкин // Геоэкология. – 1996. – № 1. – С. 104–120.

137. Олейников, Б.В. Никельгексагидрит – новый минерал / Б.В. Олейников, С.Л. Шварцев, Н.Т. Мандрикова, Н.Н. Олейникова // Записки Всесоюзного минералогического общества. – 1965. – Вып. 5, ч. 24. – С. 534–547.

138. Отходы Краснореченской обогатительной фабрики (Приморский край, Россия): геохимия и минералогия / Тарасенко И.А. [и др.] // Вестник Моск. ун-та. Сер. 4, Геология. – 2017. – № 2. – С. 35–41.

139. Официальный сайт ГМК «Дальполиметалл». URL: http://www.dalpolimetall.ru (дата обращения: 07.05. 2015).

140. Перельман, А.И. Геохимия природных вод / А.И. Перельман – М. : Наука, 1982. – 151 с.

141. Перельман, А.И. Окислительно-восстановительные условия – главный геохимический параметр подземных вод зоны гипергенеза / А.И. Перельман // Гидрогеохимические методы поисков рудных месторождений. – Новосибирск : Наука,1982. – С. 30–33.

142. Перечень ПДК и ОБУВ вредных веществ для воды рыбохозяйственных водоемов. – М. : Изд-во ВНИРО, 1997. – 257 с.

143. Пилипенко, П.П. Сульфаты горы Соколовой у Саратова / П.П. Пилипенко // Ученые записки СГУ. – 1927. – Т. 6, вып. 3. – С. 169–179.

144. Плюснин, А.М. Природные гидрогеологические системы, формирование химического состава и реакция на техногенное воздействие (на примере Забайкалья) / А.М. Плюснин, В.И. Гунин. – Улан-Удэ : Изд-во БНЦ СО РАН, 2001. – 137 с.

145. Поповиченко, В.В. Взаимоотношения магматизма и оруденения в Кавалеровском рудном районе / В.В. Поповиченко // Генетические модели месторождений и прогнозирование в оловорудных районах. – Владивосток : ДВО АН СССР, 1989. – С. 45–58.

146. Потапов, С.С. К минералогии горелых отвалов Кизеловского угольного бассейна (Пермский край) / С.С. Потапов, Н.Г. Максимович // Седьмые Всероссийские научные чтения памяти ильменского минералога В.О. Полякова. – Миасс, 2006. – С. 56–67.

147. Пустов, Ю.К. Скарново-рудные минеральные ассоциации, условия их образования и особенности распределения в пределах Партизанской структуры (Дальнегорский рудный район) : автореф. дис. ... канд. геол.-минерал. наук : 04.00.11 / Ю.К. Пустов. – М., 1990. – 25 с.

148. Раткин, В.В. Металлогения свинца и цинка Тихоокеанской окраины Азии : дис. ... д-ра геол.- минерал. наук : 04.00.11 / В.В. Раткин. – Владивосток, 1995. – 364 с.

149. Раткин, В.В. Олово-цинковое оруденение Восточно-Сихотэ-Алинского вулканического пояса / В.В. Раткин, Л.Ф. Симаненко, Д.Н. Кузнецов, Р.В. Король // Геология рудных месторождений. – 1990. – № 2. – С. 68–77.

150. Римская-Корсакова, М.Н. Определение РЗЭ в сульфидных минералах методом ICP-MS после ионообменного концентрирования / М.Н. Римская-Корсакова, А.В. Дубинин, В.М. Иванов // Журнал аналитической химии. – 2003. – Т. 58, № 9. – С. 975–979.

151. Рогулина, Л.И. Геохимия редких элементов и зональность оруденения Николаевского полиметаллического месторождения: Приморский край : автореф. дис. ... канд. геол.-минерал. наук : 25.00.09 / Л.И. Рогулина. – Благовещенск, 2003. – 32 с.

152. Рогулина, Л.И. Платиновая металлоносность Дальнегорского рудного узла (Приморье) / Л.И. Рогулина, Е.Н. Воропаева, Н.А. Бородина, Е.Е. Зайцева // Минерагения Северо-Восточной Азии : материалы II Всерос. науч.-практ. конф., Улан-Удэ. – Улан-Удэ : ИД «Экос», 2011. – С. 133–135.

153. Рогулина, Л.И. Распределение редких и рассеянных элементов в полиметаллических рудах месторождения Южного (Приморье) / Л.И. Рогулина, А.Н. Седых, Л.Н. Храмцова // Новое в геологии Дальнегорского рудного района. – Владивосток, 1984. – С. 171–176.

154. Рогулина, Л.И. Распределение редких элементов, висмута и серебра в рудах и концентратах Николаевского скарново-полиметаллического месторождения (Дальнегорск, Приморье) / Л.И. Рогулина, В.А. Кропотин, Е.Н. Воропаева // Литосфера. – 2007. – № 3. – С. 109–115.

155. Рыженко, Б.Н. Оценка кислотного дренажа на рудных месторождениях / Б.Н. Рыженко, Т.П. Белова, А.Е. Рябенко, Е.В. Черкасова // Геоэкология, инженерная геология, гидрогеология, геокриология. – 2015. – № 5.– С. 415–424.

156. Рыженко, Б.Н. Физико-химическое компьютерное моделирование извлечения нормируемых элементов из загрязненных объектов / Б.Н. Рыженко, Е.В. Черкасова // Геохимия. – 2012. – № 10. – С. 928–948.

157. Садардинов, И.В. Проект «Осушение и гидрозащита карьера датолитовых руд ОАО «Бор». Осушение и водоотлив». Т. 1 : Пояснительная записка / И.В. Садардинов, А.К. Витюк. – Владивосток, 2004. – 68 с.

158. Саева, О.П. Взаимодействие техногенных дренажных потоков с природными геохимическими барьерами : автореф. дис. ... канд. геол.-минерал. наук : 25.00.09 / О.П. Саева. – Новосибирск, 2015. – 17 с.

159. Салтыков, В.Ф. Гидробазалюмит из глин среднего апта (Саратовская область) / В.Ф. Салтыков // Записки Рос. минерал. о-ва. – 2009. – № 1. – С. 72–83.

160.Сиденко, Н.В. Миграция тяжелых металлов и мышьяка в зоне гипергенеза сульфидных отходов Берикульского золотодобывающего завода : автореф. дис. ... канд. геол.-минерал. наук : 25.00.09 / Н.В. Сиденко. – Новосибирск, 2001. – 20 с.

161. Симаненко, Л.Ф. Партизанское скарново-полиметаллическое месторождение: геология, минералогия, генезис (Таухинская металлогеническая зона, Сихотэ-Алинь) / Л.Ф. Симаненко, В.В. Раткин. – М. : Наука, 2008. – 158 с.

162. Соломин, Г.А. Расчеты равновесий на основе констант устойчивости комплексных соединений, методы вычисления коэффициентов активности ионов / Г.А. Соломин // Методы геохимического моделирования и прогнозирования в гидрогеологии. – М. : Недра, 1988. – С. 86–109.

163. Состав рудоносных растворов и источники бора Дальнегорского скарновоборосиликатного месторождения (Приморье, Россия) / В.А. Баскина [и др.] // Геология рудных месторождений. – 2009. – № 3. – С. 203–221. 164. Сунгатуллин, Р.Х. Влияние техногенеза на формирование современных кор выветривания и водоносных ареалов / Р.Х. Сунгатуллин // Геоэкология. – 2010. – № 6. – С. 494–502.

165. Тарасенко, И.А. Вовлечение хвостов обогатительных фабрик в хозяйственный оборот – одно из условий экологически безопасного развития региона / И.А. Тарасенко // Фундаментальные проблемы охраны окружающей среды : Дальневосточная регион. конф. молодых ученых. – Владивосток : Изд-во Дальневост. ун-та, 1997. – С. 20–24.

166. Тарасенко, И.А. Геохимические особенности состава и закономерности формирования подземных вод в природно-техногенных гидрогеологических структурах районов ликвидированных угольных шахт : дис. ... д-ра геол.-минерал. наук : 25.00.09 / И.А. Тарасенко. – Владивосток, 2014. – 327 с.

167. Тарасенко, И.А. Геохимия и минералогия лежалых хвостов обогащения (Дальнегорский рудный район, Приморский край, Россия) / И.А. Тарасенко, Е.В. Оводова, А.В. Зиньков, В.И. Петухов // Современные технологии и развитие политехнического образования : междунар. науч. конф. – Владивосток, 2015. – С. 263–267.

168. Тарасенко, И.А. Инженерно-экологические изыскания при оценке последствий ликвидации шахт в Раздольненском каменноугольном бассейне Приморского края / И.А. Тарасенко, А.В. Зиньков, Е.В. Оводова // Инженерные изыскания. – 2013. – № 3. – С. 28–37.

169. Тарасенко, И.А. Экологические последствия минералого-геохимических преобразований хвостов обогащения Sn-Ag-Pb-Zn руд (Приморье, Дальнегорский район) / И.А. Тарасенко, А.В. Зиньков. – Владивосток : Дальнаука, 2001. – 194 с.

170. Таухинский и Журавлевский террейны (Южный Сихотэ-Алинь) / В.В. Голозубов [и др.]. – Владивосток : ДВО РАН, 1992. – 83 с.

171. Тейлор, С.Р. Континентальная кора: ее состав и эволюция / С.Р. Тейлор, С.М. Мак-Леннон. – М. : Мир, 1988. – 384 с.

172. Томсон, И.Н. Металлогения рудных районов / И.Н. Томсон. – М. : Недра, 1988. – 215 с.

173. Усупаев, Ш.Э. Дозовые нагрузки излучения естественных радионуклидов и особенности пространственного размещения отходов (радионуклидов, металлов) горной промышленности Республики Кыргызстан / Ш.Э. Усупаев, Э.Э. Атыкенова, Л.Г. Бондарева // Наука. Техника. Технологии : политехн. вестн. – 2013. – № 2. – С. 43–48.

174. Федчина, Г.Н. Распределение элементов-примесей в галенитах и сфалеритах Николаевского скарново-полиметаллического месторождения (Приморье) / Г.Н. Федчина // Геохимия вулканоплутонических ассоциаций и эндогенные месторождения Дальнего Востока. – Владивосток : ДВНЦ АН СССР, 1977. – С. 73–75.

175. Ферсман, А.Е. Геохимия. Т. 1 / А.Е. Ферсман – Л. : Госхимтехиздат, 1934. – 324 с.

176. Финашин, В.К. Оловорудные месторождения Приморья / В.К. Финашин. – Владивосток: ДВНЦ АН СССР, 1986. – 174 с.

177. Хасанов, Р.Р. Редкоземельные элементы в породах кристаллического фундамента Татарского свода и реконструкция исходной природы метапелитов / Р.Р.

Хасанов, Р.Р. Хусаинов // Ученые записки Казанского университета. – 2011. – Т. 153, кн. 4. – С. 243–251.

178. Хвосты и хвостохранилища обогатительных фабрик / В.З. Козин [и др.] // Горный журнал. – 1996. – № 3/4. – С. 104–116.

179. Чантурия, В.А. Изменение нерудных минералов горнопромышленных отходов в процессе хранения под воздействием минеральных кислот / В.А. Чантурия, В.Н. Макаров, Д.В. Макаров // Инженерная экология. – 2000 [а]. – № 1. – С. 31–40.

180. Чантурия, В.А. Процессы окисления нерудных и сульфидных минералов в модельных экспериментах и на реальных хвостохранилищах / В.А. Чантурия, В.Н. Макаров, Д.В. Макаров // Горный журнал. – 2000 [б]. – № 4. – С. 55–58.

181. Чарыкова, М.В. Термодинамика арсенатов, селенитов и сульфатов в зоне окисления сульфидных руд. Термодинамические константы при стандартных условиях / М.В. Чарыкова, В.Г. Кривовичев, В. Депмайер // Записки Рос. минерал. о-ва. – 2009. – Т. 138, № 6. – С. 105–115.

182. Челноков, А.Н. Подземные минеральные воды Приморья: распространение, ресурсы и особенности формирования : автореф. дис. ... канд. геол.-минерал. наук: 04.00.06 / А.Н. Челноков. – Владивосток, 1997. – 25 с.

183. Чертко, Н.К. Геохимия и экология химических элементов: справочное пособие / Н.К. Чертко, Э.Н. Чертко. – Минск : Изд. центр БГУ, 2008. – 140 с.

184. Чесноков, Б.В. Мелантерит, фиброферрит и копиапит – новые минералы для Вишневых и Ильменских гор на Урале / Б.В. Чесноков // Минералы и парагенезисы минералов месторождений Урала. – Свердловск : УНЦ АН СССР, 1983. – С. 29–31.

185. Чесноков, Б.В. Минералогия техногенеза и минерально-сырьевые ресурсы Урала / Б.В. Чесноков. – Свердловск : Изд-во УрО АН СССР, 1988. – 151 с.

186. Чечель, Л.П. Основные формы водной миграции металлов в зоне гипергенеза вольфрамовых месторождений Агинского рудного узла (Восточное Забайкалье) / Л.П. Чечель // Вестник КРАУНЦ. – 2009. – Т. 2, № 14. – С. 153–158.

187. Чудаева, В.А. Миграция химических элементов в водах Дальнего Востока / В.А. Чудаева. – Владивосток : Дальнаука, 2002. – 392 с.

188. Чудненко, К.В. Краткая инструкция «Селектор – Windows – программное средство расчета химических равновесий минимизации термодинамических потенциалов» / К.В. Чудненко, И.К. Карпов. – Иркутск, 2003. – 90 с.

189. Чудненко, К.В. Термодинамическое моделирование в геохимии: теория, алгоритмы, программное обеспечение, приложения / К.В. Чудненко ; отв. ред. В.Н. Шарапов. – Новосибирск : Акад. изд-во «Гео», 2010. – 287 с.

190. Шатров, В.А. Лантаноиды как индикаторы обстановок осадкообразования (на основе анализа опорных разрезов протерозоя и фанерозоя Восточно-Европейской платформы) : автореф. дис. ... д-ра геол.-минерал. наук : 25.00.09 / В.А. Шатров. – М., 2007. – 44 с.

191. Шваров, Ю.В. Алгоритмизация численного равновесного моделирования динамических геохимических процессов / Ю.В. Шваров // Геохимия. – 1999. – № 6. – С. 646–652.

192. Шварцев, С.Л. Взаимодействие в системе вода-порода как новая база для развития гидрогеологии / С.Л. Шварцев // Тихоокеанская геология. – 2008. – Т. 27, № 6. – С. 5–16.

193. Шварцев, С.Л. Гидрогеохимия зоны гипергенеза / С.Л. Шварцев. – М. : Недра, 1998. – 366 с.

194. Шварцев, С.Л. Общая гидрогеология : учебник для вузов / С.Л. Шварцев. – М. : Недра, 1996. – 423 с.

195. Шварцев, С.Л. Равновесно-неравновесный характер системы вода-горная порода / С.Л. Шварцев // Геологическая эволюция и самоорганизация системы вода-порода. Т. 1 : Система вода-порода в земной коре: взаимодействие, кинетика, равновесие, моделирование. – Новосибирск : СО РАН, 2005. – С. 108–160.

196. Шматков, Г.Г. Рекомендации по безопасности хвостохранилищ [Электронный ресурс] / Г.Г. Шматков. – Днепропетровск, 2012. – URL: www.unece.org/fileadmin/DAM/env/teia/water (дата обращения: 11.08.2016).

197. Шулькин, В.М. Изменчивость химического состава речных вод Приморья как индикатор антропогенной нагрузки и ландшафтной структуры водосборов / В.М. Шулькин // Вестник ДВО РАН. – 2009. – № 4. – С. 103–114.

198. Шулькин, В.М. Металлы в речных водах Приморья / В.М. Шулькин, Н.Н. Богданова, В.И. Киселев // Геохимия. – 2007. – № 1. – С. 79–88.

199. Щербакова, Е.П. Сульфатизация земной коры – последствие технической деятельности человека / Е.П. Щербакова // Уральский минералогический сборник. – 1995. – № 5. – С. 23–27.

200. Щербакова, Е.П. Цинк в техногенных сульфатах Южного Урала / Е.П. Щербакова, Г.К. Звонарева, Г.Г. Кораблев // Минералогия техногенеза-2002. – Миасс : ИМин УрО РАН, 2002. – С. 306–309.

201. Юркевич, Н.В. Направления подземного и поверхностного стоков с хвостохранилищ горнорудного производства по данным геофизических и геохимических исследований / Н.В. Юркевич, С.Б. Бортникова, О.П. Саева // Интерэкспо Гео-Сибирь. – 2015. – Т. 2, № 2. – С. 305–310.

202. Юркевич, Н.В. Формы миграции химических элементов из сульфидных отходов горнодобывающей промышленности / Н.В. Юркевич, О.Л. Гаськова, О.П. Саева, Т.В. Корнеева // Интерэкспо Гео-Сибирь. – 2014. – Т. 2, № 3. – С. 163–169.

203. Яхонтова, Л.К. Основы минералогии гипергенеза / Л.К. Яхонтова, В.П. Зверева. – Владивосток : Дальнаука, 2000. – 331 с.

204. Яхонтова, Л.К. Роль бактерий в гипергенном процессе на рудных месторождениях / Л.К. Яхонтова, Л.Г. Нестерович // Минералогический журнал. – 1982. – Т. 4, № 1. – С. 3–8.

205. Яхонтова, Л.К. Устойчивость минералов в биокосных взаимодействиях / Л.К. Яхонтова, А.П. Грудев, Л.Г. Нестерович, В.В. Зуев // Минералогический сборник. – 1991. – № 2. – С. 40–51.

206. A vibrational spectroscopic study of hydrated Fe³⁺ hydroxyl-sulfates; polymorphic minerals butlerite and parabutlerite [Электронный ресурс] / J. Cejka [et al.] // Spectrochim.

Acta Part A : Mol. Biomol. Spectrosc. – 2011. – Vol. 79. – Р. 1356–1363. – URL: http://eprints.qut.edu.au/42530/2/42530.pdf (дата обращения: 05.07.2015).

207. Acid Mine Drainage Migration of Belovo Zinc Plant (South Siberia, Russia): Multidisciplinary Study [Электронный ресурс] / S. Bortnikova [et al.] \$ eds. A. Scozzari, B. Mansouri) // Water Security in the Mediterranean Region. An International Evaluation of Management, Control, and Governance Approaches. – Springer, Netherlands, 2011. – P. 191– 208. – URL: http://dspx.igm.nsc.ru/jspui/handle/IGM/2128 (дата обращения: 10.07.2016).

208. Alpers, C.N. Geochemical evolution of extremely acid mine waters at Iron Mountain, California: Are there any lower limits to pH? [Электронный ресурс] / C.N. Alpers, D.K. Nordstrom // 2 nd International Conference on the Abatement of Acidic Drainage. – Canada, 1991. – Vol. 2. – P. 321–342. – URL: https://ca.water.usgs.gov (дата обращения: 07.05. 2016).

209. AquaChem v. 5.1 User's manual : Water quality analysis, plotting and modeling. – Waterloo : Waterloo Hydrogeologic Inc., 2006. – 366 p.

210. Bannister, F.A. Two new British minerals / F.A. Bannister, S.E. Hollingworth // Nature. – 1948. – Vol. 162, no. 4119. – P. 565.

211. Basciano, L.C. A crystallographic study of the incomplete solid-solution between plumbojarosite and jarosite [Электронный ресурс] / L.C. Basciano, R.C. Peterson // The Canadian Mineralogist. – 2010. – Vol. 48. – P. 651–659. – URL: http://rruff.info/uploads/CM48_651.pdf (дата обращения: 10.08.2016).

212. Basciano, L.C. Crystal chemistry of the jarosite group of minerals. Solid-solution and atomic structures [Электронный ресурс] / L.C. Basciano. – Canada [S.I.], 2008. – DOI:10.2138/2008.2731 ; May 09, 2008.

213. Belogub, E. Gold-silver paragenetic evolution in ore deposits of the Magnitogorsk paleoisland arc, Southern Urals [Электронный ресурс] / E. Belogub, K. Novoselov, V. Zaykov // Geochem., Mineral, and Petrol. – 2005. – Vol. 43. – P. 7–13. – URL: http://www.geology.bas.bg/mineralogy/gmp_files/gmp43/Belogub.pdf (дата обращения: 16.08.2016).

214. Berzina, A.P. Hypogene jarosite / A.P. Berzina, I.K. Kuznetsova, V.I. Sotnikov // Geol. Geofiz. – 1966. – No. 8. – P. 112–114.

215. Bowell, R.J. Controls on Ochre Chemistry and Precipitation in Coal and Metal Mine Drainage / R.J. Bowell, R. Fuge, R.J. Connelly // Minerals, Metals and the Environment II. I.M.M. – London, 1996. – P. 291–323.

216. Bowell, R.J. Sorption of arsenic by iron oxides and oxyhydroxides in soils / R.J. Bowell // Applied Geochemistry. -1994. - Vol. 9, no. 3. - P. 279-286.

217. Burns, R. G. Ferric Sulfates on Mars // Journal of Geophysical Research, Proceedings of the seventeenth Lunar and Planetary Science Conference. – Houston, Texas, USA, 1987. – Vol. 92. – P. 570 – 574.

218. Chudaeva, V.A. Metal contamination of surface waters of Primorye / V.A. Chudaeva // Goldschmidt Conf. : Int. Conf. Ady. Geochem. [Pt. I]. – Edinburgh : Miner. Mag. Publ., 1994. – P. 169–170

219. Cravotta, C.A. Effect of sewage sludge on formation of acidic ground water at a reclaimed coal mine / C.A. Cravotta // Ground Water. – 1998. – No. 36. – P. 9–19.

220. Dutrizac, J.E. Jarosite and their application in hydrometallurgy [Электронный pecypc] / J.E. Dutrizac, J.L. Jambor // Sulfate minerals: crystallography, geochemistry, and environmental significance, reviews in mineralogy and geochemistry. – 2000. – Vol. 40. – P. 405–443. – DOI:10.2138/rmg.2000.40.8 Published on January 2000, First Published on January 01, 2000 (дата обращения: 04.06.2015).

221. Ehlers, E.G. Melanterite-rozenite equilibrium / E.G. Ehlers, D.V. Stiles. – American Mineralogist. – 1965. – Vol. 50. – P. 1457–1461.

222. Elderfield, H. The Rare Earth Elements in Rivers, Estuaries and Coastal Seas and Their Significance to the Composition of Ocean Waters / H. Elderfield, R. Upstill-Goddard, E.R. Sholkovitz // Geochimica et Cosmochimica acta. – 1990. – Vol. 54. – P. 971–991.

223. Fan, G.Q. Study on the effects of exposure to rare earth elements and health-responses in children aged 7-10 years / G.Q. Fan, Z.K. Yuan, H.L. Zheng, Z.J. Liu // Wei Sheng Yan Jiu. -2004. - No. 33. - P. 23–28.

224. Fanfani, L. The Crystal Structure of Butlerite [Электронный ресурс] / L. Fanfani, A. Nunzi, and P.F. Zanazzi // American Mineralogist. – 1971. – Vol. 56. – P. 751–757. – URL: http://rruff.info/AMS/minerals/Butlerite (дата обращения: 13.07.2015).

225. Filippi, M. Research of the anthropogenic arsenic-rich deposit at the Prebuz locality–a second occurrence of kaatialaite in the Czech Republic // Bull Mineral Petrolog Odd Nar Muz (Praha). – 2001. – No. 9. – P. 188–190.

226. Govorushko, S. Human Impact on the Environment. An Illustrated World Atlas [Электронный ресурс] / S. Govorushko. – Springer International Publishing AG Switzerland, 2016. – 367 р. – DOI:10.1007/978-3-319-24957-5.

227. Gromet, L.P. The «North American shale Composite»: Its compilation, major and trace elements characteristics / L.P. Gromet, R.F. Dymek, L.A. Haskin, R.L. Korotev // Geochim. Et cosmochim. Acta. – 1984. – Vol. 48, no. 12. – P. 2469–2482.

228. Hammarstrom, J.M. Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments [Электронный pecypc] / J.M. Hammarstrom, R.R. Seal, A.L. Meier, J.M. Kornfeld // Geochemistry of Sulfate Minerals. – 2005. – URL: http://digitalcommons.unl.edu (дата обращения: 06.06.2015).

229. Hirano, S. Exposure, metabolism, and toxicity of rare earths and related compounds [Электронный ресурс] / S. Hirano, K.T. Suzuki // Environmental Health Perspectives. 1996. – Vol. 104. – P. 85–95. – URL: https://elibrary.ru/item.asp?id=2576143 (дата обращения: 12.05.2015).

230. Jambor, J.L. Metal-sulfate salts from sulfide mineral oxidation / J.L. Jambor, D.K. Nordstrom, C.N. Alpers // Sulfate Minerals. Rev. Min. Geochem. – 2000. – Vol. 40. – P. 305–350.

231. Jambor, J.L. On rozenite and siderotil [Электронный ресурс] / J.L. Jambor, R.J. Traill // Canadian Mineralogist. – 1963. – Vol. 5. – Р. 751–763. – URL: http://rruff.geo.arizona.edu/AMS/minerals/Rozenite (дата обращения: 14.05.2016).

232. Jerz, J.K. Efflorescent iron sulfate minerals: Paragenesis, relative stability, and environmental impact / J.K. Jerz, J.D. Rimstidt // American Mineralogist. – 2003. – V. 88. – P. 1919–1932.

233. Johannesson, H.K. Origin of rare earth signatures in groudwaters of circumneutral pH from southern Nevada and eastern California, USA / H.K. Johannesson, X. Zhou, C. Guo // Chemical Geology. – 2000. – Vol. 164 – P. 239–257.

234. Johnson, J.W. SUPCRT92: software package for calculating the standart molal thermodynamic properties of mineral, gases, aqueous species, and reactions from 1 to 5000 bars and 0° to 1000 °C / J.W. Johnson, E.H. Oelkers, H.C. Helgeson // Comput. Geosci. – 1992. – Vol. 18. – P. 899–947.

235. Kato, Y. Rare earth element variations in Mid Archean banded iron formations: implications for the chemistry of ocean and continent and plate tectonics [Электронный pecypc] / Y. Kato, I. Ohta, T. Tsunematsu // Geochim. Cosmochim. Acta. – 1998. – Vol. 62. – № 21/22. – P. 3475–3497. – URL: https://elibrary.ru/item.asp?id=123205 (дата обращения: 12.07.2016).

236.Lanthanide particles in the lung of a printer / A. Dufresne [et al.] // Sci. Total Environ. – 1994. – Vol. 151. – P. 249–252.

237. Lausen, C. Hydrous sulphates formed under fumerolic conditions at the United Verde Mine [Электронный ресурс] / C. Lausen // American Mineralogist. – 1928. – Vol. 13. – P. 203–229. – URL: http://rruff.info/uploads/AM13_203.pdf (дата обращения: 04.05.2015).

238. Lei, L. REE behavior and effect factors in AMD-type acidic groundwater at sulfide tailings pond, BS nickel mine, W.A. [Электронный ресурс] / L. Lei, C. Song, X. Xie, Y. Li // Transactions of Nonferrous Metals Society of China. – Vol. 18, iss. 4. – 2008. – P. 955–961. – URL: http://www.sciencedirect.com/science/article/pii/S100363260860165X (дата обращения: 02.07.2016).

239. Linking drugs to obscure illnesses: lessons from pure red cell aplasia, nephrogenic systemic fibrosis, and Reye's syndrome, a report from the Southern Network on Adverse Reactions (SONAR) [Электронный ресурс] / C.L. Bennett [et al.] // Journal of general _ 2012. _ No. 27. _ Ρ. 1697-1703. internal medicine. _ URL: https://link.springer.com/article/10.1007%2Fs11606-012-2098-1 (дата обращения: 10.08. 2016).

240. Lombardo, M. Fibroferrite: crystallographic, optical and synthesis experiments [Электронный ресурс] / M. Lombardo // MsC Thesis, Queens University, Ontario, Canada. – 2010. – URL:http://qspace.library.queensu.ca/bitstream/handle/1974/5668/Lombardo_Mariasole_201005_M.Sc.pdf (дата обращения: 12.05.2015).

241. Miliary pattern due to occupational lung disease in a patient with laryngeal cancer [Электронный ресурс] / F. Sampsonas [et al.] // Eur Rev Med Pharmacol Sci. – 2010. – Vol. 14 (1). – P. 43–45. – URL: https://www.europeanreview.org/article/697 (дата обращения: 10.04.2014).

242. Moncur, M.C. Mine drainage from the weathering of sulfide minerals and magnetite [Электронный ресурс] / M.C. Moncur, J.L. Jambor, C.J. Ptacek, D.W. Blowes // Applied Geochemistry. – 2009. – Vol. 24. – P. 2362–2373. – URL: http://dlx.booksc.org/16300000/libgen.scimag1632700016327999.zip/browse/10.1016/j.apgeo chem.2009.09.013.pdf (дата обращения: 05.06.2015).

243. Parafiniuk, J. Fibroferrite, slavikite and pickeringite from the oxidation zone of pyrite-bearing schists in Wieściszowice (Lower Silesia) [Электронный ресурс] / J. Parafiniuk Mineralogia Polonica. _ 1991. Vol. 22. P. 3–16. URL: // _ http://www.mineralogia.pl/PDFy/1%20-%20Vol.22,%20No1,%201991.pdf обращения: (дата 12.05.2015)

244. Peterson, R.C. Dehydration of mine waste. The relationship among melanterite FeSO₄·7H₂O, siderotil FeSO₄·5H₂O and rozenite FeSO₄·4H₂O [Электронный pecypc] / R.C. Peterson // Canadian Mineralogist. – 2003. – Vol. 28. – P. 134–135. – URL: http://rruff.info/doclib/cm/vol41/CM41_671.pdf (дата обращения: 05.05. 2015).

245. Peterson, R.C. The Atomic structure of Siderotil (Fe, Cu)SO x 5H₂O [Электронный ресурс] / R.C. Peterson, P.L. Roeder, Yousheng Zhang // Canadian Mineralogist. – 2003. – Vol. 41. – P. 671–676. – URL: http://rruff.info/doclib/cm/vol41/CM41_671.pdf (дата обращения: 12.06.2015).

246. Posnjak, E. The system, Fe₂O₃ – SO₃ – H₂O [Электронный ресурс] / E. Posnjak, H. E. Merwin // America Chemical Society. – 1922. – Vol. 44 (9). – P. 1965–1994. – URL: https://www.researchgate.net/publication/231501161 (дата обращения: 02.07.2016)

247. Protano, G. High contents of rare earth elements (REE) in stream waters of a Cu-Pb-Zn mining area [Электронный ресурс] / G. Protano, F. Riccobono // Environ Pollut. – 2002. – Vol. 117. – P. 499–514. – URL: https://elibrary.ru/item.asp?id=14051103 (дата обращения: 10.04.2014).

248.REE mobility in groundwater proximate to the natural fission reactor at Bangombe(Gabon) [Электронный ресурс] / P. Stille [et al.]. – Chemical Geology. – 2003. – Vol. 198. – P. 289–304. – URL: https://elibrary.ru/item.asp?id=1481931 (дата обращения: 10.04.2014).

249. Sasaki, K. Morphology of jarosite compounds precipitated from biologicallyand chemically oxidized Fe ions [Электронный ресурс] / K. Sasaki, H. Konno // Canadian Mineralogist. – 2000. – Vol. 38. – P. 45–56. – URL: http://rruff.info/doclib/cm/vol38/CM38_45.pdf (дата обращения: 05.05. 2015).

250. Shock, E.L. Calculation of thermodynamic and transport properties of aqueous species at high pressures and temperatures: Effective electrostatic radius to 1000 °C and 5 kbar [Электронный ресурс] / E.L. Shock, E.H. Oelkers, J.W. Johnson // J. Chem. Soc. Faraday Trans. – 1992. – Vol. 88. – P. 803–826. – URL: http://discovery.ucl.ac.uk/1429656/ (дата обращения: 06.07.2015).

251. Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance. Vol. 40 / eds. by C.N. Alpers, J.L. Jambor, D.K. Nordstrom. – [Concorde], 2000. – 608 p. – (Rev. Mineral. Geochem).

252. Verati, C. Evidence of bacterial activity from micrometer-scale layer analyses of black-smoker sulfide structures (Pito Seamount Site, Easter microplate) [Электронный pecypc] / C. Verati, P. Donato, D. Prieur, J. Lankelot // Chem. Geol. – 1999. – No. 158. – P. 257–269. – URL: https://elibrary.ru/item.asp?id=137677 (дата обращения: 11.05.2015).

253. Xu, W. Humidity-Induced Phase Transitions of Ferric Sulfate Minerals Studied by In situ X-ray diffraction [Электронный ресурс] / W. Xu, N. J. Tosca, S.C. McLennan, J.B.

Parise // American Mineralogist. – 2009. – Vol. 94. – Р. 1629–1637. – URL: http://ammin.geoscienceworld.org/cgi/doi/10.2138/am.2009.3182 (дата обращения: 10.06.2015).

254. Yokokawa, H. Tables of thermodynamic properties of inorganic compounds / H. Yokokawa // J. Nat. Chem. Lab. Indust. – 1988. – Vol. 83. – P. 27–121.

255. Yurkevich, N.V. Arsenic mobility in two mine tailings drainage systems and its removal from solution by natural geochemical barriers [Электронный ресурс] / N.V. Yurkevich, O.P. Saeva, N.A. Pal'chik // Applied geochemistry. – 2012. – Vol. 27. – P. 2260–2270. – URL: http://www.ipgg.sbras.ru/ru/files/publications/ibc/apg-2012-27-11-2260.pdf (дата обращения: 05.05. 2015).

256. Zidarov, N. Boyleite and zincian rozenite – new minerals from Madan ore district, South Bulgaria / N. Zidarov, O. Petrov // V International symposium «Mineral Diversity Research and Preservation». – Sofia, Bulgaria, 2009. – P. 64 p.

257. Zodrow, E.L. Hydrated sulfates from Sydney Coalfield, Cape Breton Island, Nova Scotia, Canada: the copiapite group [Электронный ресурс] / E.L. Zodrow // American Mineralogisl. – 1980. – Vol. 65. – P. 961–967. – URL: http://rruff.info/doclib/am/vol65/AM65_961.pdf (дата обращения: 05.05. 2015).

258. Zodrow, E.L. Hydrated sulfates in the Sydne Coalfield, Cape Breton, Nova Scotia [Электронный ресурс] / E.L. Zodrow, K. McCandlish // Canadian Mineralogist. – 1978. – Vol. 16. – P. 17–22. – URL: http://rruff.info/doclib/cm/vol16/CM16_17.pdf (дата обращения: 07.05. 2015).

259. Zodrow, E.L. Hydrated sulfates in the Sydney Coaldfiled of Cape Breton, Nova Scotia. II. Pyrite and its alteration products [Электронный ресурс] / E.L. Zodrow, J. Wiltshire, K. McCandlish // Canadian Mineralogist. – 1979. – Vol. 17. – P. 63–70. – URL: http://rruff.info/uploads/CM17_63.pdf (дата обращения: 07.05. 2015).

Неопубликованные документы

260. Гаврилов, Т.А. Отчет о результатах гидрогеохимических и литогеохимических поисков масштаба 1:50000, проведенных Гидрогеохимическим отрядом в бассейнах рек Имана, Б. Синанчи и Тетюхе / Т.А. Гаврилов. – Дальнегорск : Приморское геологическое управление, 1969 – 133 с.

261. Дубровин, В.И. Отчет о геологоразведочных работах, выполненных на месторождениях ОАО «ГМК «Дальполиметалл» в 2006 году : в 2-х кн. Кн. 1 / В.И. Дубровин, В.И. Теребило, В.Н. Колесников. – Дальнегорск, 2007 – 158 с.

262. Киселева, Е.А. Отчет по теме «Интерпретация результатов гидрогеохимических работ, проведенных на территории основных рудных районов Приморья за период с 1959 года». Т. 1 / Е.А. Киселева, Б.А. Колотов. – М., 1973. –113 с.

263. Липецкая, З.Ф. Гидрогеологические условия Тетюхинского рудного поля. Т. 1 / З.Ф. Липецкая, Е.Г. Витвицкая. – Владивосток : Приморское геологическое управление, 1966. – 143 с.

264. Лосив, В.М. Геологическое строение и полезные ископаемые листов L-53-XXVIII, XXXII, XXXIV-XXXV (участок Кавалеровский) : отчет Кавалеровской партии о результатах геологического доизучения масштаба 1:200 000 за 1995–2002 гг. : в 4-х кн. Кн. 2 / В.М. Лосив. – Владивосток, 2002. – 322 с.

265. Лосив, В.М. Отчет Кавалеровской партии о результатах геологического доизучения масштаба 1:200 000 за 1995 – 2002 гг. : в 4-х кн. Кн. 3 / В.М. Лосив. – Владивосток, 2002 –199 с.

266. Потапенко, Г.И. Отчет о геологоразведочных работах, выполненных на месторождениях АО «Дальполиметалл» в 1995 году : в 3-х кн. Кн. 1 / Г.И. Потапенко, А.А. Сергеев, В.Н. Колесников. – Дальнегорск, 1996. – 125 с.

ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ 1

Таблица 1.1 – Содержание РЗЭ в природных водах Дальнегорского района

Номер пробы	7	8	16	17	18	23	24
pН	7,76	6,93	7,81	7,85	7,61	5,1	5,8
Элемент			(Содержание, мкг/дм	1 ³		
La	0,045	0,191	0,146	0,107	0,194	0,0311	0,0023
Ce	0,101	0,206	0,213	0,136	0,212	0,0672	0,003
Pr	0,012	0,06	0,038	0,0296	0,052	0,0086	0,0004
Nd	0,0505	0,272	0,166	0,129	0,231	0,0364	0,0019
Sm	0,0136	0,066	0,0404	0,0338	0,056	0,0089	0,0004
Eu	0,0102	0,0075	0,009	0,0071	0,011	0,0027	0,0003
Gd	0,0156	0,072	0,0437	0,0392	0,068	0,0093	0,0006
Tb	0,0023	0,011	0,0065	0,0059	0,01	0,0014	0,0001
Dy	0,0116	0,061	0,0328	0,0302	0,053	0,0078	0,0004
Но	0,0022	0,013	0,0063	0,0057	0,01	0,0018	0,0002
Er	0,0054	0,038	0,0174	0,0163	0,026	0,0052	0,0002
Tm	0,0006	0,0058	0,0022	0,0021	0,003	0,001	<ПО
Yb	0,003	0,038	0,0143	0,0141	0,021	0,0051	0,0001
Lu	0,0004	0,0065	0,0021	0,0022	0,003	0,0008	<ПО
ΣREE , мкг/дм ³	0,273	1,047	0,737	0,558	0,949	0,187	0,009
∑LREE	0,2323	0,802	0,612	0,442	0,756	0,1549	0,0083
∑HREE	0,0411	0,245	0,1253	0,1157	0,193	0,0324	0,0016
LREE, %	84,97	76,6	83	79,21	79,66	83	83,84
HREE, %	15,03	23,4	17	20,79	20,34	17	16,16
(LREE/HREE) ^N	1,28	0,59	1,03	1,02	1,03	0,95	1,42
Eu/Eu ^N	3,06	0,48	0,94	0,85	0,77	1,14	4,35
Ce/Ce ^N	0,87	0,42	0,62	0,53	0,46	0,9	0,57
Ho/Ho ^N	1	1,09	1,09	1	1,06	1,13	2,86

Примечание: 7 – озеро; 8 – р. Рудная (1100 м выше от Краснореченска); 16 – р. Рудная (7 км выше от хвостохранилища ЦОФ); 17 – р. Рудная (16 км выше от хвостохранилища ЦОФ); 18 – р. Рудная (21 км выше от хвостохранилища ЦОФ); 23 – дождевая вода; 24 – снеговая вод

Номер пробы	1	2	3	5	6	9	10	11	12	13	14	15
pН	6,43	4,61	6,65	2,48	2,33	7,08	7,1	7,35	7,26	7,42	8,48	8,34
Элемент						Содержани	ие, мкг/дм ³					
La	3,83	18,58	1,2	8,38	6,99	0,118	0,0283	0,105	0,497	0,432	0,191	0,067
Ce	8,81	34,94	1,74	19,24	15,81	0,201	0,047	0,173	0,635	0,526	0,402	0,065
Pr	1,37	5,21	0,298	2,48	1,98	0,02	0,0056	0,018	0,126	0,111	0,046	0,018
Nd	6,43	22,95	1,28	11,12	8,8	0,078	0,0234	0,068	0,56	0,489	0,185	0,076
Sm	2,03	6,09	0,322	3,05	2,4	0,015	0,0057	0,013	0,14	0,12	0,0389	0,0192
Eu	0,61	1,45	0,078	1,13	0,897	0,0074	0,0045	0,0081	0,031	0,026	0,0116	0,0045
Gd	2,91	8,07	0,435	3,83	3,08	0,021	0,0073	0,018	0,175	0,152	0,0411	0,0211
Tb	0,49	1,26	0,066	0,568	0,456	0,0028	0,0011	0,0023	0,026	0,0221	0,0059	0,003
Dy	2,56	6,46	0,338	2,9	2,3246	0,014	0,0058	0,013	0,136	0,116	0,035	0,017
Но	0,43	1,12	0,0612	0,507	0,412	0,0032	0,0011	0,0027	0,025	0,021	0,0068	0,0033
Er	1	2,67	0,149	1,24	0,997	0,0076	0,0029	0,0062	0,063	0,054	0,02	0,0095
Tm	0,11	0,302	0,0175	0,143	0,115	0,001	0,0004	0,0009	0,0077	0,007	0,0025	0,0013
Yb	0,62	1,66	0,0999	0,806	0,636	0,0054	0,0019	0,005	0,047	0,041	0,016	0,0088
Lu	0,082	0,227	0,014	0,109	0,0865	0,0008	0,0002	0,0007	0,0072	0,0063	0,0022	0,0014
ΣREE , мкг/дм ³	31,282	110,76	6,09	55,503	44,97	0,4952	0,1352	0,4339	2,475	2,122	1,004	0,315
∑LREE	23,08	89,21	4,91	45,4	36,87	0,4394	0,1145	0,3851	1,989	1,704	0,8745	0,249
∑HREE	8,202	21,78	1,18	10,103	8,1	0,0558	0,0207	0,0488	0,487	0,418	0,1295	0,0656
LREE, %	73,78	89,21	80,66	81,8	81,99	88,73	84,69	88,75	80,33	80,3	87,1	79,05
HREE, %	26,22	19,62	19,34	18,2	18,01	11,27	15,31	11,25	19,67	19,7	12,9	20,95
(LREE/HREE) ^N	0,75	1,08	3,51	1,08	1,08	1,67	1,12	1,88	0,98	1,01	1,11	0,86
Eu/Eu ^N	1,08	0,89	0,9	1,43	1,43	1,71	3,5	0,76	0,86	0,83	1,27	0,98
Ce/Ce ^N	0,81	0,77	0,63	0,9	0,92	1	0,75	0,67	0,56	0,5	1	0,45
Ho/Ho ^N	1,05	1,06	1,08	1,06	1,07	1,5	2	1,16	1,09	1,05	1	1

Таблица 1.2 – Содержание РЗЭ в техногенных водах Дальнегорского района

Примечание: 1 – ручей из-под дамбы старого хвостохранилища КОФ; 2 – среднее течение ручья старого хвостохранилища КОФ; 3 – место впадения ручья в р. Рудная; 5 – вода в прудке 1 старого хвостохранилища КОФ; 6 – вода в прудке 2 старого хвостохранилища КОФ; 9 – ручей из-под дамбы нового хвостохранилища КОФ; 10 – вода в прудке нового хвостохранилища КОФ; 11 – место впадения ручья в р. Рудная; 12 – р. Рудная в 100 м выше от т. 11; 13 – р. Рудная в 100 м ниже от т. 11; 14 – вода в прудке нового хвостохранилища КОФ; хвостохранилища ЦОФ; 15 – р. Рудная в 1500 м ниже от нового хвостохранилища

3				Номер пробы			
Элемент	1	2	3	4	5	6	7
			Содержани	е, мкг/дм ³			
La	0,145	1,55	19,84	0,82	0,024	0,071	0,256
Ce	0,195	1,30	30,54	1,75	0,02	0,025	0,322
Pr	0,049	0,11	2,76	0,21	0,008	0,023	0,043
Nd	0,22	0,403	9,14	0,76	0,037	0,107	0,164
Sm	0,059	0,054	14,8	0,18	0,014	0,024	0,029
Eu	0,015	0,034	0,3	0,04	0,022	0,005	0,007
Gd	0,06	0,127	2,73	0,26	0,013	0,027	0,032
Tb	0,009	0,015	0,45	0,05	0,003	0,004	0,004
Dy	0,052	0,051	0,91	0,095	0,01	0,02	0,02
Но	0,01	0,012	0,17	0,018	0,003	0,004	0,004
Er	0,029	0,041	0,72	0,091	0,009	0,013	0,012
Tm	0,004	0,003	0,036	0,007	0,001	0,002	0,002
Yb	0,026	0,019	0,24	0,043	0,006	0,012	0,011
Lu	0,004	0,003	0,35	0,007	0,002	0,002	0,002
\sum REE, мкг/дм ³	0,877	2,422	71,086	2,581	0,172	0,339	0,908
∑ LREE	0,683	2,151	65,48	2,01	0,125	0,255	0,821
Σ HREE	0,194	0,271	5,606	0,571	0,047	0,084	0,087
LREE, %	77,88	88,82	92,11	77,88	72,67	75,22	90,42
HREE, %	22,12	12,59	7,89	22,12	27,33	24,78	9,58
(LREE/HREE) ^N	0,75	1,5	1,45	1,47	0,35	0,69	1,43
Eu/Eu ^N	1,14	1,67	0,15	0,75	7	0,89	1
Ce/Ce ^N	0,60	0,60	0,88	0,96	0,33	0,15	0,67
Ho/Ho ^N	1,06	0,95	0,85	0,78	0,80	1	1

Таблица 1.3 – Содержание РЗЭ в водах Кавалеровского района (по Зверева и др., 2014)

Примечание: 1– фоновая проба; 2 – рудничные воды (м – е Хрустальное); 3 – рудничные воды (м – е Дубровское); 4 – шламовые воды хвостохранилища (м – е Дубровское); 5 – шламовые воды хвостохранилища (м – е Высокогорское); 6 – р. Высокогорская (ниже м – я Высокогорского); 7 – р. Партизанка (ниже м – я Дубровского)

		Log	Log		Log	Log	Log	Log	Log	lg(aCa ²⁺	Lg(aMg ²⁺	lg(aNa ⁺	lg(aK ⁺	lg(aNa
Sample ID	Percent Error	[H ⁺]	[Ca ⁺²]	log [Mg ⁺²]	[Na ⁺]	[K ⁺]	[SO ₄ ⁻²]	[H4SiO4]	$\begin{bmatrix} \mathbf{CO}_3 \\ 2 \end{bmatrix}$	/a2H ⁺)	/a2H ⁺)	/aH+)	/aH+)	/aK)
			mmol/kg	mmol/kg	mmol/kg	mmol/kg	mmol/kg	mmol/kg						
Дубровское (фон)	-1,07081	-8,06	-3,5773	-4,3466	-4,0405	-4,8102	-4,4507	-3,7627	- 5,4489	12,5427	11,7734	4,0195	3,2498	0,7697
Дубровское (шт.1)	-4,72138	-8,53	-2,6355	-3,4088	-3,0578	-4,4353	-2,5679	-3,758	- 4,6031	14,4245	13,6512	5,4722	4,0947	1,3775
Дубровское (ниже на 500 м)	-4,08615	-8,52	-2,9739	-3,7293	-3,5148	-4,5382	-2,9414	-3,8413	- 4,9013	14,0661	13,3107	5,0052	3,9818	1,0234
Высокогорское (фон)	0,340012	-8,8	-3,9123	-4,5106	-3,682	-4,8505	-4,4289	-3,8953	- 4,9365	13,6877	13,0894	5,118	3,9495	1,1685
Высокогорское (шт.2)	4,62731	-7	-2,914	-3,9886	-3,7712	-3,9997	-2,9747	-3,8291	- 6,6017	11,086	10,0114	3,2288	3,0003	0,2285
Хрустальное (фон)	-4,82023	-8,78	-3,7854	-4,0854	-3,5977	-4,7302	-3,7819	-3,7248	-4,887	13,7746	13,4746	5,1823	4,0498	1,1325
Хрустальное (шт.3)	-3,9762	-8,94	-2,7069	-3,4425	-3,0035	-4,2754	-2,6264	-3,4254	- 4,2804	15,1731	14,4375	5,9365	4,6646	1,2719
Фабричный (шт.4)	-4,68731	-9,01	-2,8024	-3,0601	-2,6873	-4,329	-2,551	-3,7576	- 4,1285	15,2176	14,9599	6,3227	4,681	1,6417
Верхнее (шт.5)	-4,13576	-8,96	-2,4902	-3,8037	-2,6276	-4,3075	-2,4043	-3,7555	- 4,2455	15,4298	14,1163	6,3324	4,6525	1,6799
Родник 1	0,00115	-7,29	-3,599	-4,3536	-4,0915	-5,1317	-4,4572	-3,627	- 6,2856	10,981	10,2264	3,1985	2,1583	1,0402
Родник 2	-4,2403	-7,43	-3,924	-4,5022	-4,1404	-5,1134	-4,4549	-3,7214	- 6,4408	10,936	10,3578	3,2896	2,3166	0,973
	-4,82023	-9,01	-3,924	-4,5106	-4,1404	-5,1317	-4,4572	-3,8953	- 6,6017	10,936	10,0114	3,1985	2,1583	0,2285
	4,62731	-7	-2,4902	-3,0601	-2,6276	-3,9997	-2,4043	-3,4254	- 4,1285	15,4298	14,9599	6,3324	4,681	1,6799

Таблица 1.4 – Логарифмы активностей основных компонентов водных фаз Кавалеровского района

ПРИЛОЖЕНИЕ 2

№ пробы	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	H ₂ O	ппп	\sum
				(общ.)									
Кс -1/14	32,40	0,22	6,97	36,51	1,65	0,34	0,23	0,65	1,25	0,07	7,47	12,38	100,14
Кс -25/14	53,76	0,37	9,96	16,92	0,33	0,57	0,85	0,14	2,79	0,03	1,90	11,94	99,56
Кс -27/14	44,10	0,28	7,78	24,60	2,30	1,00	1,24	0,10	1,98	0,05	1,21	13,87	98,51
Кс -28/14	38,38	0,25	6,94	28,06	2,69	0,98	1,49	0,08	1,77	0,06	1,23	16,74	98,68
Кс -29/14	43,80	0,28	7,97	24,90	1,24	0,94	1,16	0,07	2,02	0,06	1,21	15,34	99,00
Кс -30/14	43,36	0,27	7,62	24,35	0,95	0,79	1,35	0,09	1,90	0,06	1,84	16,44	99,00
Кс -36/14	50,02	0,37	10,76	16,40	0,60	0,92	1,20	0,12	2,74	0,08	2,04	13,96	99,22
Кс -37/14	55,24	0,38	9,73	12,74	0,60	0,69	2,15	0,12	2,61	0,05	2,19	12,10	98,60
Кс -38/14	53,11	0,36	9,45	15,65	0,70	0,80	1,24	0,12	2,30	0,09	2,03	13,29	99,12
Кс -39/14	53,18	0,39	10,49	13,76	0,46	0,85	1,74	0,12	2,60	0,09	2,22	12,65	98,54
Кс -40/14	45,23	0,31	8,57	20,46	0,34	0,72	1,58	0,13	2,21	0,05	2,21	17,21	99,01
Кс -41/14	49,30	0,33	9,49	15,89	0,28	0,78	1,59	0,12	2,41	0,07	2,60	16,07	98,94
Кс -42/14	49,80	0,31	8,53	18,33	0,32	0,63	1,13	0,11	2,21	0,03	1,95	16,32	99,68
Кс -46/14	50,69	0,35	9,64	16,02	1,89	1,24	1,97	0,12	2,29	0,09	1,96	11,59	97,85
Кс -47/14	45,96	0,31	8,47	20,55	3,17	1,25	2,05	0,10	2,11	0,08	1,28	11,97	97,30
Кс -48/14	49,51	0,34	9,32	18,00	2,29	1,25	2,06	0,13	2,11	0,07	1,14	12,39	98,62
Кс -29/13	47,49	0,32	8,38	25,25	0,70	1,20	0,93	0,09	2,03	0,12	0,66	11,69	98,87
Кс -30/13	8,50	0,04	1,29	65,82	0,28	0,21	1,34	0,01	0,20	0,27	7,30	14,26	99,52
Кн -7/14	45,63	0,29	7,92	25,01	0,74	1,12	2,26	0,36	1,77	0,06	0,99	12,47	98,64
Кн -8/14	56,37	0,40	10,40	16,44	1,05	1,58	3,45	0,49	2,38	0,11	0,53	5,32	98,51
Кн -9/14	41,97	0,28	7,74	28,44	1,30	1,11	2,60	0,42	1,81	0,05	1,07	11,99	98,77
Кн -16/14	53,06	0,39	10,18	17,07	0,76	1,65	4,60	0,71	2,05	0,09	1,26	5,98	97,79
Кн -17/14	56,01	0,44	10,13	14,98	0,50	1,55	2,00	0,70	2,65	0,09	2,52	7,70	99,26
Кн -19/14	52,74	0,37	9,75	20,39	0,81	1,55	3,52	0,59	2,25	0,07	0,39	6,36	98,79
Кн -20/14	54,72	0,41	11,79	14,72	1,03	1,72	3,16	0,45	2,94	0,09	0,76	6,60	98,39

Таблица 2.1 – Химический состав техногенных отложений Дальнегорского района, масс. %

Ма пробы							Соде	ржание,	г/т						
ла проор	Cr	Be	Fe	Cu	Zn	Pb	Ag	Cd	As	Со	Hg	Li	Mn	Ni	Sn
Кс-1/14	68,76	0,64	247333,0	340,06	1530,0	62,9	2,56	13,00	143,8	382,17	0,48	10,21	8929,0	142,86	142,31
Кс -2/14	120,93	1,63	151110,0	334,73	1256,0	255,1	1,49	9,03	426,0	257,16	0,39	26,85	1054,0	104,63	90,44
Кс -17/14	43,47	0,07	97805,0	71,56	1335,0	2136,0	19,41	1,34	1932,0	114,50	0,26	18,70	6103,0	56,34	2107,00
Кс-18/14	45,05	0,05	94435,0	62,10	742,2	1937,0	6,83	0,90	1530,0	106,52	0,23	10,56	4513,0	53,66	1667,00
Кс-19/14	64,81	2,17	13682,0	35,48	36,8	4346,0	8,11	1,08	592,0	37,40	0,24	11,26	467,0	38,23	2619,00
Кс-20/14	32,41	0,02	74833,0	35,48	1451,0	1564,0	16,21	0,72	1526,0	101,06	0,22	15,05	3306,0	50,97	1810,00
Кс -21/14	51,38	0,07	76208,0	38,44	1123,0	2746,0	7,47	0,54	1810,0	107,15	0,25	13,11	1248,0	53,66	2107,00
Кс-22/14	58,49	0,06	32051,0	33,12	145,2	2358,0	8,75	0,69	1074,0	51,68	0,20	10,56	825,0	38,90	2572,00
Кс-23/14	48,21	0,09	43813,0	77,47	593,2	5364,0	13,65	1,26	1997,0	68,07	0,26	12,03	2405,0	44,27	3148,00
Кс-25/14	42,30	0,84	118440,0	82,80	1094,0	3300,0	18,48	0,41	1255,0	0,80	2,53	35,91	2556,0	20,00	91,20
Кс-27/14	28,80	1,00	172200,0	263,00	8048,0	3141,0	8,01	28,16	941,7	7,70	0,28	27,03	17815,0	34,50	76,33
Кс-28/14	29,00	1,12	196420,0	263,60	5693,0	3129,0	13,22	19,59	1106,0	10,60	-	25,72	20838,0	35,90	90,70
Кс-29/14	32,00	1,35	174300,0	286,20	6119,0	2873,0	6,44	21,00	560,9	7,10	-	32,69	9605,0	34,20	88,10
Кс-30/14	31,70	1,01	170450,0	406,60	6449,0	2270,0	9,75	24,81	963,9	7,70	-	29,36	7358,0	19,40	81,94
Кс-36/14	46,40	1,21	114800,0	149,10	2262,0	2919,0	-	8,08	1330,0	3,80	-	40,45	4647,0	9,80	95,12
Кс-37/14	39,30	1,07	89180,0	149,00	1590,0	3420,0	-	2,72	1003,0	2,90	-	35,49	4647,0	14,80	92,51
Кс-38/14	42,50	1,38	109550,0	268,60	2203,0	2930,0	-	8,16	1557,0	3,50	-	31,61	5422,0	16,80	104,20
Кс-39/14	43,30	1,15	96320,0	204,10	981,0	3526,0	-	2,14	1670,0	1,70	-	30,39	3563,0	9,00	102,10
Кс-40/14	40,70	0,83	143220,0	107,70	1639,0	3794,0	15,23	1,83	1962,0	4,30	-	25,54	2633,0	18,70	92,88
Кс-41/14	37,00	0,91	111230,0	78,70	1749,0	2400,0	7,47	1,88	1960,0	4,10	-	32,90	2168,0	14,10	81,54
Кс-42/14	36,90	0,97	128310,0	107,50	2577,0	2560,0	13,65	2,16	1477,0	4,50	-	27,20	2478,0	5,80	87,58
Кс-46/14	38,60	1,67	112140,0	257,20	9801,0	3436,0	-	2,66	1558,0	9,80	-	19,01	14639,0	18,60	121,50
Кс-47/14	32,20	1,54	143850,0	545,20	12030,0	4617,0	-	2,58	962,9	11,50	-	31,10	24554,0	31,30	128,78
Кс-48/14	39,60	1,05	126000,0	251,20	6505,0	2795,0	-	2,26	704,2	8,80	-	26,66	17738,0	31,10	103,20
Кс-29/13	29,80	1,51	360714,0	350,20	8255,0	1662,0	-	29,24	492,5	15,80	-	39,01	5422,0	53,00	83,83
Кс-30/13	<ПО	0,73	460740,0	92,70	2616,0	635,1	-	8,13	295,0	4,10	-	3,86	2168,0	20,10	14,28

Таблица 2.2 – Химический состав техногенных отложений старого хвостохранилища КОФ

№ пробы								Сод	ержани	е, г/т							
	Sc	v	Ga	Rb	Sr	Zr	Nb	Мо	Cs	Ba	W	Y	Hf	Та	Tl	Th	U
Кс-1/14	8,90	43,00	5,10	35,40	67,40	28,40	4,22	2,60	3,55	388,30	0,40	80,90	0,78	0,25	0,27	6,28	1,29
Кс-25/14	6,30	64,50	9,67	82,60	55,10	40,00	6,63	0,74	14,53	296,60	3,10	5,33	1,16	0,43	1,22	5,16	0,93
Кс-27/14	5,40	44,50	7,27	61,00	35,30	29,70	5,29	0,80	8,19	221,40	2,79	6,43	0,91	0,37	1,09	5,94	0,93
Кс-28/14	3,80	39,00	6,72	55,20	30,20	30,50	4,50	0,78	7,32	181,70	2,67	6,40	0,90	0,29	1,12	5,50	0,86
Кс-29/14	5,80	45,00	7,58	65,80	31,70	31,20	5,32	0,73	7,88	206,20	4,19	6,32	1,04	0,35	1,20	6,02	0,95
Кс-30/14	5,30	42,70	6,90	59,80	38,70	28,60	4,90	0,68	7,67	199,40	2,40	5,95	0,92	0,33	1,13	5,76	0,89
Кс-36/14	7,80	61,60	10,95	92,00	47,70	43,80	7,14	0,66	17,61	290,00	2,17	7,54	1,36	0,48	1,52	7,45	1,21
Кс-37/14	6,40	56,10	9,50	81,10	59,30	43,20	7,58	0,72	12,65	263,00	4,61	7,09	1,22	0,49	1,38	6,22	1,07
Кс-38/14	6,90	55,50	10,59	87,30	46,50	44,30	7,99	0,77	12,88	254,60	4,30	7,79	1,21	0,45	1,35	6,83	1,01
Кс-39/14	7,30	58,50	11,32	93,10	53,60	47,80	7,86	0,84	14,97	288,30	3,21	7,63	1,29	0,48	1,49	6,76	1,08
Кс-40/14	6,00	47,40	9,47	79,60	43,80	39,10	6,19	0,70	11,34	231,10	3,57	6,76	1,20	0,37	1,39	5,30	0,87
Кс-41/14	5,90	53,50	9,93	84,10	38,70	41,70	7,04	0,62	14,42	250,00	1,80	6,94	1,22	0,42	1,21	5,96	1,00
Кс-42/14	5,90	54,20	9,66	84,20	32,90	42,10	6,88	0,81	11,97	243,30	1,87	7,05	1,14	0,40	1,23	5,87	0,96
Кс-46/14	7,40	52,40	12,83	98,10	51,90	47,15	8,08	0,86	12,56	262,60	3,78	10,70	1,09	0,41	1,16	7,01	1,08
Кс-47/14	5,40	44,30	9,83	78,60	56,20	45,10	7,00	0,97	11,58	215,90	4,37	9,54	1,44	0,43	1,35	6,74	1,15
Кс-48/14	6,20	46,30	9,99	82,30	51,00	44,60	7,29	0,94	10,52	240,90	6,85	9,42	1,12	0,43	1,25	6,63	1,10
Кс-29/13	6,40	53,30	8,65	68,00	43,10	38,10	6,72	0,87	7,45	248,00	5,09	11,42	1,03	0,45	1,08	6,27	0,98
Кс-30/13	3,40	12,50	1,11	8,90	20,17	6,40	0,75	3,71	1,20	347,20	1,82	25,67	0,20	0,05	0,19	1,12	0,61

							Содеј	ржание,	г/т						
№ пробы	Cr	Be	Fe	Cu	Zn	Pb	Ag	Cd	As	Со	Hg	Li	Mn	Ni	Sn
Кн -7/14	31,50	0,99	175070,00	225,60	8779,00	1870,00	12,37	37,80	573,30	9,70	-	0,99	5732,00	41,30	85,50
Кн -8/14	44,20	1,28	115080,00	254,40	9347,00	1425,00	9,60	40,95	177,20	11,40	-	0,45	8133,00	46,50	105,60
Кн -9/14	32,50	1,00	199080,00	216,60	7119,00	1760,00	15,14	30,80	370,30	10,20	-	< 100 × 100	10069,00	34,90	89,65
Кн-13/14	71,93	0,25	63897,00	250,16	5726,00	2256,00	12,37	20,94	5499,00	115,77	0,28	56,18	4138,00	54,33	1064,00
Кн-14/14	70,35	0,67	59701,00	141,34	8638,00	944,00	3,20	20,22	4291,00	148,12	0,25	13,85	4137,00	50,97	843,00
Кн-15/14	72,72	0,04	82398,00	204,62	1339,00	3773,00	9,60	1,81	7373,00	286,16	0,33	48,90	4038,00	61,70	991,00
Кн-16/14	63,23	0,11	71944,00	225,91	1585,00	1929,00	15,14	33,58	3435,00	187,41	0,30	21,44	5862,00	57,68	970,00
Кн-17/14	56,91	0,09	59082,00	78,66	1302,00	2082,00	18,13	1,88	3817,00	111,14	0,24	9,26	3580,00	47,62	1057,00
Кн -19/14	42,60	1,05	142730,00	253,10	10460,00	1609,00	_	48,95	202,20	9,70	-	<ПО	6274,00	32,70	96,29
Кн -20/14	59,00	1,47	103040,00	385,00	9219,00	1830,00	-	43,00	443,60	10,00	-	4,14	7978,00	37,70	123,42

Таблица. 2.3 – Химический состав техногенных отложений нового хвостохранилища КОФ

Продолжение таблицы 2.3

							C	Содержа	ние, г/т	,							
№ пробы	Sc	V	Ga	Rb	Sr	Zr	Nb	Mo	Cs	Ba	W	Y	Hf	Та	Tl	Th	U
Кн -7/14	7,86	48,50	9,48	71,60	55,20	24,26	5,76	0,56	7,86	242,10	2,23	8,74	0,65	0,31	0,75	4,44	0,71
Кн -8/14	10,98	64,70	12,74	96,40	89,70	32,95	7,51	0,64	10,98	312,40	5,12	12,49	0,84	0,39	0,97	6,24	1,02
Кн -9/14	8,83	41,00	9,97	73,30	64,70	26,37	5,37	0,65	8,83	238,30	2,95	8,84	0,66	0,26	0,76	4,85	0,72
Кн-16/14	8,00	62,20	8,31	61,10	106,50	20,70	6,28	0,85	8,00	308,00	5,00	11,23	0,67	0,48	0,96	5,30	0,98
Кн-17/14	11,06	76,20	11,59	97,00	105,00	38,10	7,14	0,82	11,06	360,70	5,89	9,87	0,78	0,42	1,29	6,56	1,02
Кн -19/14	9,99	63,40	11,42	89,00	92,10	27,44	7,22	0,59	9,99	301,10	4,82	11,32	0,72	0,40	0,91	5,35	0,88
Кн -20/14	17,31	68,50	15,66	124,40	94,00	42,20	8,56	0,76	17,31	346,90	5,45	12,67	1,10	0,46	1,23	7,58	1,22

Howen modes	Кс – 1/14	Кс - 25/14	Кс - 27/14	Кс - 28/14	Кс - 29/14	Кс - 30/14	Кс - 36/14	Кс – 37/14	К с- 38/14	Кс - 39/14	Кс - 40/14	Кс - 41/14	Кс - 42/14	Кс – 46/14	Кс – 47/14	Кс – 48/14	Кс- 29/13	Кс - 30/13
помер прооы	1/14	20/14	2//11	20/14	27/17	50/14	50/14	5//14	Содерж	кание, г	/T	11/11	12/11	10/11		10/11	27/10	00/10
La	20,2	18,05	17,02	15,7	15,83	14,92	21,47	23,5	21,22	22,31	19,22	16,98	22,31	22,6	22,44	19,83	24,96	38,59
Се	48,7	36,88	35,32	32,41	32,92	30,79	43,12	46,64	42,43	45,92	39,22	35,07	46,3	46,75	45,87	40,9	51,19	65,23
Pr	6,03	3,7	3,57	3,3	3,36	3,13	4,41	4,65	4,31	4,57	3,96	3,61	4,63	4,79	4,67	4,2	5,06	5,43
Nd	23,5	12,95	12,87	11,84	11,97	11,41	15,55	16,09	15,09	16,07	13,82	12,84	16,29	17,14	16,9	15,04	17,98	19,87
Sm	6,02	2,22	2,48	2,29	2,31	2,14	2,86	2,89	2,85	2,82	2,38	2,49	2,88	3,23	3,25	2,85	3,49	3,24
Eu	1,82	0,47	0,63	0,61	0,52	0,54	0,63	0,56	0,56	0,59	0,56	0,52	0,56	0,71	0,82	0,75	0,76	1,09
Gd	6,06	1,76	1,97	1,92	1,87	1,8	2,29	2,18	2,2	2,2	1,83	1,88	2,16	2,66	2,58	2,26	3,02	4,38
Тb	1,15	0,26	0,32	0,3	0,31	0,3	0,36	0,33	0,34	0,38	0,28	0,3	0,32	0,43	0,42	0,39	0,47	0,68
Dy	5,76	1,21	1,53	1,55	1,49	1,44	1,76	1,54	1,62	1,62	1,44	1,52	1,54	2,02	2,12	1,95	2,25	3,25
Но	0,998	0,25	0,28	0,28	0,28	0,25	0,33	0,3	0,31	0,3	0,26	0,29	0,28	0,37	0,38	0,36	0,41	0,63
Er	2,5	0,74	0,81	0,81	0,83	0,73	0,98	0,88	0,87	0,89	0,79	0,86	0,83	1,08	1,09	1,05	1,11	1,46
Tm	0,313	0,11	0,12	0,11	0,11	0,11	0,14	0,12	0,12	0,14	0,16	0,12	0,12	0,15	0,15	0,14	0,14	0,16
Yb	1,93	0,83	0,81	0,81	0,84	0,74	1,07	0,91	0,88	0,97	0,79	0,93	0,84	1,04	1,06	1,03	1	0,93
Lu	0,259	0,11	0,12	0,12	0,13	0,12	0,16	0,14	0,14	0,14	0,12	0,13	0,13	0,15	0,17	0,15	0,15	0,13
∑REE, г/т	125,24	79,54	77,85	72,05	72,77	68,42	95,13	100,73	92,94	98,92	84,83	77,54	99,19	103,12	101,92	90,9	111,99	145,07
ΣLREE	106,27	74,27	71,89	66,15	66,91	62,93	88,04	94,33	86,46	92,28	79,16	71,51	92,97	95,22	93,95	83,57	103,44	133,45
∑HREE	18,97	5,27	5,96	5,9	5,86	5,49	7,09	6,4	6,48	6,64	5,67	6,03	6,22	7,9	7,97	7,33	8,55	11,62
LREE, %	84,85	93,37	92,34	91,81	91,95	91,98	92,55	93,65	93,03	93,29	93,32	92,22	93,73	92,34	92,18	91,94	92,37	91,99
HREE, %	15,15	6,63	7,66	8,19	8,05	8,02	7,45	6,35	6,97	6,71	6,68	7,78	6,27	7,66	7,82	8,06	7,63	8,01
(LREE/HREE) ^N	1,13	2,01	1,84	1,74	1,69	1,74	2,01	2,22	2,07	2,04	1,91	1,73	2,31	1,93	1,82	1,73	2,09	2,41
Eu/Eu*	1,32	1,04	1,25	1,26	1,09	1,21	1,08	0,98	0,98	1,04	1,17	1,05	0,98	1,06	1,24	2,49	1,03	1,25
Ce/Ce*	0,96	0,99	0,96	0,96	0,98	0,98	0,95	0,97	0,97	0,98	0,98	0,96	0,99	0,98	0,97	0,97	0,99	0,95
$\Sigma Ce/\Sigma Y$	5,6	14,1	12,1	11,2	11,4	11,4	12,4	14,7	13,3	13,9	13,9	11,8	14,9	12,1	11,8	11,4	12,1	11,4

Таблица. 2.4 – Содержание редкоземельных элементов в отложениях старого хвостохранилища КОФ

Номер пробы	Кн -7/14	Кн -8/14	Кн -9/14	Кн -16/14	Кн -17/14	Кн -19/14	Кн -20/14
Элемент				Содержание, г/т		·	·
La	17,46	22,48	16,95	20,06	22,27	19,06	23,25
Ce	35,13	46,46	33,91	39,22	42,19	37,73	48,2
Pr	3,61	4,64	3,47	4,17	4,37	3,96	4,83
Nd	13,19	17,1	12,64	15,14	15,34	14,28	17,46
Sm	2,51	3,34	2,34	2,97	2,88	2,73	3,36
Eu	0,74	0,99	0,73	1,05	0,92	0,81	0,99
Gd	1,98	2,63	1,89	2,73	2,46	2,26	2,64
Tb	0,33	0,45	0,32	0,46	0,39	0,38	0,45
Dy	1,64	2,29	1,58	2,34	1,95	2,02	2,28
Но	0,3	0,44	0,31	0,44	0,39	0,39	0,45
Er	0,92	1,24	0,91	1,25	1,12	1,08	1,28
Tm	0,12	0,16	0,12	0,17	0,16	0,15	0,17
Yb	0,74	1,09	0,79	1,2	1,1	1	1,15
Lu	0,11	0,15	0,12	0,17	0,16	0,14	0,18
ΣREE , Γ/Τ	78,78	103,46	76,08	91,37	95,7	85,99	106,69
∑LREE	72,64	95,01	70,04	82,61	87,97	78,57	98,09
∑HREE	6,14	8,45	6,04	8,76	7,73	7,42	8,6
LREE, %	92,21	91,83	92,06	90,41	91,92	91,37	91,94
HREE, %	7,79	8,17	7,94	9,59	8,08	8,63	8,06
(LREE/HREE) ^N	1,9	1,78	1,77	1,48	1,69	1,65	1,69
Eu/Eu*	1,45	1,46	1,52	1,62	1,52	1,43	1,45
Ce/Ce*	0,96	0,99	0,96	0,95	0,92	0,96	0,98
$\Sigma Ce/\Sigma Y$	11,8	11,2	11,5	9,4	11,3	10,5	11,4

Таблица. 2.5 – Содержание редкоземельных элементов в отложениях нового хвостохранилища КОФ

ПРИЛОЖЕНИЕ 3

РЕЗУЛЬТАТЫ ФИЗИКО-ХИМИЧЕСКОГО МОДЕЛИРОВАНИЯ ИОННОГО СОСТАВА РАСТВОРА ПРИ ИЗМЕНЯЮЩИХСЯ ОБЪЕМНЫХ СООТНОШЕНИЯХ «ВОДА-ПОРОДА» В СИСТЕМЕ ХВОСТОХРАНИЛИЩА ДАЛЬНЕГОРСКОГО РАЙОНА

Таблица 1

Результаты физико-химического моделирования ионного состава раствора при объемных соотношениях «вода-порода» 1 г. п. / 1 кг H2O (модель 1.1)

Таблица 1-1

Резервуар 1					
Температура, °С	25,00	G, кал	-3158448	Eh, B	0,7475
Давление, бар	1,00	Н, кал	-3783585	pe	12,6602
Масса, кг	2,001	S, кал/К	2610,047	pH	7,9382
Объем мультисистемы, см ³	884154,875	U, кал	-3756244	Ионная сила	0,0026
Плотность мультисистемы, г/см ³	0,002263	Ср, кал	1232,63	TDS, mg/kgH ₂ O	180,2158378

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	986,01654	5,45715e+01	983,2555	9,97200e-01	49,15196
Газ	883168,88801	3,56269e+01	1017,1847	1,15174e-03	50,84804

Таблица 1-3

Таблица 1-2

Характеристики зависимых компонентов равновесного состояния мультисистемы

0 1	Функция gT,	N	М	Концентрация в	Log	Коэф.	Log коэф.
Состав фазы	кал/моль	Моляльность	Мольное количество	мг/кг H ₂ O, или	моляльност	Активности	Активности
Волиций раство	n			Bec. 70	И		
$A\sigma(C\Omega_2)^{-1}$	-126712	6.6197e-12	6 507331667177e-12	1 1113e-06	-11 179	0.9483	-0.023
$Ag(CO_2)2^{-3}$	-260842	4.5605e-18	4 483109465669e-18	1,0393e-12	-17.341	0.6074	-0.217
Ag ⁺	7427	9.1488e-09	8.993493021478e-09	9.8686e-04	-8.039	0.9452	-0.024
Al(OH) ⁺²	-179481	4 4582e-11	4 382564581330e-11	1.9611e-06	-10 351	0,7997	-0.097
Al(OH) ₂ *	-271179	4.5784e-05	4,500726826665e-05	3.5713e+00	-4.339	1,0006	0.000
A1+3	-133632	6.8832e-14	6.766344398055e-14	1.8572e-09	-13.162	0.6038	-0.219
AlO ₂ ⁻	-203672	2.3904e-04	2.349818488446e-04	1.4099e+01	-3.622	0.9486	-0.023
Au ⁺	27329	2.9501e-09	2.899999916553e-09	5.8107e-04	-8,530	0.9449	-0.025
Ba(CO ₃)*	-277548	8.7917e-11	8.642463475001e-11	1.7349e-05	-10.056	1,0005	0.000
Ba ⁺²	-143417	1,6471e-07	1,619131955053e-07	2,2619e-02	-6,783	0,7984	-0,098
Be ⁺²	-104940	2,4049e-16	2,364046355511e-16	2,1673e-12	-15,619	0,8002	-0,097
BeO ₂ -2	-174979	9,6275e-17	9,464098953681e-17	3,9483e-12	-16,016	0,8040	-0,095
CO_2^*	-99111	9,3507e-06	9,191996229735e-06	4,1152e-01	-5,029	1,0005	0,000
CO3-2	-134130	1,8855e-06	1,853500092167e-06	1,1315e-01	-5,725	0,8032	-0,095
$Ca(CO_3)^*$	-271642	3,5904e-07	3,529498288998e-07	3,5936e-02	-6,445	1,0005	0,000
Ca(HCO ₃) ⁺	-282471	4,9006e-07	4,817388974588e-07	4,9542e-02	-6,310	0,9452	-0,024
Ca ⁺²	-137512	1,3975e-04	1,373783140064e-04	5,6009e+00	-3,855	0,7989	-0,098
CaSO ₄ *	-320761	1,8178e-06	1,786997267215e-06	2,4748e-01	-5,740	1,0006	0,000
Cd ⁺²	-29054	2,5432e-08	2,50000000000e-08	2,8588e-03	-7,595	0,7990	-0,097
Ce ⁺³	-174193	9,7486e-10	9,583118165674e-10	1,3659e-04	-9,011	0,6032	-0,220
CeCO ₃ ⁺	-308314	2,3993e-08	2,358583073154e-08	4,8016e-03	-7,620	0,9473	-0,024
CeH ₂ PO ₄ ⁺²	-450386	7,8105e-12	7,677927900875e-12	1,8519e-06	-11,107	0,7993	-0,097
CeHCO ₃ ⁺²	-319153	2,2737e-11	2,235094900712e-11	4,5731e-06	-10,643	0,7988	-0,098
CeO ⁺	-209213	1,8439e-10	1,812653636032e-10	2,8787e-05	-9,734	0,9453	-0,024
CeO ₂ -	-244233	6,3090e-17	6,201921051161e-17	1,0859e-11	-16,200	0,9470	-0,024
CeO_2H^*	-255062	2,7917e-12	2,744301583444e-12	4,8330e-07	-11,554	1,0005	0,000
CeOH ⁺²	-220042	2,4599e-10	2,418188319676e-10	3,8651e-05	-9,609	0,7986	-0,098
CeSO ₄ ⁺	-357443	1,6090e-17	1,581735827468e-17	3,8002e-12	-16,793	0,9462	-0,024
Co ⁺²	-23886	1,3120e-08	1,289728306672e-08	7,7320e-04	-7,882	0,7993	-0,097
Cs ⁺	-80950	6,1036e-09	5,999999865889e-09	8,1120e-04	-8,214	0,9446	-0,025
Cu ⁺	-11862	3,7143e-18	3,651227431379e-18	2,3603e-13	-17,430	0,9454	-0,024
Cu ⁺²	5409	3,7376e-08	3,674185133716e-08	2,3751e-03	-7,427	0,7992	-0,097
Dy ⁺⁵	-174128	8,1318e-12	7,993792250151e-12	1,3214e-06	-11,090	0,6033	-0,219
DyCO ₃ ⁺	-308177	8,9286e-10	8,777060628999e-10	1,9867e-04	-9,049	0,9475	-0,023
DyHCO ₃ ⁺²	-319087	1,1470e-13	1,127519645335e-13	2,5637e-08	-12,940	0,7990	-0,097
DyO ⁺	-209147	3,0314e-12	2,979976650234e-12	5,4111e-07	-11,518	0,9456	-0,024
DyO ₂ -	-244166	1,0017e-13	9,847424868419e-14	1,9484e-08	-12,999	0,9473	-0,023
DyO ₂ H	-254995	4,8822e-13	4,799314198484e-13	9,5450e-08	-12,311	1,0005	0,000
DyOH ⁺²	-219977	7,9296e-12	7,795031285023e-12	1,4234e-06	-11,101	0,7988	-0,098
DySO ₄	-35/3/6	2,8829e-12	2,833940538490e-12	7,4540e-07	-11,540	0,9464	-0,024
Er ¹⁰	-1/5882	3,19430-12	3,140089019407e-12	5,5428e-07	-11,496	0,6034	-0,219
$EICO_3^{+2}$	-309923	4,98120-10	4,890090129500e-10	1,15210-04	-9,303	0,9477	-0,023
EIHCU3	-320834	3,38900-14	3,29/3200120310-14	1,2302e-08	-13,208	0,7992	-0,097
EIO ErO -	-21089/	1,0///e-12 2,0121a,12	1,0492006015558-12	5,07450-07	-11,//3	0,9438	-0,024
EIO_2 $ErO U^*$	-243913	5,0151e-15 6 2097a 12	2,9020103808888-13	0,0040e-08	-12,521	0,9475	-0,023
EIU ₂ H	-230/43	0,308/e-13	0,2010/923133/0-13	1,2034e-07	-12,200	1,0005	0,000

Продолжение таблицы 1-	-3
------------------------	----

ErOH ⁺²	-221731	3.6856e-12	3.623049236563e-12	6.7914e-07	-11.433	0.7989	-0.097
ErSO. ⁺	-359124	9.6507e-13	9486925808072e-13	2 5413e-07	-12 015	0.9466	-0.024
Eu504 Eu ⁺³	-1531/1	4.0548e-12	3 985936836070e-12	6 1618e-07	-11 392	0,6033	-0.219
EuCO. ⁺	-287157	3 9708e-10	3,903/229/17//e-10	8/1171e-05	-9.401	0.9474	-0.023
EuHCO. ⁺²	208105	17828e 14	4 70162159/329e 1/	1,0186e,08	13 320	0,7989	0.007
Eurico ₃	199165	4,78286-14	9 865010756280 ₀ 12	1,01806-08	12 045	0,7989	-0,097
EuO	-100103	9,01906-15	8,8039107302898-13	1,51496-07	-12,043	0,9433	-0,024
EuO_2	-223184	4,6558e-15	4,5/682/6938836-15	8,5651e-10	-14,332	0,9472	-0,024
EuO_2H	-234014	6,2503e-14	6,144217099822e-14	1,1561e-08	-13,204	0,9998	-0,000
EuOH ¹²	-198991	3,3297e-12	3,2/316562/323e-12	5,6262e-07	-11,478	0,7987	-0,098
EuSO ₄ ⁺	-336394	1,4231e-12	1,398996070989e-12	3,5298e-07	-11,847	0,9463	-0,024
Fe ⁺²	-40135	5,1111e-14	5,024313412951e-14	2,8544e-09	-13,291	0,7993	-0,097
Fe ⁺³	-22864	3,0181e-14	2,966892249277e-14	1,6855e-09	-13,520	0,6036	-0,219
Ga ⁺³	-49185	1,0478e-08	1,030000001192e-08	7,3055e-04	-7,980	0,6039	-0,219
Gd ⁺³	-173603	1,6684e-11	1,640080958489e-11	2,6236e-06	-10,778	0,6032	-0,220
GdCO ₃ ⁺	-307660	1,2877e-09	1,265807999970e-09	2,7976e-04	-8,890	0,9473	-0,024
GdHCO3 ⁺²	-318563	2,3478e-13	2,307995357810e-13	5,1246e-08	-12,629	0,7988	-0,098
GdO ⁺	-208622	3,7415e-12	3,678027750416e-12	6,4822e-07	-11,427	0,9453	-0,024
GdO2 ⁻	-243642	2,2846e-14	2,245823714639e-14	4,3236e-09	-13,641	0,9470	-0,024
GdO ₂ H*	-254471	3,6276e-13	3,566008198769e-13	6,9017e-08	-12,440	1,0005	0,000
GdOH ⁺²	-219452	1.3736e-11	1,350333065264e-11	2.3937e-06	-10.862	0.7986	-0.098
H ₂ AsO ₄ ⁻	-189822	6.7774e-08	6.662393401695e-08	9.5518e-03	-7.169	0.9474	-0.023
H ₂ PO ₄ ⁻	-276192	3.8630e-05	3 797432440128e-05	3 7466e+00	-4 413	0.9476	-0.023
H ₂ VO ₄ ⁻	-254029	4 6962e-08	4 616476737744e-08	5 4924e-03	_7 328	0.9473	-0.024
H ₂ PO ₄ *	-287022	6 2418e-11	6 135854128321e-11	6 1167e-06	-10 205	1,0000	0,000
Has Ω_4^{-2}	_178992	1 20960-06	1 1890311577756-06	1 69250-01	-5 017	0.8028	-0.095
HCO -	-1/0792	3 931/2 0/	3 86/6/2277/62-04	2 30880+01	-3,717	0.0475	-0,093
HNO *	-144737	3,73140-04	3,0040422774030-04	1 06120 11	-5,405	0,9473	-0,025
LIDO -2	-29007	3,1123e-10 2,4610-04	3,039313109132e-10	1,90120-11	-13,307	0,9997	-0,000
	-203302	2,40196-04	2,4201239004516-04	2,30290+01	-3,009	0,8031	-0,095
HSO ₄	-194078	1,4637e-10	1,4388603/184/e-10	1,4208e-05	-9,835	0,9473	-0,024
HsiO ₃ ⁻	-250292	1,4615e-06	1,436657610376e-06	1,1267e-01	-5,835	0,9480	-0,023
HVO4 ⁻²	-243200	4,1540e-08	4,083523302584e-08	4,8165e-03	-7,382	0,8027	-0,095
Ho ⁺³	-177743	1,7376e-12	1,708086708958e-12	2,8658e-07	-11,760	0,6033	-0,219
HoCO ₃ ⁺	-311869	1,9829e-10	1,949274075477e-10	4,4604e-05	-9,703	0,9475	-0,023
HoHCO ₃ ⁺²	-322821	2,0016e-14	1,967613190511e-14	4,5225e-09	-13,699	0,7990	-0,097
HoO^+	-212793	7,2741e-13	7,150650122630e-13	1,3161e-07	-12,138	0,9456	-0,024
HoO2 ⁻	-247906	1,7297e-14	1,700343956423e-14	3,4063e-09	-13,762	0,9473	-0,024
HoO_2H^*	-258705	1,7453e-13	1,715713734951e-13	3,4547e-08	-12,758	1,0005	0,000
HoOH ⁺²	-223591	2,0089e-12	1,974800171224e-12	3,6549e-07	-11,697	0,7988	-0,098
HoSO ₄ ⁺	-361045	4,7445e-13	4,663991143537e-13	1,2383e-07	-12,324	0,9464	-0,024
K ⁺	-72445	2,5557e-04	2,512294693919e-04	9,9922e+00	-3,592	0,9449	-0,025
KOH*	-118294	2,9023e-05	2,853090000879e-05	1,6284e+00	-4,537	1,0004	0,000
KSO4 ⁻	-255694	2.4377e-07	2,396305992805e-07	3.2948e-02	-6.613	0.9471	-0.024
La ⁺³	-176679	8.4235e-10	8.280543361323e-10	1.1701e-04	-9.075	0.6033	-0.219
LaCO ₂ ⁺	-310794	1.0906e-08	1.072083175675e-08	2.1693e-03	-7.962	0.9474	-0.023
LaH ₂ PO ₄ ⁺²	-452873	7 9747e-12	7 839369085453e-12	1 8812e-06	-11.098	0 7994	-0.097
LaHCO ₂ ⁺²	-321641	2 3217e-11	2 282308360597e-11	4 6416e-06	-10.634	0 7989	-0.098
Laneo,	-211701	2,32170 11 2,7682e-12	2,2023003003376 11 2,721225734203e-12	4 2881e-07	-11 558	0.9455	-0.024
LaO ₂ H [*]	-257550	4.1921e-14	4.120970745913e-14	7,2067e-09	-13 378	1 0005	0.000
LaOH ⁺²	_222530	1 2790-10	1 257273605600-10	1 99410-05	_9 803	0 7087	-0.098
LaSO.+	_350030	2 9700-10	2 919613807182 10	6.978605	-0 577	0.9464	-0.024
	-78705	3 9266 07	3 850000805006-07	2 7255- 02	-6.406	0.0457	-0,024
Lu ⁺³	-10703	1 8205 12	1 708/10120811 - 12	3 2010-02	-0,400	0,5457	-0,024
LuCO. ⁺	310990	5 06762 11	5 8663100524672 11	1 40222 05	-12,730	0,0035	-0,219
$LuCO_3$ LuHCO +2	-310000	6 10000 15	5,00051775240/0-11 6,005359756642- 15	1,40220-00	-10,224	0,7479	-0,023
	-321024	2 2560 2 12	2 2007/2607207- 12	6 2170 - 09	-14,214	0,7994	-0,097
Luo	-212209	3,2300e-13	5,200/4509/29/e-13	0,21/90-08	-12,48/	0,9460	-0,024
	-246/84	1,3603e-13	1,55/1982456/3e-13	2,8153e-08	-12,866	0,9478	-0,023
LuO_2H	-25//19	1,4391e-13	1,414629757624e-13	2,9929e-08	-12,842	1,0005	0,000
LuOH ⁺	-222624	4,9205e-13	4,85/025141140e-13	9,4462e-08	-12,308	0,7991	-0,097
LuSO4 ⁺	-360152	/,3239e-14	/,199636825553e-14	1,9850e-08	-13,135	0,9468	-0,024
$Mg(CO_3)^*$	-248018	1,6351e-07	1,607364382750e-07	1,3786e-02	-6,786	1,0005	0,000
Mg(HCO ₃) ⁺	-258847	4,8472e-07	4,764908959589e-07	4,1357e-02	-6,315	0,9459	-0,024
Mg ⁺²	-113888	1,4177e-04	1,393627726658e-04	3,4457e+00	-3,848	0,7995	-0,097
Mn ⁺²	-59821	1,5750e-04	1,548225350876e-04	8,6525e+00	-3,803	0,7990	-0,097
MnO ₄ -	-113542	1,4285e-05	1,404269561548e-05	1,6990e+00	-4,845	0,9467	-0,024
MnO ₄ ⁻²	-130813	8,8928e-09	8,741915259855e-09	1,0577e-03	-8,051	0,8024	-0,096
$MnSO_4^*$	-243070	3,5767e-06	3,516026771331e-06	5,4009e-01	-5,447	1,0005	0,000
MoO ₄ -2	-212430	8,1381e-10	8,000000379980e-10	1,3016e-04	-9,089	0,8026	-0,095
N_2^*	-152	5,0364e-04	4,950919310807e-04	1,4109e+01	-3,298	0,9997	-0,000
NO ₂ -	-18301	1,7892e-08	1,758821133733e-08	8,2312e-04	-7,747	0,9473	-0,024
NO ₃ ⁻	-18778	7,6535e-07	7,523578218332e-07	4,7455e-02	-6,116	0,9471	-0,024
Na ⁺	-67461	2,8481e-04	2,799728032516e-04	6,5476e+00	-3,545	0.9453	-0.024
NaAlO ₂ *	-271133	1,1026e-08	1,083899546589e-08	9,0381e-04	-7,958	1,0003	0,000

Прололжение таблины	1	-3
продолжение наолицы	-	-

NaHSiO.*	-317753	1.6602e-08	1.632031700293e-08	$1.6616e_{-}03$	-7 780	1.0005	0.000
Nalisio3	-317733	1,00020-08	1,0320317002338-08	1,00106-03	-7,780	1,0005	0,000
NaOH	-113310	3,8082e-11	3,743587502350e-11	1,5232e-06	-10,419	0,9987	-0,001
Nd ⁺³	-180531	4,0700e-15	4,000898389056e-15	5,8705e-10	-14,390	0,6032	-0,220
NdCO ₃ ⁺	-314662	1.9802e-13	1.946624892754e-13	4.0446e-08	-12.703	0.9473	-0.024
NdHCO.+2	-325/101	8.0225e-17	7 886310407023e-17	1.6467e-11	-16.096	0 7988	-0.098
NJNO +2	100200	0,02230 17	9,000707942420- 00	1,04070 11	9.042	0,7905	0,007
NdNO ₃ ¹²	-199290	9,0534e-09	8,8997978434396-09	1,86/2e-03	-8,043	0,7995	-0,097
NdO ⁺	-215552	1,6859e-16	1,657302734512e-16	2,7015e-11	-15,773	0,9453	-0,024
NdO ₂ H [*]	-261401	7,0277e-18	6,908465644082e-18	1,2456e-12	-17,153	1,0005	0,000
NdOH ⁺²	-226381	2.0181e-15	1 9838/1130782e-15	3 2541e-10	-14 695	0 7986	-0.098
NUCO	-220301	2,01010-15	1,7050411507020-15	3,25410-10	-14,075	0,7700	-0,070
NdSO ₄	-363/81	1,43/2e-15	1,412/88698620e-15	3,4536e-10	-14,842	0,9462	-0,024
Ni ⁺²	-20896	5,8932e-08	5,793161901063e-08	3,4587e-03	-7,230	0,7994	-0,097
0_2^*	-954	2,5286e-04	2,485724841587e-04	8,0913e+00	-3,597	0,9996	-0,000
PO3	-25/1533	1 3/31e-08	1 320267779799e-08	1 2755e-03	-7 872	0.6082	-0.216
DL+2	1.075	2 1 (19 - 09	2 109191655525 - 09	(5512-02	7,072	0,0002	0,210
Pb ⁻²	-16075	3,1618e-08	3,1081816555356-08	6,5513e-03	-7,500	0,7984	-0,098
Pr ⁺³	-183124	1,4962e-15	1,470851910437e-15	2,1083e-10	-14,825	0,6032	-0,220
PrCO ₃ ⁺	-317255	5,1960e-14	5,107791216245e-14	1,0440e-08	-13,284	0,9473	-0,024
PrHCO ₂ ⁺²	-328084	3.4897e-17	3 430470326796e-17	7.0466e-12	-16 457	0 7993	-0.097
DrNO +2	201959	2 5 4 2 1 2 00	2,400046805440a 00	5 1602 04	P 505	0,7005	0,007
PINO ₃	-201838	2,34516-09	2,4999408934496-09	3,1605e-04	-8,393	0,7993	-0,097
PrO ⁺	-218144	3,7367e-17	3,673234998936e-17	5,8631e-12	-16,428	0,9454	-0,024
PrO_2H^*	-263993	1,5578e-18	1,531313491436e-18	2,7092e-13	-17,808	1,0005	0,000
PrOH ⁺²	-228974	5,2946e-16	5.204714977403e-16	8.3609e-11	-15,276	0.7986	-0,098
Rh ⁺	_77568	7 32/30 08	7 2000002861029 09	6 2500- 03	_7 125	0.9448	_0.025
10 00-2	-77300	1,52450-00	1,2000020010200	1,5004 01	-1,133	0,2440	-0,025
SU4-2	-183249	1,5712e-04	1,544568913565e-04	1,5094e+01	-3,804	0,8027	-0,095
Sc ⁺³	-151295	1,2207e-08	1,199999973178e-08	5,4878e-04	-7,913	0,6035	-0,219
SiO ₂ *	-204443	1,4094e-04	1,385470220726e-04	8,4682e+00	-3,851	1,0009	0,000
Sm ⁺³	-173934	2.2192e-11	2.181539643656e-11	3.3368e-06	-10.654	0.6032	-0.220
SmCO +	200002	1 67002 00	1 651259407695 - 00	2 5220- 04	0,057	0.0472	0.022
	-508005	1,07996-09	1,03133642/0836-09	5,55596-04	-0,//3	0,94/3	-0,023
SmHCO ₃ ⁺²	-318894	3,6924e-13	3,629778989487e-13	7,8050e-08	-12,433	0,7988	-0,098
SmO^+	-208954	3,5459e-12	3,485725410786e-12	5,8989e-07	-11,450	0,9454	-0,024
SmO ₂ ⁻	-243974	7.8630e-15	7.729535784455e-15	1.4339e-09	-14,104	0.9471	-0.024
SmO H*	254802	1,05540,13	1,027525516001a 12	1,02520.09	12,077	0,0008	0,021
	-234805	1,03346-15	1,037323310991e-13	1,95558-08	-12,977	0,9998	-0,000
SmOH ⁺²	-219783	1,5423e-11	1,516109223979e-11	2,5813e-06	-10,812	0,7986	-0,098
$SmSO_4^+$	-357184	7,8380e-12	7,704990628183e-12	1,9315e-06	-11,106	0,9463	-0,024
Sn ⁺²	-28385	1.4162e-16	1.392136959577e-16	1.6811e-11	-15.849	0.7986	-0.098
SrCO *	270106	3 6087e 11	3 547427457475e 11	5 32759 06	10.443	1,0005	0,000
SICO3	-279100	3,00876-11	3,3474274374736-11	3,32736-00	-10,443	1,0005	0,000
Sr	-144975	4,0756e-08	4,006452503401e-08	3,5/11e-03	-7,390	0,7987	-0,098
Tb ⁺³	-175737	2,0775e-12	2,042236291831e-12	3,3017e-07	-11,682	0,6033	-0,219
TbCO ₃ ⁺	-309770	1.9800e-10	1.946385274312e-10	4.3349e-05	-9,703	0.9475	-0.023
ThHCO ₂ +2	-320745	2 6903e-14	2 644652082141e-14	5 9171e-09	-13 570	0 7995	-0.097
Theo:	210796	2,00030 14		1,0977- 07	13,370	0,0450	0,024
TDU	-210780	0,2181e-15	6,112522629814e-15	1,087/e-07	-12,206	0,9456	-0,024
TbO ₂ -	-245827	4,3282e-15	4,254706236967e-15	8,2635e-10	-14,364	0,9473	-0,024
TbOH ⁺²	-221587	2,0220e-12	1,987667924423e-12	3,5573e-07	-11,694	0,7988	-0,098
TbSO ₄ ⁺	-359013	7.0153e-13	6.896243619404e-13	1.7888e-07	-12.154	0.9464	-0.024
T1+	20452	5.0863e.10	4 000000888241e 10	1.0396a.04	0.204	0.9447	0.025
11 TL ±3	-20432	1,00030-10	4,9999998882416-10	1,03906-04	-9,294	0,9447	-0,023
Tm ⁺³	-181/09	1,/09/e-16	1,680692398321e-16	2,8883e-11	-15,/6/	0,6034	-0,219
$TmCO_3^+$	-315846	2,6858e-14	2,640216359879e-14	6,1490e-09	-13,571	0,9477	-0,023
TmHCO ₃ ⁺²	-326669	2,8502e-18	2,801828470228e-18	6,5541e-13	-17,545	0,7992	-0,097
TmNO ₂ ⁺²	-200465	1.0170e-10	9,997303892386e-11	2.3486e-05	-9.993	0.8000	-0.097
TmO ⁺	_216729	1.05640.16	1 038/03058670 16	1 05370 11	-15 076	0.0459	_0.024
Two	-210720	1,00040-10	1,000700000000000	2,7044 12	-13,770	0,2430	-0,024
1mO ₂	-251/48	1,3459e-1/	1,3230/028269/e-1/	2,7044e-12	-10,8/1	0,9475	-0,023
TmO ₂ H ^{**}	-262577	4,6816e-17	4,602139919726e-17	9,4540e-12	-16,330	1,0005	0,000
TmOH ⁺²	-227558	2,3366e-16	2,296898070503e-16	4,3446e-11	-15,631	0,7989	-0,097
VO_2^+	-162332	7,4827e-17	7,355676953755e-17	6,2061e-12	-16.126	0.9462	-0.024
WO ₄ -2	-231307	1 52590-00	1 4999999664720-00	3 7819-04	-8.816	0.8025	-0.096
V+3	-251507	7 1200 00	7,00000000000000	6 2200 04	-0,010	0,0025	-0,070
Y	-1/5214	7,1209e-09	7,00000029803e-09	6,3309e-04	-8,147	0,6035	-0,219
Yb ⁺³	-173873	8,3064e-16	8,165398035143e-16	1,4373e-10	-15,081	0,6034	-0,219
YbCO ₃ ⁺	-308001	1,5654e-13	1,538853995069e-13	3,6482e-08	-12,805	0,9476	-0,023
YhHCO ₂ ⁺²	-318831	1.6192e-17	1.591726720880e-17	3.7899e-12	-16.791	0.7991	-0.097
VbNO.+2	-102611	5 08/70 10	1 998/29303530a 10	1 10510 04	_0 20/	0 7000	_0.007
	-192011	7,004/6-10	7,7704275055500-10	1,19510-04	-7,274	0,1999	-0,097
YbO⁺	-208891	7,2076e-16	7,085278642296e-16	1,3625e-10	-15,142	0,9457	-0,024
YbO ₂ -	-243910	6,5528e-17	6,441577853714e-17	1,3436e-11	-16,184	0,9474	-0,023
YbOH ⁺²	-219721	1,3456e-15	1,322748919792e-15	2,5572e-10	-14,871	0,7989	-0,098
YhSO.+	_357110	2 40150 16	2 4492196979799 16	6 70/7e-11	-15 604	0.9465	_0.024
7 n ⁺²	-33/117	6.0554-06	5.052507267527.06	2.0506-01	-13,00 4	0,7403	-0,024
	-42451	0,05546-06	3,95258/26/52/e-06	3,93966-01	-5,218	0,7993	-0,097
AsO ₄ -3	-168162	3,5091e-10	3,449506695236e-10	4,8748e-05	-9,455	0,6079	-0,216
BaOH ⁺	-189267	3,8690e-13	3,803368037078e-13	5,9712e-08	-12,412	0,9448	-0,025
BeOH ⁺	-150780	1.1190e-08	1,099999960935e-08	2.9116e-04	-7 951	0 9464	-0.024
CoO*	50015	1 1667 - 11	1 146904247760- 11	2,7100 04	10.022	1 0005	0.000
	-30915	1,100/0-11	1,140694247/096-11	0,/4230-0/	-10,933	1,0005	0,000
CoOH ⁺	-69744	9.2823e-11	9.124751396102e-11	7,0490e-06	-10,032	0,9462	-0,024
	07111	7,20250 11	.,				
$Cr_2O_7^{-2}$	-334634	1,6448e-16	1,616877783116e-16	3,5526e-11	-15,784	0,8006	-0,097
$Cr_2O_7^{-2}$ CrO_4^{-2}	-334634 -184824	1,6448e-16	1,616877783116e-16	3,5526e-11 6,4898e-03	-15,784	0,8006	-0,097
$\frac{\text{Cr}_2\text{O}_7^{-2}}{\text{Cr}\text{O}_4^{-2}}$	-334634 -184824 -29610	1,6448e-16 5,5950e-08	1,616877783116e-16 5,50000086872e-08 3,4183172058822.07	3,5526e-11 6,4898e-03 2,7661e-02	-15,784 -7,252	0,8006 0,8024 1,0024	-0,097 -0,096

Продолжение таблицы	1-3
продолжение таолицы	1 5

CuO ₂ -2	-64629	8,3259e-18	8,184607053575e-18	7,9550e-13	-17,080	0,8035	-0,095
CuOH ⁺	-40440	3,2986e-08	3,242644141428e-08	2,6572e-03	-7,482	0,9460	-0,024
FeO*	-75155	1,2262e-18	1,205344031954e-18	8,8095e-14	-17,911	1,0005	0,000
FeO ⁺	-57884	3,2919e-04	3,236010591118e-04	2,3651e+01	-3,483	0,9462	-0,024
FeO ₂ -	-92903	2,6844e-04	2,638866249144e-04	2,3582e+01	-3,571	0,9480	-0,023
FeOH ⁺	-85985	1,8415e-15	1,810225663301e-15	1,3416e-10	-14,735	0,9462	-0,024
FeOH ⁺²	-68713	1,2529e-08	1,231589203218e-08	9,1276e-04	-7,902	0,7993	-0,097
HgO [*]	-22532	1,0173e-10	9,999929870372e-11	2,2033e-05	-9,993	1,0005	0,000
HgOH ⁺	-33393	7,1821e-16	7,060226561486e-16	1,5628e-10	-15,144	0,9452	-0,024
NiO*	-55917	7,0619e-13	6,942013321068e-13	5,2745e-08	-12,151	1,0005	0,000
NiOH ⁺	-66746	6,8854e-11	6,768511907335e-11	5,2120e-06	-10,162	0,9464	-0,024
PbO*	-51095	2,4579e-09	2,416199514316e-09	5,4860e-04	-8,609	1,0005	0,000
PbOH ⁺	-61924	1,5091e-06	1,483501991560e-06	3,3835e-01	-5,821	0,9462	-0,024
SnO [*]	-63404	6,5101e-08	6,399639069268e-08	8,7698e-03	-7,186	1,0005	0,000
SnOH ⁺	-74234	3,6700e-12	3,607737592965e-12	4,9809e-07	-11,435	0,9451	-0,025
UO_2^{+2}	-240650	3,8940e-10	3,827898847728e-10	1,0515e-04	-9,410	0,7992	-0,097
UO4 ⁻²	-310804	1,7507e-11	1,721013422174e-11	5,2877e-06	-10,757	0,8037	-0,095
ZnO^*	-77471	4,2897e-08	4,216902814942e-08	3,4914e-03	-7,368	1,0005	0,000
ZnO_2^{-2}	-112490	1,0480e-14	1,030226376363e-14	1,0206e-09	-13,980	0,8041	-0,095
$ZnOH^+$	-88300	6,4955e-06	6,385243999197e-06	5,3521e-01	-5,187	0,9453	-0,024
ZrO^{+2}	-208586	5,1739e-16	5,086109758931e-16	5,5477e-11	-15,286	0,8001	-0,097
ZrO_2^*	-243603	3,3163e-08	3,259999999207e-08	4,0864e-03	-7,479	1,0005	0,000
OH-	-45849	9,3874e-07	9,228105254371e-07	1,5966e-02	-6,027	0,9485	-0,023
H^+	-10829	1,2209e-08	1,200202747648e-08	1,2306e-05	-7,913	0,9445	-0,025
H ₂ O	-56678	5,5510e+01	5,456790417294e+01	1,0000e+00	1,744	1,0000	0,000
Газ							
CO_2	-99111		9,813468774030e-03	0,04	-2,008	1,0000	0,000
N ₂	-152		2,755192066501e+01	75,88	1,440	1,0000	0,000
NO	-553		9,092980630007e-15	0,00	-14,041	0,9995	-0,000
NO ₂	-1030		4,931598566411e-09	0,00	-8,307	1,0000	0,000
N ₂ O	-629		8,636341392527e-18	0,00	-17,064	0,9946	-0,002
O ₂	-954		7,125075221402e+00	22,41	0,853	1,0000	0,000

Параметры газов

Таблица 1-4

inapasierpbi rasob					
Газ	Фугитивность	Log фугитивности	Парциальное давление	Log парциального давления	Log коэф. Фугитивности
NH ₃	1,0761e-59	-5,8968e+01	1,0761e-59	-5,8968e+01	0,0000e+00
CO ₂	2,7545e-04	-3,5600e+00	2,7545e-04	-3,5600e+00	0,0000e+00
CO	5,3876e-49	-4,8269e+01	5,3876e-49	-4,8269e+01	0,0000e+00
C_2H_6	1,0000e-70	-2,6172e+02	1,0000e-70	-2,6172e+02	-3,2681e-03
H ₂	6,3627e-42	-4,1196e+01	6,3627e-42	-4,1196e+01	0,0000e+00
H_2S	1,0000e-70	-1,4292e+02	1,0000e-70	-1,4292e+02	0,0000e+00
CH ₄	1,0000e-70	-1,4546e+02	1,0000e-70	-1,4546e+02	0,0000e+00
N ₂	7,7335e-01	-1,1163e-01	7,7335e-01	-1,1163e-01	0,0000e+00
NO	2,5510e-16	-1,5593e+01	2,5523e-16	-1,5593e+01	-2,1019e-04
NO ₂	1,3842e-10	-9,8588e+00	1,3842e-10	-9,8588e+00	0,0000e+00
N ₂ O	2,4111e-19	-1,8618e+01	2,4241e-19	-1,8615e+01	-2,3388e-03
O ₂	1,9999e-01	-6,9899e-01	1,9999e-01	-6,9899e-01	0,0000e+00
C_3H_8	1,0000e-70	-3,7652e+02	1,0000e-70	-3,7652e+02	-7,1244e-03
H ₂ O	2,6387e-02	-1,5786e+00	2,6387e-02	-1,5786e+00	0,0000e+00
S ₂	1,0000e-70	-2,2910e+02	1,0000e-70	-2,2910e+02	0,0000e+00
SO ₂	1,9401e-56	-5,5712e+01	1,9401e-56	-5,5712e+01	0,0000e+00

Таблица 2

Результаты физико-химического моделирования ионного состава раствора при объемных соотношениях «вода-порода» 1 г. п. / 1 кг H2O равновесного с твердой фазой (модель 1.2)

Таблица 2-1

Таблица 2-2

Резервуар 1					1
Температура, °С	25,00	G, кал	-3159426	Eh, B	0,7554
Давление, бар	1,00	Н, кал	-3784575	pe	12,7953
Масса, кг	2,001	S, кал/К	2610,427	рН	7,8032
Объем мультисистемы, см ³	884331,625	U, кал	-3757239	Ионная сила	0,0040
Плотность мультисистемы, г/см ³	0,002262	Ср, кал	1232,69	TDS, mg/kgH ₂ O	184,8655838

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	986,00327	5,45704e+01	983,2370	9,97194e-01	49,14285
Газ	883345,64155	3,56340e+01	1017,4115	1,15177e-03	50,85092
Гетит	0,00039	7,66453e-04	0,0681	1,72874e+02	0,00340
Гидраргиллит	0,01210	3,78684e-04	0,0295	2,44032e+00	0,00148
Вудвардит	0,00000	1,02747e-07	0,0001	0,00000e+00	0,00000
Церуссит	0,00000	2,02863e-08	0,0000	6,58340e+00	0,00000
Монтмориллонит	0,00823	6,28272e-05	0,0235	2,85672e+00	0,00118
Бианкит	0,00000	1,23800e-05	0,0033	0,00000e+00	0,00017

Характеристики зависимых компонентов равновесного состояния мультисистемы

	Функция gT.			Концентрация в	Log	Коэф.	Log коэф.
Состав фазы	кал/моль	Моляльность	Мольное количество	мг/кг H ₂ O, или	моляльност	Активности	Активности
D 11				вес. %	И		
Водный раство	op	0.0010.10	0.550105501000 10	< 1000 0F	11.110	0.0000	0.020
$Ag(CO_3)^2$	-12/0/4	3,6349e-12	3,573135784329e-12	6,1022e-07	-11,440	0,9382	-0,028
$Ag(CO_3)_2$	-261566	1,4936e-18	1,468195896201e-18	3,403/e-13	-17,826	0,5461	-0,263
Ag ⁺	7420	9,1520e-09	8,996427220375e-09	9,8720e-04	-8,038	0,9336	-0,030
Al(OH)+2	-183983	2,3468e-14	2,306903785909e-14	1,0323e-09	-13,630	0,7620	-0,118
Al(OH) ₃ *	-276049	1,2335e-08	1,212570753626e-08	9,6220e-04	-7,909	1,0009	0,000
Al ⁺³	-137950	5,2519e-17	5,162671417695e-17	1,4170e-12	-16,280	0,5411	-0,267
AlO ₂ -	-208725	4,7700e-08	4,688969755433e-08	2,8134e-03	-7,321	0,9388	-0,027
Au ⁺	27322	2,9501e-09	2,899999916554e-09	5,8108e-04	-8,530	0,9332	-0,030
$Ba(CO_3)^*$	-277939	4,5450e-11	4,467805530213e-11	8,9690e-06	-10,342	1,0007	0,000
Ba ⁺²	-143446	1,6476e-07	1,619550533103e-07	2,2625e-02	-6,783	0,7601	-0,119
Be ⁺²	-104754	3,4517e-16	3,393021712274e-16	3,1107e-12	-15,462	0,7627	-0,118
BeO ₂ -2	-175530	3,9745e-17	3,906956643220e-17	1,6300e-12	-16,401	0,7682	-0,115
CO_2^*	-99105	9,4396e-06	9,279212295413e-06	4,1544e-01	-5,025	1,0008	0,000
CO3 ⁻²	-134493	1,0702e-06	1,051998834976e-06	6,4221e-02	-5,971	0,7671	-0,115
$Ca(CO_3)^*$	-271730	3,0956e-07	3,043012179970e-07	3,0983e-02	-6,509	1,0007	0,000
Ca(HCO ₃) ⁺	-282375	5,8382e-07	5,738940972091e-07	5,9021e-02	-6,234	0,9336	-0,030
Ca ⁺²	-137237	2,3329e-04	2,293206444579e-04	9,3496e+00	-3,632	0,7608	-0,119
$CaSO_4^*$	-319752	9,9706e-06	9,801160226965e-06	1,3574e+00	-5,001	1,0008	0,000
Cd ⁺²	-29083	2,5432e-08	2,50000000000e-08	2,8589e-03	-7,595	0,7610	-0,119
Ce ⁺³	-173856	1,9228e-09	1,890148437403e-09	2,6942e-04	-8,716	0,5403	-0,267
CeCO ₃ ⁺	-308348	2,2933e-08	2,254329999069e-08	4,5895e-03	-7,640	0,9367	-0,028
CeH ₂ PO ₄ ⁺²	-449597	3,1067e-11	3,053915594233e-11	7,3661e-06	-10,508	0,7613	-0,118
CeHCO ₃ ⁺²	-318994	3,1247e-11	3,071614495216e-11	6,2848e-06	-10,505	0,7606	-0,119
CeO ⁺	-209244	1,7730e-10	1,742824064886e-10	2,7678e-05	-9,751	0,9338	-0,030
CeO ₂ -	-244632	3,2547e-17	3,199357273859e-17	5,6017e-12	-16,487	0,9363	-0,029
CeO ₂ H [*]	-255277	1,9428e-12	1,909753275557e-12	3,3634e-07	-11,712	1,0007	0,000
CeOH ⁺²	-219889	3,3479e-10	3,291039815978e-10	5,2604e-05	-9,475	0,7603	-0,119
CeSO ₄ ⁺	-356371	9,9347e-17	9,765842882104e-17	2,3464e-11	-16,003	0,9352	-0,029
Co ⁺²	-23913	1,3152e-08	1,292847253449e-08	7,7509e-04	-7,881	0,7614	-0,118
Cs ⁺	-80958	6,1037e-09	5,999999865890e-09	8,1122e-04	-8,214	0,9328	-0,030
Cu ⁺²	-383	2,2260e-12	2,188181609463e-12	1,4145e-07	-11,652	0,7612	-0,118
Dy ⁺³	-173727	1,7878e-11	1,757394353662e-11	2,9051e-06	-10,748	0,5405	-0,267
CeO ₂ H*	-255277	1,9428e-12	1,909753275557e-12	3,3634e-07	-11,712	1,0007	0,000
DyCO ₃ ⁺	-308204	8,6201e-10	8,473598477065e-10	1,9181e-04	-9,064	0,9371	-0,028
DyHCO ₃ ⁺²	-318864	1,7537e-13	1,723884557570e-13	3,9198e-08	-12,756	0,7610	-0,119
DyO ⁺	-209114	3,2446e-12	3,189476058983e-12	5,7916e-07	-11,489	0,9343	-0,030
DyO ₂ ⁻	-244501	5,7488e-14	5,651053335610e-14	1,1181e-08	-13,240	0,9368	-0,028
DyO ₂ H [*]	-255147	3,7801e-13	3,715907012394e-13	7,3904e-08	-12.422	1,0007	0,000
DvOH ⁺²	-219759	1.2024e-11	1.181956771457e-11	2.1584e-06	-10.920	0.7607	-0.119
DvSO ₄ ⁺	-356242	1.9793e-11	1.945663654976e-11	5.1178e-06	-10.703	0.9355	-0.029
		-,	,,	-,	,,	.,	-,/

Таблица 2-3
Er ⁺³	-175458	7,2896e-12	7,165674977960e-12	1,2193e-06	-11,137	0,5406	-0,267
ErCO ₃ ⁺	-309944	4,8613e-10	4,778662800297e-10	1,1048e-04	-9,313	0,9373	-0,028
ErHCO ₃ ⁺²	-320596	8,4512e-14	8,307612693188e-14	1,9292e-08	-13,073	0,7612	-0,119
ErO ⁺	-210846	1,8508e-12	1,819315940699e-12	3,3917e-07	-11,733	0,9345	-0,029
ErO ₂ -	-246234	1,7716e-13	1,741492892231e-13	3,5301e-08	-12,752	0,9371	-0,028
ErO ₂ H*	-256880	5,0113e-13	4,926158798009e-13	1,0036e-07	-12,300	1,0007	0,000
ErOH ⁺²	-221491	5,8009e-12	5,702343307463e-12	1,0689e-06	-11,237	0,7608	-0,119
ErSO ₄ ⁺	-357973	6,8123e-12	6,696533272358e-12	1,7938e-06	-11,167	0,9357	-0,029
Eu ⁺³	-152707	9,4121e-12	9,252192874555e-12	1,4303e-06	-11,026	0,5404	-0,267
EuCO ₃ ⁺	-287189	3,8052e-10	3,740498659903e-10	8,0660e-05	-9,420	0,9370	-0,028
EuHCO ₃ ⁺²	-297839	7,867/e-14	7,733994445738e-14	1,6757e-08	-13,104	0,7609	-0,119
EuO'	-188089	1,0385e-12	1,02086/6/3244e-12	1,7443e-07	-11,984	0,9341	-0,030
EuO_2 EuO U^*	-223477	2,8/15e-15	2,8220302/109/e-15	5,2824e-10	-14,542	0,9300	-0,028
$EuO_2\Pi$ $EuOH^{+2}$	-234122	5,20276-14	5,1142970090456-14	9,02308-09	-13,264	0,9997	-0,000
EuOII EuSO.+	-335221	1.0427e-11	1,025020798522e-11	2 5863e-06	-10.982	0,7000	-0,119
Ga ⁺³	-49250	1,04276-11	1,020000001192e-08	2,3005e-00	-7.980	0,5355	-0,027
Gd ⁺³	-173199	3 6803e-11	3 617756082675e-11	5 7873e-06	-10.434	0,5403	-0.267
GdCO ₂ ⁺	-307680	1.2601e-09	1,238689144349e-09	2.7377e-04	-8.900	0.9367	-0.028
GdHCO ₃ ⁺²	-318337	3.6058e-13	3.544477571164e-13	7.8702e-08	-12.443	0.7606	-0.119
GdO ⁺	-208587	4,0200e-12	3,951702305041e-12	6,9647e-07	-11,396	0,9338	-0,030
GdO2 ⁻	-243975	1,3170e-14	1,294589051521e-14	2,4924e-09	-13,880	0,9363	-0,029
GdO ₂ H [*]	-254620	2,8207e-13	2,772779493539e-13	5,3666e-08	-12,550	1,0007	0,000
GdOH ⁺²	-219232	2,0892e-11	2,053694587396e-11	3,6406e-06	-10,680	0,7603	-0,119
$GdSO_4^+$	-355715	1,9033e-18	1,870933549713e-18	4,8213e-13	-17,720	0,9352	-0,029
H ₂ AsO ₄ ⁻	-189675	8,7855e-08	8,636217559659e-08	1,2382e-02	-7,056	0,9369	-0,028
H ₂ PO ₄	-275741	8,3672e-05	8,224955809985e-05	8,1151e+00	-4,077	0,9372	-0,028
H ₂ VO ₄	-253965	5,2954e-08	5,205366207820e-08	6,1932e-03	-7,276	0,9368	-0,028
H_3PO_4	-286386	1,8248e-10	1,/9381/6/3935e-10	1,7882e-05	-9,739	1,0000	0,000
HasO ₄ -	-1/9029	1,18966-06	1,1095/4008/0/e-00	1,00400-01	-5,925	0,7005	-0,115
HNO.*	-143138	2,94120-04	2,0912210992346-04	1,79400+01	-5,551	0,9371	-0,028
HPO. ⁻²	-265095	4.0461e-04	3,0023721837780-10	3 8834e+01	-3 393	0,7669	-0,000
HSO4	-193161	6.9678e-10	6.849338774912e-10	6.7637e-05	-9.157	0.9368	-0.028
HVO ₄ ⁻²	-243319	3,5551e-08	3,494633824386e-08	4,1220e-03	-7,449	0,7664	-0,116
H ₂ AsO ₄	-189675	8,7855e-08	8,636217559659e-08	1,2382e-02	-7,056	0,9369	-0,028
Ho ⁺³	-177402	3,4498e-12	3,391179573332e-12	5,6898e-07	-11,462	0,5405	-0,267
HoCO ₃ ⁺	-311890	1,9327e-10	1,899898285146e-10	4,3475e-05	-9,714	0,9371	-0,028
HoHCO ₃ ⁺²	-322564	3,2426e-14	3,187511199377e-14	7,3266e-09	-13,489	0,7610	-0,119
HoO ⁺	-212828	6,9408e-13	6,822856029393e-13	1,2558e-07	-12,159	0,9342	-0,030
HoO_2^-	-248192	1,0810e-14	1,062622543847e-14	2,1288e-09	-13,966	0,9368	-0,028
$H0O_2H$	-258841	1,38/10-13	1,50551/091/08e-15	2,7450e-08	-12,858	1,0007	0,000
HoOH HoSO.+	-223431	3 1890e-12	2,0230929349336-12 3,134769807098e-12	4,83496-07 8 3230e-07	-11,374	0,7000	-0,119
K ⁺	-72117	4.4985e-04	4 422056831827e-04	1.7588e+01	-3.347	0.9332	-0.030
KOH*	-118150	3.6969e-05	3.634086749481e-05	2.0742e+00	-4,432	1.0007	0.000
KSO4 ⁻	-254632	1,4786e-06	1,453449322534e-06	1,9985e-01	-5,830	0,9365	-0,029
La ⁺³	-176425	1,4430e-09	1,418486312531e-09	2,0044e-04	-8,841	0,5404	-0,267
LaCO ₃ ⁺	-310917	8,9614e-09	8,809082464388e-09	1,7825e-03	-8,048	0,9369	-0,028
LaH ₂ PO ₄ ⁺²	-452167	2,7573e-11	2,710487140596e-11	6,5044e-06	-10,560	0,7615	-0,118
LaHCO ₃ ⁺²	-321564	2,7736e-11	2,726466577554e-11	5,5450e-06	-10,557	0,7608	-0,119
LaU ^r	-211814	2,313/e-12	2,2/4422038209e-12	3,5841e-07	-11,636	0,9340	-0,030
LaO_2H $LaOH^{+2}$	-25/848	2,53596-14	2,492/041100946-14	4,33946-09	-13,396	1,0007	0,000
	-222439	1,51500-10	1,40/2/100908/0-10	2,33090-03	-9,020	0,7000	-0,119
LaSO ₄	-78712	3 9267e-07	3 859999895096e-07	2 7255e-03	-6,797	0,9334	-0,029
Lu ⁺³	-176979	2.4074e-13	2,366519699576e-13	4.2122e-08	-12.618	0,5408	-0.267
LuCO ₃ ⁺	-310893	5,8993e-11	5,799052464252e-11	1,3862e-05	-10,229	0,9377	-0,028
LuHCO3 ⁺²	-321540	1,0363e-14	1,018706956689e-14	2,4455e-09	-13,985	0,7615	-0,118
LuO ⁺	-211803	7,2296e-13	7,106700499329e-13	1,3806e-07	-12,141	0,9349	-0,029
LuO ₂ -	-247195	6,8750e-14	6,758209238626e-14	1,4229e-08	-13,163	0,9375	-0,028
LuO ₂ H*	-257902	1,0557e-13	1,037764358992e-13	2,1956e-08	-12,976	1,0007	0,000
LuOH ⁺²	-222470	6,7021e-13	6,588154453776e-13	1,2866e-07	-12,174	0,7611	-0,119
LuSO ₄ ⁺	-359492	2,2563e-13	2,217951442097e-13	6,1153e-08	-12,647	0,9360	-0,029
$Mg(CO_3)^*$	-248162	1,2816e-07	1,259806563158e-07	1,0806e-02	-6,892	1,0007	0,000
Mg(HCU ₃)'	-25880/	5,24/5e-0/	3,13833091061/e-0/	4,4//3e-02	-0,280	0,934/	-0,029
Mn ⁺²	-1130/0	2,1505e-04	2,114000/10502e-04 2,456005677646e-04	3,22090+00 1 3726e+01	-3,007	0.7610	-0,118
MnO ₄ ⁻	-113849	8.6028e-06	8.456620158807e-06	1.0232e+00	-5.065	0.9359	-0.029
MnO ₄ -2	-131305	4,0628e-09	3,993721304845e-09	4,8321e-04	-8,391	0,7659	-0,116
		,	,	, . .		,	0.000
MnSO ₄	-242092	1,8646e-05	1,832881774497e-05	2,8155e+00	-4,729	1,0007	0,000

Продолжение таблицы 2-3	3
-------------------------	---

N_2^*	-152	5.0362e-04	4.950617581669e-04	1.4108e+01	-3.298	0.9995	-0.000
NO. ⁻	-18485	1 3264e-08	1 30382989281/e-08	6.1020e-04	-7 877	0.9368	-0.028
NO:	19062	5,6765 07	5 5900550256420 07	2,51072,02	6.246	0,0265	0,020
NU ₃	-18902	3,0703e-07	3,3800339230428-07	3,31976-02	-0,240	0,9303	-0,029
Na	-6/149	4,8830e-04	4,799999498792e-04	1,1226e+01	-3,311	0,9337	-0,030
NaAlO ₂ *	-275874	3,6878e-12	3,625124658548e-12	3,0229e-07	-11,433	1,0005	0,000
NaOH [*]	-113182	4,7300e-11	4,649567823084e-11	1,8918e-06	-10,325	0,9981	-0,001
Nd ⁺³	-180359	6,0745e-15	5,971297785087e-15	8,7619e-10	-14,216	0,5403	-0,267
NdCO ₃ ⁺	-314853	1,4519e-13	1,427238970426e-13	2,9655e-08	-12,838	0,9368	-0,028
NdHCO ₃ ⁺²	-325498	8,3355e-17	8,193884276914e-17	1,7109e-11	-16,079	0,7607	-0,119
NdNO ₃ ⁺²	-199319	9.0537e-09	8.899842618738e-09	1.8673e-03	-8.043	0.7617	-0.118
NdO ⁺	-215748	1 2255e-16	1 204647187709e-16	1 9637e-11	-15 912	0.9338	-0.030
NdO ₂ H [*]	-261781	3,6967e-18	3 633894002352e-18	6 5523e-13	-17/132	1,0007	0,000
NdOH ⁺²	201701	2 0768e 15	2.041522881064e 15	3 34880 10	14.683	0.7603	0,000
NJCO +	-220393	2,07080-15	2,0413228810046-13	1,6118-00	-14,003	0,7003	-0,119
Nu304	-302870	0,7073e-13	5 705170052280- 08	2,4600- 02	-14,173	0,9332	-0,029
NI O *	-20924	3,89346-08	3,7931700323808-08	3,40000-03	-7,229	0,7010	-0,118
02 DO -3	-933	2,33116-04	2,4881184379008-04	8,0993e+00	-3,397	0,9993	-0,000
PO4 *	-254450	1,/1596-08	1,080/301230308-08	1,02908-03	-/,/00	0,5472	-0,262
PD +3	-15911	4,3824e-08	4,3079227133396-08	9,0803e-03	-7,558	0,7600	-0,119
Pr	-182932	2,3124e-15	2,2/311626032/e-15	3,2584e-10	-14,636	0,5403	-0,267
PrCO ₃	-31/425	3,9442e-14	3,87/205968765e-14	7,9247e-09	-13,404	0,9368	-0,028
PrHCO ₃ ⁺²	-328070	3,/52/e-1/	3,688891869996e-17	7,5776e-12	-16,426	0,7615	-0,118
PrNO ₃ ⁺²	-201886	2,5432e-09	2,499958372184e-09	5,1604e-04	-8,595	0,7617	-0,118
PrO ⁺	-218320	2,8120e-17	2,764252876093e-17	4,4123e-12	-16,551	0,9339	-0,030
PrOH ⁺²	-228965	5,6412e-16	5,545282361161e-16	8,9082e-11	-15,249	0,7604	-0,119
Rb ⁺	-77575	7,3245e-08	7,200000286102e-08	6,2601e-03	-7,135	0,9329	-0,030
SO ₄ -2	-182515	5,6758e-04	5,579315066158e-04	5,4524e+01	-3,246	0,7663	-0,116
Sc ⁺³	-151360	1,2207e-08	1,199999973178e-08	5,4880e-04	-7,913	0,5407	-0,267
Sm^{+3}	-173555	4,6913e-11	4,611596283252e-11	7,0539e-06	-10,329	0,5404	-0,267
SmCO ₃ ⁺	-308037	1,6039e-09	1,576616329599e-09	3,3741e-04	-8,795	0,9368	-0,028
SmHCO3 ⁺²	-318694	5,4372e-13	5,344815401036e-13	1,1493e-07	-12,265	0,7607	-0,119
SmO ⁺	-208944	3,6526e-12	3,590530283293e-12	6,0765e-07	-11,437	0,9339	-0,030
SmO ₂ -	-244332	4.3459e-15	4.272063731482e-15	7.9252e-10	-14.362	0.9364	-0.029
SmO ₂ H*	-254977	7.8723e-14	7.738507001462e-14	1.4435e-08	-13.104	0.9997	-0.000
SmOH ⁺²	-219589	2.2481e-11	2.209907228694e-11	3.7626e-06	-10.648	0.7604	-0.119
SmSO ₄ ⁺	-356071	5.1843e-11	5.096205871225e-11	1.2775e-05	-10.285	0.9352	-0.029
Snib 04 Sn ⁺²	-28016	2 7731e-16	2 725991462465e-16	3 2920e-11	-15 557	0.7604	-0.119
SrCO [*]	-279496	1 8674e-11	1 835648965340e-11	2 7568e-06	-10 729	1,0007	0,000
SICO3 Sr ⁺²	145003	1,00740-11	4.0091642919020.09	2,73000-00	7 200	0.7605	0,000
51 Th+3	-145005	4,07736-08	4,0081042818936-08	7,4150= 07	-7,390	0,7003	-0,119
	-1/3323	4,00576-12	4,5804159525226-12	1,41506-07	-11,551	0,3403	-0,207
Thursday	-309802	1,89080-10	1,8043337359398-10	4,13276-03	-9,722	0,9571	-0,028
TDHCU3	-320450	4,04886-14	4,569/495414506-14	1,0225e-08	-13,333	0,7617	-0,118
THO	-210700	7,2775e-15	7,155005401415e-15	1,2/30e-07	-12,138	0,9342	-0,030
TbO ₂	-246089	2,8156e-15	2,/6//0342/1916-15	5,3/56e-10	-14,550	0,9367	-0,028
TbOH 2	-221348	3,1798e-12	3,125//3640649e-12	5,5943e-07	-11,498	0,7606	-0,119
TbSO ₄ ⁺	-357839	5,1562e-12	5,068616765472e-12	1,3148e-06	-11,288	0,9354	-0,029
TI ⁺	-20460	5,0864e-10	4,999999888241e-10	1,0396e-04	-9,294	0,9329	-0,030
Tm ⁺³	-181532	2,5734e-16	2,529617257597e-16	4,3473e-11	-15,590	0,5406	-0,267
TmCO ₃ ⁺	-316026	2,0041e-14	1,970052363768e-14	4,5883e-09	-13,698	0,9373	-0,028
TmHCO ₃ ⁺²	-326670	2,9833e-18	2,932604317287e-18	6,8601e-13	-17,525	0,7612	-0,119
TmNO ₃ ⁺²	-200493	1,0171e-10	9,997970461164e-11	2,3488e-05	-9,993	0,7624	-0,118
TmO ⁺	-216920	7,7319e-17	7,600526845569e-17	1,4299e-11	-16,112	0,9345	-0,029
TmO ₂ -	-252308	5,2838e-18	5,193996638197e-18	1,0617e-12	-17,277	0,9371	-0,028
TmO_2H^*	-262954	2,4797e-17	2,437522519003e-17	5,0075e-12	-16,606	1,0007	0,000
TmOH ⁺²	-227565	2,4226e-16	2,381456522860e-16	4,5047e-11	-15,616	0,7609	-0,119
VO_2^+	-161899	1,5746e-16	1,547833949494e-16	1,3060e-11	-15,803	0,9351	-0,029
WO4 ⁻²	-231335	1,5259e-09	1,4999999966472e-09	3,7820e-04	-8,816	0,7661	-0,116
Y ⁺³	-175279	7,1210e-09	7,00000029803e-09	6,3310e-04	-8,147	0,5407	-0,267
Yb ⁺³	-173688	1,2670e-15	1,245439843915e-15	2,1924e-10	-14,897	0,5406	-0,267
YbCO ₃ ⁺	-308180	1,1703e-13	1,150404067415e-13	2,7274e-08	-12,932	0,9372	-0,028
YbHCO3 ⁺²	-318826	1,7166e-17	1,687416379976e-17	4,0178e-12	-16,765	0,7611	-0,119
YbNO3 ⁺²	-192640	5,0852e-10	4,998805825583e-10	1,1953e-04	-9,294	0,7623	-0,118
YbO ⁺	-209075	5,3410e-16	5,250235680906e-16	1,0097e-10	-15,272	0,9344	-0,029
YbO2 ⁻	-244463	2,6048e-17	2,560509320361e-17	5,3408e-12	-16,584	0,9370	-0,028
YbOH ⁺²	-219721	1,4129e-15	1,388915947641e-15	2,6852e-10	-14,850	0,7608	-0,119
YbSO ₄ ⁺	-356203	1,1841e-15	1,164000494167e-15	3,1865e-10	-14.927	0.9356	-0.029
AsO ₄ -3	-168384	2.6836e-10	2.637975979082e-10	3.7280e-05	-9.571	0.5468	-0.262
BaOH ⁺	-189480	2,7376e-13	2.691112856655e-13	4,2251e-08	-12.563	0.9330	-0.030
BeOH ⁺	-150787	1.1190e-08	1.0999999956202e-08	2,9116e-04	-7.951	0.9355	-0.029
CoO*	100101	1,11700 00	1,0000000000000000000000000000000000000	4,5402,07	11.017	1,0007	0,000
200	-59302	6.0699e-12	5.966750227163e-12	4 54X 1e-117	-11/1/		()()())
CoOH+	-59302 -69947	6,0699e-12 6,6694e-11	5,966/5022/163e-12 6,556023844885e-11	4,5483e-07 5,0648e-06	-11,217	1,0007	-0.029
CoOH+ Cr2Oz ⁻²	-59302 -69947 -334315	6,0699e-12 6,6694e-11 2,9573e-16	5,966750227163e-12 6,556023844885e-11 2,907029838023e-16	4,5483e-07 5,0648e-06 6,3874e-11	-11,217 -10,176 -15,529	0,9351 0,7633	-0,029
CoOH+ $Cr_2O_7^{-2}$ CrO_4^{-2}	-59302 -69947 -334315 -184851	6,0699e-12 6,6694e-11 2,9573e-16 5,5951e-08	5,966/5022/163e-12 6,556023844885e-11 2,907029838023e-16 5,500000061069e-08	4,5483e-07 5,0648e-06 6,3874e-11 6,4899e-03	-11,217 -10,176 -15,529 -7 252	1,0007 0,9351 0,7633 0,7659	-0,000 -0,029 -0,117 -0.116

CuO*	-35	5771	1,0577e-11	1,039765518128e-11	8,4138e-07	-10,976	1,0037	0,002
CuOH ⁺	-46	5416	1,3883e-12	1,364727762090e-12	1,1183e-07	-11,858	0,9348	-0,029
FeO ⁺	-7(0797	1,1405e-13	1,121081086418e-13	8,1938e-09	-12,943	0,9351	-0,029
FeO ₂ -	-10	6185	4,9897e-14	4,904864085446e-14	4,3832e-09	-13,302	0,9378	-0,028
FeOH ⁺²	-81	1442	6,1426e-18	6,038186035765e-18	4,4751e-13	-17,212	0,7613	-0,118
HgO^*	-22	2532	1,0173e-10	9,999899177893e-11	2,2033e-05	-9,993	1,0007	0,000
HgOH ⁺	-33	3187	1,0304e-15	1,012923310102e-15	2,2422e-10	-14,987	0,9336	-0,030
NiO [*]	-56	5312	3,6225e-13	3,560934780381e-13	2,7056e-08	-12,441	1,0007	0,000
NiOH ⁺	-60	5957	4,8771e-11	4,794171379658e-11	3,6918e-06	-10,312	0,9355	-0,029
PbO*	-51	1299	1,7421e-09	1,712493805853e-09	3,8884e-04	-8,759	1,0007	0,000
PbOH ⁺	-6	1944	1,4770e-06	1,451921982670e-06	3,3116e-01	-5,831	0,9351	-0,029
SnO*	-63	3403	6,5101e-08	6,399500572203e-08	8,7698e-03	-7,186	1,0007	0,000
SnOH ⁺	-74	4049	5,0789e-12	4,992574863133e-12	6,8929e-07	-11,294	0,9335	-0,030
UO_2^{+2}	-24	0662	4,0074e-10	3,939265646498e-10	1,0821e-04	-9,397	0,7612	-0,118
UO4 ⁻²	-31	1448	6,1785e-12	6,073454346178e-12	1,8661e-06	-11,209	0,7677	-0,115
ZrO^{+2}	-20	8215	1,0147e-15	9,974787068464e-16	1,0880e-10	-14,994	0,7626	-0,118
ZrO_2^*	-24	3603	3,3164e-08	3,259999950320e-08	4,0865e-03	-7,479	1,0007	0,000
OH-	-46	5033	6,9514e-07	6,833277129151e-07	1,1823e-02	-6,158	0,9385	-0,028
$\mathrm{H}^{\scriptscriptstyle +}$	-1()645	1,6872e-08	1,658487039918e-08	1,7006e-05	-7,773	0,9326	-0,030
H ₂ O	-56	5678	5,5510e+01	5,456662355626e+01	1,0000e+00	1,744	1,0000	0,000
Газ						•	•	•
CO_2	-99	9105		9,911459974764e-03	0,04	-2,004	1,0000	0,000
N ₂	-]	152		2,755192079463e+01	75,86	1,440	1,0000	0,000
NO	-4	553		9,097347875757e-15	0,00	-14,041	0,9995	-0,000
NO ₂	-1	029		4,935843680317e-09	0,00	-8,307	1,0000	0,000
N ₂ O	-(529		8,639624957621e-18	0,00	-17,064	0,9946	-0,002
O ₂	-9	953		7,131921860783e+00	22,43	0,853	1,0000	0,000
H ₂ O	-56	5678		9,402759870553e-01	1,66	-0,027	1,0000	0,000
Твердая фаза								
Гетит		11683	80	7 664528785281 04	54.67	3 116	1.0000	0.000
FeOOH		-1108.	50	7,0043287832816-04	54,07	-3,110	1,0000	0,000
Гидраргиллит		-2760/	19	3 7868/1789877e-0/	23 71	-3 422	1.0000	0.000
Al(OH) ₃		-2700-	17	3,7808417838776-04	23,71	-3,422	1,0000	0,000
Вудвардит								
Cu4Al ₂ [SO ₄](OF	I)·12H	-11823	80	1,027465156967e-07	0,05	-6,988	1,0000	0,000
2 O								
Церуссит		-15037	70	2.028630402018e-08	0.00	-7.693	1.0000	0.000
PbCO ₃		10007			0,00	,,020	1,0000	0,000
Монтмориллон	ИТ	-124307	700	6,282722622910e-05	18,87	-4,202	1,0000	0,000
Бианкит		-61259	91	1.238000030518e-05	2.68	-4.907	1.0000	0.000
$ZnSO_4 \cdot 6H_2O$,	_,~~	.,	-,	-,

Параметры газов

Таблица 2-4

Продолжение таблицы 2-3

параметры тазо		1	r		
Газ	Футитириости	Log dyrutupuoctu	Парциальное	Log парциального	Log коэф.
1 43	Фугитивноств	год футитивности	давление	давления	Фугитивности
NH ₃	1,0754e-59	-5,8968e+01	1,0754e-59	-5,8968e+01	0,0000e+00
CO ₂	2,7815e-04	-3,5557e+00	2,7815e-04	-3,5557e+00	0,0000e+00
CO	5,4382e-49	-4,8265e+01	5,4382e-49	-4,8265e+01	0,0000e+00
C_2H_6	1,0000e-70	-2,6171e+02	1,0000e-70	-2,6171e+02	-3,2681e-03
H_2	6,3603e-42	-4,1197e+01	6,3603e-42	-4,1197e+01	0,0000e+00
H_2S	1,0000e-70	-1,4212e+02	1,0000e-70	-1,4212e+02	0,0000e+00
CH ₄	1,0000e-70	-1,4545e+02	1,0000e-70	-1,4545e+02	0,0000e+00
N ₂	7,7319e-01	-1,1171e-01	7,7319e-01	-1,1171e-01	0,0000e+00
NO	2,5518e-16	-1,5593e+01	2,5530e-16	-1,5593e+01	-2,1019e-04
NO ₂	1,3851e-10	-9,8585e+00	1,3851e-10	-9,8585e+00	0,0000e+00
N ₂ O	2,4115e-19	-1,8618e+01	2,4245e-19	-1,8615e+01	-2,3388e-03
O ₂	2,0014e-01	-6,9866e-01	2,0014e-01	-6,9866e-01	0,0000e+00
C ₃ H ₈	1,0000e-70	-3,7651e+02	1,0000e-70	-3,7651e+02	-7,1244e-03
H ₂ O	2,6387e-02	-1,5786e+00	2,6387e-02	-1,5786e+00	0,0000e+00
S ₂	1,000e-70	-2,2749e+02	1,0000e-70	-2,2749e+02	0,0000e+00
SO ₂	1,2455e-55	-5,4905e+01	1,2455e-55	-5,4905e+01	0,0000e+00

Таблица 3

Результаты физико-химического моделирования ионного состава раствора при объемных соотношениях «вода-порода» 12 г. п. / 1 кг H2O (модель 2.1)

Таблица 3-1

Таблица 3-2

Резервуар 1					, ,
Температура, °С	25,00	G, кал	-3176347	Eh, B	1,0698
Давление, бар	1,00	Н, кал	-3804378	pe	18,1199
Масса, кг	2,012	S, кал/К	2614,631	pН	2,4806
Объем мультисистемы, см ³	885454,062	U, кал	-3777161	Ионная сила	0,2740
Плотность мультисистемы, г/см ³	0,002273	Ср, кал	1229,41	TDS, mg/kgH ₂ O	9614,9528528

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	986,70052	5,47442e+01	993,5070	1,00690e+00	49,36970
Газ	884467,36589	3,56793e+01	1018,8750	1,15196e-03	50,63029

Таблица 3-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

G 1	Функция gT,			концентрация в	Log	Коэф.	Log коэф.
Состав фазы	кал/моль	Моляльность	Мольное количество	мг/кг H ₂ O, или	моляльност	Активности	Активности
Do aver të na arn				Bec. %	И		
А а ⁺	0075	0 1464a 07	9 000000357628a 07	0.8661a.02	6.030	0.6057	0.158
Ag Al(OH)+2	_173923	1,1404e-07	1 425936047186e-06	6.3746e-02	-5,839	0.2912	-0,136
AI(OH).*	-173923	6 1684e 12	6.069645262019e 12	4 8116e 07	-5,859	1.0600	-0,550
A1(011)3 A1 ⁺³	120626	2 6815e 03	2 638574057883e 03	7.2351e+01	-11,210	0.0528	1 277
AI A10-	220455	2,08150-05	1,000248306238e 16	6 5340e 12	15 955	1,0185	-1,277
AiO_2 Au^+	20455	2.9472e.07	2 800000162462 07	5 8050e 02	6 5 3 1	0.6767	0,008
Au Au ⁺³	79300	2,94720-07 3 1222e 17	2,877777822160e 17	5,80506-02	-0,531	0,0707	-0,170
Ra ⁺²	-1/1385	1.6/6/e-05	1 620000004763e-05	2 2609e±00	-10,500	0,0492	-0.609
Be ⁺²	-94861	1,04040-05	1,020000004703C-03	1.3648e-04	-7,820	0,2400	-0,509
DC *	-94801	0 1016e 06	0.044433359459e.06	1,30480-04	-7,820	1.0544	-0,509
$\frac{CO_2}{CO^{-2}}$	-99088	9,19106-00	4.0612402082010.17	2,47680,12	-5,037	0.4500	0,023
$C_{0}(CO)^{*}$	-149002	4,12/46-17	7 5208160708720 18	2,47080-12 7,6500a 12	-10,364	1,0516	-0,338
$C_{a}(UCO_{3})^{+}$	-280109	1,05256-18	4 1021178448400 12	4 20700 07	-17,110	0,7000	0,022
$Ca(HCO_3)$	-209332	4,20036-12	4,1921178448496-12	2.0401a+01	-11,3/1	0,7000	-0,133
	-13/10/	5 8068 04	5 7128572444882 04	3,0491e+01	-5,119	0,2020	-0,382
	-51/509	3,80086-04	2,5000000000000000000000000000000000000	7,9055e+01	-5,230	1,0397	0,023
Cu Ca ⁺³	-20970	2,34076-06	2,3000000000000000000000000000000000000	2,83000-01	-5,595	0,2001	-0,373
	-1/1083	2,34220-00	2,5040829225816-00	3,20176-01	-5,030	0,0473	-1,323
$C_{2}U DO \pm^{2}$	-320088	0,0034e-17	5,9003080134486-17	1,2134e-11	-10,217	0,8770	-0,057
$C_{2}PO_{4}^{+2}$	-445006	1,98496-07	1,9531583785526-07	4,70636-02	-0,702	0,2755	-0,560
C OU+2	-323470	4,8100e-14	4,/3302015/2/8e-14	9,6/45e-09	-13,318	0,2579	-0,589
CeOH ==	-224382	5,1480e-13	5,0655887814396-13	8,088/e-08	-12,288	0,2510	-0,600
CesO ₄	-351227	6,969/e-13	6,858142686305e-13	1,6461e-07	-12,157	0,7844	-0,105
C0 ⁺²	-21/81	1,3212e-06	1,2999999386338-06	7,7860e-02	-5,879	0,2765	-0,558
$\frac{Cs^2}{Cs^2}$	-/8430	6,09/6e-0/	5,9999998658896-07	8,1040e-02	-6,215	0,6574	-0,182
Cu ²	8931	4,1/69e-05	4,1099948204876-05	2,6542e+00	-4,379	0,2723	-0,565
Dy Durco t	-1/12/0	1,25896-08	1,219000375080e-08	2,01326-03	-7,907	0,0487	-1,313
$DyCO_3$	-320279	1,25856-18	1,2383013935828-18	2,8003e-13	-17,900	0,9036	-0,044
DyHCU ₃ ¹⁻	-323002	1,51836-16	1,4940113655928-16	3,3937e-11	-15,819	0,2670	-0,574
DyOH -	-224575	1,0424e-14	1,0257044540746-14	1,8/12e-09	-13,982	0,2593	-0,580
DySO ₄	-351419	7,90756-08	7,7809319987216-08	2,04466-02	-7,102	0,8012	-0,096
Er t	-1/2/31	1,95516-09	1,8277706095876-09	1,5506e-05	-8,099	0,0493	-1,307
EICO ₃	-521754	1,12936-18	1,1113/99033936-18	2,30096-13	-17,947	0,9174	-0,037
ErHCU ₃ ¹⁻	-325117	1,1482e-10	1,1298597799116-16	2,0212e-11	-15,940	0,2/17	-0,500
ErOH -	-220028	7,9052e-15	/,//80430935456-15	1,450/e-09	-14,102	0,2032	-0,580
EISO ₄	-552674	4,28386-08	4,21/2220380088-08	1,1200e-02	-7,308	0,0114	-0,091
Eu Eulico +2	-130303	5,50086-09	5,4127029048596-09	8,5392e-04	-8,200	0,0485	-1,510
EuHCO3 ¹⁻	-302/48	5,/125e-17	3,6210609828416-17	1,210/e-11	-10,243	0,2038	-0,579
EuOn EuCn	-205059	3,92056-13	3,8373320339208-13	0,02456-10	-14,407	0,2303	-0,391
EuSO ₄ Eo ⁺²	-330303	2 58122 08	2 522824204575 09	0,/1020-03	-1,434	0,7929	-0,101
Fe Fe ⁺³	-32/92	2,4820,2.02	2 442276852777 02	1 2861	-/,440	0,2740	-0,301
Ce ⁺³	-00/3	2,40208-02	2,4422/0000/1/02 0C	7 2082 2 02	-1,005	0,0509	-1,293
Cd+3	-4/891	1,04080-00	1,0500000011920-00	2,07752,02	-3,980	0,0335	-1,2/1
GdCO +	-109/88	1,32120-07	1,299998090/100-0/	2,07756-02	-0,8/9	0,0475	-1,323
CdHCO +2	-310/90	7,02090-18	7,4/4070/03723e-18	2,09206-12	-17,010	0.2591	-0,037
	-322173	1,03396-15	0.216577200270-14	3,3/0/e-10 1,6400a 08	-14,/00	0,2301	-0,388
UUUT	-225065	9,40020-14	2,5105//2005/0e-14	1,04996-08	-13,024	0,2312	-0,000

Продолжение	таблицы	3.	-3
-------------	---------	----	----

GdSO. ⁺	-349930	3 9457e-14	3 882553884596e-14	9 9951e-09	-13 404	0.7826	-0.106
H AsO -	185303	1 2763e 04	1 255866530125e 04	1 70880101	3 80/	0.8850	0.053
II2ASO4	-105595	1,27030-04	1,2558005501256-04	1,79000+01	-3,894	0,0000	-0,033
H_2PO_4	-2/3921	1,8562e-03	1,826470333369e-03	1,8003e+02	-2,731	0,9088	-0,042
$H_2VO_4^-$	-253940	5,8461e-08	5,752486825383e-08	6,8373e-03	-7,233	0,8824	-0,054
$H_2AsO_4^-$	-185393	1,2763e-04	1,255866530125e-04	1,7988e+01	-3,894	0,8859	-0,053
H ₃ PO ₄ *	-277304	8.2648e-04	8.132492604165e-04	8.0991e+01	-3.083	1.0004	0.000
HacO. ⁻²	182010	1 35680 08	1 335118365834e 08	1 80860 03	7 867	0.4384	0.358
	-162010	1,33080-08	1,5551185058546-08	0.062805	-7,807	0,4384	-0,338
HCO ₃	-152585	1,48546-09	1,401005708537e-09	9,06386-05	-8,828	0,9019	-0,045
HNO_3^*	-29604	3,2377e-16	3,185840353938e-16	2,0402e-11	-15,490	0,9642	-0,016
HPO ₄ -2	-270538	7,0143e-08	6,901985565944e-08	6,7323e-03	-7,154	0,4519	-0,345
HSO4 ⁻	-183525	8.5677e-03	8.430576977931e-03	8.3168e+02	-2.067	0.8789	-0.056
HeiO."	-256350	5.2698e-11	5 185/3557112/e-11	4.0626e-06	-10.278	0.9518	-0.021
113103	-250550	2 1020- 12	2.072089628508- 12	2,00200-00	10,276	0,7510	-0,021
HVO4	-250557	3,1250e-15	3,0729880285086-13	5,6210e-08	-12,505	0,4308	-0,300
Hg ⁺²	27617	9,5811e-09	9,427751135012e-09	1,9219e-03	-8,019	0,2570	-0,590
Ho ⁺³	-174784	3,1820e-09	3,131089328643e-09	5,2481e-04	-8,497	0,0485	-1,314
HoHCO ₃ ⁺²	-327169	3,9033e-17	3,840820520448e-17	8,8194e-12	-16,409	0,2657	-0,576
HoOH ⁺²	-228081	3 1725e-15	3 121688711687e-15	5 7719e-10	-14 499	0.2581	-0 588
	254027	1 71/20 08	1 6868008460830 08	1 47420 02	7 766	0,2001	0,008
H0504	-334927	1,71436-08	1,0808908400836-08	4,47436-03	-7,700	0,7983	-0,098
K'	-/1326	2,3485e-03	2,310900533086e-03	9,1822e+01	-2,629	0,6776	-0,169
KOH [*]	-124623	6,3508e-10	6,249171098767e-10	3,5632e-05	-9,197	1,0461	0,020
KSO4 ⁻	-251468	3,3445e-04	3,290988419969e-04	4,5205e+01	-3,476	0,8616	-0,065
La ⁺³	-175055	1,6364e-07	1,610172069437e-07	2,2730e-02	-6.786	0.0481	-1.318
LaCO ₂ +	-324057	2 1991e-18	2 163886997801e-18	4 37430-13	-17 658	0.8896	-0.051
LaH DO +2	110076	1 62220 00	1 607052159706- 09	3 8576- 02	17,030	0,0000	0.552
	-4407/0	1,03520-08	1,00703213670000-08	3,03208-03	-/,/0/	0,2600	-0,555
LaHCO ₃ ⁺²	-32/440	3,9592e-15	3,895859155541e-15	/,9154e-10	-14,402	0,2622	-0,581
LaOH ⁺²	-228352	2,1598e-14	2,125250985646e-14	3,3674e-09	-13,666	0,2549	-0,594
$LaSO_4^+$	-355197	1,0396e-06	1,022912219496e-06	2,4426e-01	-5,983	0,7951	-0,100
Li ⁺	-76123	3.9228e-05	3.859999895096e-05	2.7228e-01	-4,406	0.7380	-0.132
L 11 ⁺³	-173477	9 5354e-10	9 382718156158-10	1 6684e-04	_9 021	0.0503	_1 299
LuHCO +2	275061	1,0092-17	1 977676624020- 17	4 5021 - 12	16 710	0,000	0.554
	-323804	1,9082e-17	1,8776760340386-17	4,50516-12	-16,/19	0,2793	-0,554
LuOH ⁺²	-226775	1,3148e-15	1,293708900873e-15	2,5240e-10	-14,881	0,2703	-0,568
$LuSO_4^+$	-353617	5,1441e-09	5,061727156697e-09	1,3942e-03	-8,289	0,8294	-0,081
$Mg(CO_3)^*$	-262172	6,5418e-18	6,437092673151e-18	5,5157e-13	-17,184	1,0516	0,022
Mg(HCO ₃) ⁺	-265555	7.3389e-12	7.221381758706e-12	6.2617e-07	-11.134	0.7550	-0.122
Mg ⁺²	-113170	1 3415e-03	1 31999999779e-03	3.2605e+01	-2 872	0.2832	-0 548
Mn ⁺²	59077	1,54150 05	1,029057012990a 02	1.0765 + 02	2,072	0,2652	0,540
MIII	-30977	1,93946-03	1,9280379138808-03	1,07030+02	-2,708	0,2003	-0,373
MnSO ₄	-239119	2,6/3/e-03	2,630942025085e-03	4,03/4e+02	-2,573	1,0516	0,022
MoO ₄ -2	-210075	8,1302e-08	8,000000379979e-08	1,3003e-02	-7,090	0,4265	-0,370
N_2^*	-153	5,1847e-04	5,101733817631e-04	1,4524e+01	-3,285	0,9676	-0,014
NO ₂ ⁻	-25746	6.6961e-14	6.588850352331e-14	3.0806e-09	-13.174	0.8810	-0.055
NO ₂ ⁻	-26221	2 9384e-12	2 891314145538e-12	1.8219e-07	-11 532	0.8612	-0.065
No ⁺	66304	2,5830a 03	2,63000006033e 03	6 1681e+01	2 571	0.7057	0.151
Natio *	200504	4,0208-12	2,057777700556-05	4.0240- 07	11 205	1.0516	-0,151
NaHSIO ₃	-322034	4,0308e-12	3,900231382913e-12	4,0540e-07	-11,395	1,0516	0,022
NaOH	-119601	1,0589e-15	1,041984751720e-15	4,2354e-11	-14,975	0,8771	-0,057
Nd ⁺³	-171954	9,9809e-08	9,821105225634e-08	1,4396e-02	-7,001	0,0476	-1,322
NdCO ₃ ⁺	-320956	5,1859e-18	5,102846255606e-18	1,0592e-12	-17,285	0,8791	-0,056
NdHCO ₃ ⁺²	-324339	1.7300e-15	1.702299748075e-15	3,5509e-10	-14.762	0.2586	-0.587
NdNO ⁺²	-198175	1 6756e-07	1 6487760882440-07	3 45580-02	-6 776	0.2833	-0 548
NdOU+2	225250	1,07300-07	4 229427270017 - 14	60456-00	12 266	0.2516	0,540
NUCH	-225250	4,50/40-14	4,23043/2/891/6-14	0,94506-09	-13,300	0,2316	-0,599
NdSO ₄ ⁺	-352096	6,3711e-07	6,269113103246e-07	1,5310e-01	-6,196	0,7835	-0,106
Ni ⁺²	-18786	5,8944e-06	5,799999823326e-06	3,4594e-01	-5,230	0,2807	-0,552
O_2^*	-950	2,6550e-04	2,612523655090e-04	8,4958e+00	-3,576	0,9555	-0,020
PO4-3	-267156	4,0320e-17	3,967417112134e-17	3,8292e-12	-16.394	0.1130	-0.947
Ph ⁺²	-11745	1.5416e-04	1.516906290959e-04	3,1942e+01	-3.812	0 2442	-0.612
Dr+3	172072	1 1 / 11 0 07	1 1228/07680802 07	1 6070 00	6.042	0.0477	1 200
	-1/30/3	1,14110-07	1,122040/009898-0/	1,00796-02	-0,943	0,0477	-1,322
PrCO3 ⁺	-322875	4,2294e-18	4,161642089000e-18	8,4975e-13	-17,374	0,8812	-0,055
PrHCO ₃ ⁺²	-326258	2,1832e-15	2,148256894684e-15	4,4084e-10	-14,661	0,2779	-0,556
PrNO ₃ ⁺²	-200094	1,3996e-07	1,377158566364e-07	2,8399e-02	-6,854	0,2843	-0,546
PrOH ⁺²	-227170	3.5115e-14	3.455286795436e-14	5.5452e-09	-13.455	0.2523	-0.598
PrSO. ⁺	-354015	3.4030e-14	3 348474175515e-14	8.0640e-09	-13 468	0 7860	-0.105
Db ⁺	75047	7 2171 2 06	7 2000002861020 06	6 2528 2 01	5 126	0,7000	0,103
R0 R0-?	-/304/	7,51/10-00	5 452506701047 00	5.2040	-3,130	0,0052	-0,177
<u>SU4</u> ²	-180142	5,5423e-02	5,453596/0194/e-02	5,5242e+03	-1,256	0,4299	-0,367
Sc ⁺³	-150043	1,2195e-06	1,199999973178e-06	5,4825e-02	-5,914	0,0498	-1,302
SiO ₂ *	-203053	1,3415e-03	1,319999944179e-03	8,0602e+01	-2,872	1,0966	0,040
Sm ⁺³	-171310	2,3387e-08	2,301301164280e-08	3,5165e-03	-7,631	0,0478	-1,320
SmCO ₂ ⁺	-320313	1.7018e-18	1.674566628478e-18	3.5801e-13	-17.769	0.8840	-0.054
SmHCO.+2	_272606	3 /1750 16	3 3627071160940 16	7 2220 11	_15 /66	0.2604	_0.584
SmillO3	-323090	1,4104 14	1,200701225725 14	1,22300-11	-13,400	0,2004	-0,364
SmOH	-224607	1,4124e-14	1,389/81235/25e-14	2,36396-09	-13,850	0,2532	-0,59/
$SmSO_4^+$	-351453	1,4938e-07	1,469869833602e-07	3,6810e-02	-6,826	0,7866	-0,104
Sn ⁺²			<pre>< 1 = 0 = 0 1 < 0 0 2 0 1 0 </pre>	7 4204 01	5 204	0.0501	0.500
	-14545	6,2509e-06	6,150/81600391e-06	7,4204e-01	-5,204	0,2521	-0,598
Sr ⁺²	-14545 -142919	6,2509e-06 4,0752e-06	6,150/81600391e-06 4,009999930859e-06	7,4204e-01 3,5707e-01	-5,204	0,2521	-0,598
Sr ⁺² Tb ⁺³	-14545 -142919 -172969	6,2509e-06 4,0752e-06 2,7583e-09	6,150/81600391e-06 4,009999930859e-06 2,714091870196e-09	7,4204e-01 3,5707e-01 4,3836e-04	-5,204 -5,390 -8,559	0,2521 0,2559 0,0485	-0,598 -0,592 -1,315

Продолжение таблицы 3-3

					11	родолжение	raoming 5 5
TbHCO ₃ ⁺²	-325354	3,1549e-17	3,104395445721e-17	6,9390e-12	-16,501	0,2847	-0,546
TbOH ⁺²	-226266	2.3243e-15	2.287121679572e-15	4.0893e-10	-14.634	0.2577	-0.589
TbSO ₄ ⁺	-353112	1.7567e-08	1.728590676135e-08	4 4794e-03	-7.755	0.7986	-0.098
T1+	-17934	5.0813e-08	4 999993421065e-08	1.0385e-02	-7 294	0.6620	-0.179
T1+3	31505	6 5724e-14	6 467176706593e-14	1,3433e-08	-13 182	0.0469	-1 328
Tm ⁺³	172800	7 0860e 00	6.973400610349e.09	1,072e 03	8 150	0.0403	1,320
Tm TmCO. ⁺	221802	1,00000-00	1 1725291247970 19	2 72810 12	17.024	0,0493	-1,500
TmUCO +2	-321003	1,19106-16	1,1/2328134/8/6-18	2,72010-13	-17,924	0,9103	-0,038
TIIIIICO3 Tra NO ±2	-323180	2,0759-00	2,026501570120- 00	2,33196-11	-13,990	0,2713	-0,500
$TmNO_3^{-1}$	-199020	3,07586-09	3,0203913701396-09	7,10336-04	-8,512	0,3022	-0,520
ImOH	-226097	8,3200e-15	8,1926/42/800/e-15	1,54816-09	-14,080	0,2035	-0,580
VO ¹²	-122152	1,6682e-11	1,641532269837e-11	1,116/e-06	-10,778	0,2821	-0,550
VO_2^+	-14/34/	8,7831e-06	8,642458456809e-06	7,2847e-01	-5,056	0,7767	-0,110
WO ₄ -2	-228960	1,5244e-07	1,499999966472e-07	3,7782e-02	-6,817	0,4211	-0,376
Y ⁺³	-173965	7,1139e-07	7,00000029802e-07	6,3247e-02	-6,148	0,0496	-1,304
Yb ⁺³	-165873	7,4580e-09	7,338559629971e-09	1,2905e-03	-8,127	0,0490	-1,310
YbCO ₃ ⁺	-314875	1,4858e-18	1,462057518341e-18	3,4628e-13	-17,828	0,9112	-0,040
YbHCO3 ⁺²	-318258	1,2598e-16	1,239675249444e-16	2,9488e-11	-15,900	0,2696	-0,569
YbNO ₃ ⁺²	-192094	3,2433e-09	3,191359419199e-09	7,6232e-04	-8,489	0,2994	-0,524
YbOH ⁺²	-219170	1,0391e-14	1,022492343213e-14	1,9748e-09	-13,983	0,2616	-0,582
YbSO ₄ ⁺	-346016	4,0112e-08	3,947006948288e-08	1,0794e-02	-7,397	0,8082	-0,092
Zn ⁺²	-39919	1,2581e-03	1,237997891397e-03	8,2270e+01	-2,900	0,2756	-0,560
AsO ₄ -3	-178627	4.2560e-17	4.187837863024e-17	5.9124e-12	-16.371	0.1068	-0.971
BaOH ⁺	-194682	5.8545e-17	5.760755077399e-17	9.0355e-12	-16.233	0.6686	-0.175
BeOH ⁺	-148157	1.1028e-06	1.085098971186e-06	2.8693e-02	-5.958	0.8012	-0.096
CoOH ⁺	-75078	1.3906e-14	1.368320400395e-14	1.0560e-09	-13.857	0.7763	-0.110
Cr ⁺³	-60076	2 3708e-07	2 332859634232e-07	1,00000 05	-6.625	0.0531	-1 275
Cr ₂ O ₂ ⁻²	-321233	2,57000 07	2,5526596542754e-06	5 7460e-01	-5 575	0.3286	-0.483
CrO^+	-109990	2,00050 00 3,0216e-13	2,0177303427340 00	2.05/6e-08	-12 520	0,3280	-0.082
CrO -2	-109990	2.04920.09	2,9752509022226-15	2,03406-08	7 516	0,8284	-0,082
$CrOH^{+2}$	112272	1,2255,00	1 2058581160520 00	9,5538e-05	-7,510	0,4145	-0,385
CION CuO*	-113373	1,22536-09	1,2058581100526-09	0.0050a 11	-0,912	1 2972	-0,323
	-40985	1,24326-13	1,2232/11104/76-13	9,90306-11	-14,903	1,2672	0,110
	-44303	2,39936-11	2 204954565402- 04	4,54946-00	-10,208	0,7044	-0,117
FeO	-5/98/	3,3485e-04	3,2948545054920-04	2,40586+01	-3,475	0,7798	-0,108
FeO ₂	-10/901	2,/141e-15	2,6/06142/318/e-15	2,3842e-10	-14,566	0,9495	-0,022
FeOH	-86089	1,8/65e-15	1,846415506711e-15	1,36/1e-10	-14,/2/	0,7763	-0,110
FeOH ⁺²	-61370	8,7782e-03	8,63//10/6/334e-03	6,3953e+02	-2,057	0,2747	-0,561
HgO	-22296	1,4370e-10	1,414024204824e-10	3,1125e-05	-9,843	1,0516	0,022
HgOH ⁺	-25679	4,3786e-10	4,308469194799e-10	9,5277e-05	-9,359	0,6980	-0,156
NiOH ⁺	-72083	9,9405e-15	9,781378906253e-15	7,5247e-10	-14,003	0,8015	-0,096
PbO*	-61659	4,2141e-17	4,146632912429e-17	9,4058e-12	-16,375	1,0516	0,022
PbOH ⁺	-65041	9,5241e-09	9,371666948934e-09	2,1354e-03	-8,021	0,7763	-0,110
SnO*	-64459	1,0413e-08	1,024609998683e-08	1,4027e-03	-7,982	1,0516	0,022
$SnOH^+$	-67842	2,4286e-07	2,389721565715e-07	3,2960e-02	-6,615	0,6911	-0,160
UO2 ⁺²	-238532	4,0651e-08	4,000000189990e-08	1,0977e-02	-7,391	0,2727	-0,564
ZnO^*	-89833	3,5337e-17	3,477116022851e-17	2,8760e-12	-16,452	1,0516	0,022
$ZnOH^+$	-93216	2,1739e-09	2,139120345173e-09	1,7913e-04	-8,663	0,7028	-0,153
Zr^{+4}	-146558	4,0210e-08	3,956669556303e-08	3,6682e-03	-7,396	0,0045	-2,345
ZrO^{+2}	-196472	1,0196e-06	1,003246851313e-06	1,0932e-01	-5,992	0,3072	-0,513
ZrO_2^*	-246386	2,8728e-10	2,826782083742e-10	3,5399e-05	-9,542	1,0516	0,022
Zr(OH) ⁺³	-199855	2,2530e-06	2,216903824984e-06	2,4384e-01	-5,647	0,0520	-1,284
OH-	-53297	3,0822e-12	3,032873840691e-12	5,2420e-08	-11,511	1,0006	0,000
H^{+}	-3383	5.1142e-03	5.032292987752e-03	5,1548e+00	-2,291	0.6466	-0,189
H ₂ O	-56680	5.5510e+01	5.462129376928e+01	1.0000e+00	1.744	1.0000	0.000
Гяз	55000	5,55100101	0,10212/070/200101	1,00000100	1,/77	1,0000	0,000
<u> </u>	-00088		1 0203444112300-02	0.04	-1 001	1 0000	0.000
No.	-153		2 755190582010a+01	75 75	1 440	1,0000	0,000
NO	-133		2,7331903620100+01 0.1265303900000 15	0.00	1,440	0,0005	0,000
NO	-552		4.064411200528-00	0,00	-14,040 9 204	1 0000	-0,000
NO ₂	-1027		4,9044112095286-09	0,00	-0,304	1,0000	0,000
N ₂ U	-028		0,0010309220280-18	0,00	-17,062	0,9940	-0,002
\mathbf{U}_2	-950	1	/.1///54/58611e+00	22.54	0.856	1.0000	0.000

Параметры газов

Таблица 3-4

Газ	Фугитивность	Log фугитивности	Парциальное	Log парциального	Log коэф.
1 405	1 9111111100112	Log φjimibiloein	давление	давления	Фугитивности
NH ₃	1,0670e-59	-5,8972e+01	1,0670e-59	-5,8972e+01	0,0000e+00
CO ₂	2,8598e-04	-3,5437e+00	2,8598e-04	-3,5437e+00	0,0000e+00
CO	5,5770e-49	-4,8254e+01	5,5770e-49	-4,8254e+01	0,0000e+00
C_2H_6	1,0000e-70	-2,6170e+02	1,0000e-70	-2,6170e+02	-3,2681e-03
H ₂	6,3301e-42	-4,1199e+01	6,3301e-42	-4,1199e+01	0,0000e+00
H_2S	1,0000e-70	-1,2973e+02	1,0000e-70	-1,2973e+02	0,0000e+00

Продолжение таблицы 3-4

CH_4	1,0000e-70	-1,4545e+02	1,0000e-70	-1,4545e+02	0,0000e+00
N ₂	7,7221e-01	-1,1226e-01	7,7221e-01	-1,1226e-01	0,0000e+00
NO	2,5567e-16	-1,5592e+01	2,5579e-16	-1,5592e+01	-2,1019e-04
NO ₂	1,3914e-10	-9,8565e+00	1,3914e-10	-9,8565e+00	0,0000e+00
N ₂ O	2,4147e-19	-1,8617e+01	2,4277e-19	-1,8615e+01	-2,3388e-03
O ₂	2,0117e-01	-6,9643e-01	2,0117e-01	-6,9643e-01	0,0000e+00
C ₃ H ₈	1,0000e-70	-3,7649e+02	1,0000e-70	-3,7648e+02	-7,1244e-03
H ₂ O	2,6329e-02	-1,5796e+00	2,6329e-02	-1,5796e+00	0,0000e+00
S ₂	1,0000e-70	-2,0272e+02	1,0000e-70	-2,0272e+02	0,0000e+00
SO_2	3,0321e-43	-4,2518e+01	3,0321e-43	-4,2518e+01	0,0000e+00

Таблица 4

Результаты физико-химического моделирования ионного состава раствора при объемных соотношениях «вода-порода» 12 г. п. / 1 кг H₂O равновесного с минеральной фазой (модель 2.2)

Таблица 4-1

Резервуар 1					
Температура, °С	25,00	G, кал	-3184857	Eh, B	1,0697
Давление, бар	1,00	Н, кал	-3811271	pe	18,1191
Масса, кг	2,012	S, кал/К	2616,341	pH	2,4817
Объем мультисистемы, см ³	885152,688	U, кал	-3784056	Ионная сила	0,1565
Плотность мультисистемы, г/см ³	0,002275	Ср, кал	1230,06	TDS, mg/kgH ₂ O	9385,1809151

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)			
Водный раствор	986,25706	5,46697e+01	991,2557	1,00507e+00	49,23444			
Газ	884166,46139	3,56671e+01	1018,4999	1,15193e-03	50,58763			
Твердая фаза								
Алуноген	0,00000	7,31581e-04	0,4875	0,00000e+00	0,02422			
Гипс	0,00000	1,45809e-02	2,5104	0,00000e+00	0,12469			
Монтмориллонит	0,02743	2,09424e-04	0,0784	2,85672e+00	0,00389			
Бианкит	0,00000	8,66600e-06	0,0023	0,00000e+00	0,00012			
Фиброферрит	0,00000	1,94509e-03	0,5038	0,00000e+00	0,02502			

Таблица 4-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

	Функция оТ			Концентрация в	Log	Коэф	Год коэф
Состав фазы	кал/моль	Моляльность	Мольное количество	мг/кг H ₂ O, или	моляльност	Активности	Активности
				вес. %	И		
Водный раство	р						
Ag^+	7070	6,4156e-09	6,300000250340e-09	6,9204e-04	-8,193	0,7363	-0,133
Al(OH) ⁺²	-189729	3,2867e-18	3,227445769972e-18	1,4458e-13	-17,483	0,3328	-0,478
Al ⁺³	-136433	4,7895e-15	4,703166460221e-15	1,2923e-10	-14,320	0,0766	-1,116
Au ⁺	26963	2,0672e-09	2,029999941434e-09	4,0718e-04	-8,685	0,7247	-0,140
Ba ⁺²	-144202	1,1548e-07	1,134000003333e-07	1,5859e-02	-6,937	0,3023	-0,520
Be ⁺²	-97801	9,5134e-11	9,341999286130e-11	8,5736e-07	-10,022	0,3449	-0,462
CO_2^*	-99088	9,3997e-06	9,230355723133e-06	4,1368e-01	-5,027	1,0307	0,013
CO3-2	-149001	4,4013e-17	4,321982551628e-17	2,6412e-12	-16,356	0,4315	-0,365
$Ca(CO_3)^*$	-284964	5,9722e-17	5,864609406653e-17	5,9774e-12	-16,224	1,0292	0,012
Ca(HCO ₃) ⁺	-288348	3,0770e-11	3,021601785300e-11	3,1107e-06	-10,512	0,7389	-0,131
Ca ⁺²	-135964	4,8436e-03	4,756305870309e-03	1,9412e+02	-2,315	0,3133	-0,504
CaSO ₄ *	-316238	3,6281e-03	3,562749807927e-03	4,9394e+02	-2,440	1,0337	0,014
Cd^{+2}	-29812	1,7821e-08	1,75000000000e-08	2,0033e-03	-7,749	0,3161	-0,500
Ce ⁺³	-173747	1,7267e-08	1,695631571914e-08	2,4194e-03	-7,763	0,0721	-1,142
CeH ₂ PO ₄ ⁺²	-448398	5,5365e-10	5,436730984038e-10	1,3127e-04	-9,257	0,3223	-0,492
CeHCO ₃ ⁺²	-326131	4,4743e-16	4,393697979452e-16	8,9993e-11	-15,349	0,3105	-0,508
CeOH ⁺²	-227043	4,7318e-15	4,646567533248e-15	7,4347e-10	-14,325	0,3057	-0,515
CeSO ₄ ⁺	-354021	6,2077e-15	6,095830643541e-15	1,4661e-09	-14,207	0,7885	-0,103
Co ⁺²	-24627	9,2669e-09	9,099999555243e-09	5,4613e-04	-8,033	0,3231	-0,491
Cs ⁺	-81326	4,2771e-09	4,199999906123e-09	5,6844e-04	-8,369	0,7129	-0,147
Cu ⁺²	6089	2,9298e-07	2,876995785213e-07	1,8618e-02	-6,533	0,3203	-0,494
Dy ⁺³	-174071	7,3715e-11	7,238686962133e-11	1,1979e-05	-10,132	0,0731	-1,136
DyHCO ₃ ⁺²	-326456	1,1447e-18	1,124034951743e-18	2,5585e-13	-17,941	0,3167	-0,499
DyOH ⁺²	-227368	7,7586e-17	7,618830926721e-17	1,3927e-11	-16,110	0,3115	-0,507
$Dy\overline{SO_4^+}$	-354345	5,6784e-10	5,576130259344e-10	1,4682e-04	-9,246	0,7981	-0,098
Er ⁺³	-175528	4,7489e-11	4,663347628847e-11	7,9430e-06	-10,323	0,0736	-1,133

Таблица 4-2

224

Продолжение таблицы 4-3

					11	родолжение	таолицы т э
ErOH ⁺²	-228824	5,9092e-17	5,802734184183e-17	1,0889e-11	-16,228	0,3141	-0,503
$ErSO_4^+$	-355802	3,0893e-10	3,033664569964e-10	8,1349e-05	-9,510	0,8039	-0,095
Eu ⁺³	-153155	3,2736e-11	3,214616933772e-11	4,9747e-06	-10,485	0,0727	-1,138
EuOH ⁺²	-206451	2,9150e-17	2,862493112348e-17	4,9256e-12	-16,535	0,3094	-0,509
$EuSO_4^+$	-333429	2,5240e-10	2,478538149114e-10	6,2603e-05	-9,598	0,7934	-0,101
Fe ⁺³	-29578	2.9018e-18	2.849558463091e-18	1.6206e-13	-17.537	0.0750	-1.125
Ga ⁺³	-50613	7.3423e-09	7.21000008345e-09	5.1193e-04	-8.134	0.0771	-1.113
Gd ⁺³	-172480	9.2669e-10	9.099988639604e-10	1 4572e-04	-9.033	0.0721	-1 142
GdHCO +2	324864	1,2009e 10	1 421174105532e 17	3 1580e 12	16 830	0,0721	0.508
GdOH ⁺²	225776	8 27670 16	8 12755/210061e 16	1 44230 10	15 082	0,3100	-0,500
	-223770	2,22762,16	2,77426645170a 16	1,4423C-10 9.4545 - 11	-13,082	0,3039	-0,314
GaSO ₄	-352754	3,33/00-10	3,2//4200451/96-10	8,45456-11	-15,477	0,7875	-0,104
H ₂ AsO ₄	-188359	8,9523e-07	8,/91068/380/1e-0/	1,261/e-01	-6,048	0,8453	-0,073
H_2PO_4	-274651	5,7390e-04	5,6355/915/343e-04	5,5661e+01	-3,241	0,8577	-0,067
$H_2VO_4^-$	-256872	4,3392e-10	4,261014760882e-10	5,0749e-05	-9,363	0,8434	-0,074
$H_3PO_4^*$	-278035	2,4076e-04	2,364202334158e-04	2,3593e+01	-3,618	1,0002	0,000
HasO ₄ -2	-184975	9,4865e-11	9,315556578660e-11	1,3274e-05	-10,023	0,4204	-0,376
HCO ₃ -	-152384	1,5700e-09	1,541743187563e-09	9,5799e-05	-8,804	0,8539	-0,069
HNO_3^*	-29605	3,1798e-16	3,122557560261e-16	2,0037e-11	-15,498	0,9794	-0,009
HPO ₄ -2	-271267	2,1661e-08	2,127071398143e-08	2,0790e-03	-7,664	0,4277	-0,369
HSO ₄ -	-183658	7,1465e-03	7,017714731606e-03	6,9372e+02	-2,146	0,8414	-0,075
HVO4 ⁻²	-253488	2,2971e-15	2,255718226098e-15	2,6634e-10	-14,639	0,4162	-0,381
Hg ⁺²	24784	6,6580e-11	6,538099901005e-11	1,3355e-05	-10,177	0,3099	-0,509
Ho ⁺³	-177576	1,8992e-11	1,864958894734e-11	3,1323e-06	-10,721	0,0729	-1,137
HoOH ⁺²	-230872	2,3683e-17	2,325666345097e-17	4,3089e-12	-16.626	0.3106	-0.508
HoSO ₄ ⁺	-357850	1,2358e-10	1,213503941585e-10	3,2253e-05	-9.908	0.7965	-0.099
K ⁺	-69585	4.1407e-02	4.066134276348e-02	1.6190e+03	-1.383	0.7253	-0.139
KOH*	-122881	1 2233e-08	1 2012937064516-08	6 8636e-04	-7 912	1 0261	0.011
KSO	_240850	5 23200-03	5 1386452235800-02	7 0729e±02	_2 281	0.8310	-0.080
L o ⁺³	177842	0.81160.10	0.6247080600000 10	1 26202 04	0.009	0,0726	-0,000
La La La DO $+2$	-177642	2,71220,11	2,646280072057a 11	1,30296-04 8 7501 a 06	-9,008	0,0720	-1,139
Lan ₂ PO ₄	-432495	3,/1320-11	3,0402890739376-11	8,7391e-00	-10,450	0,5255	-0,488
	-330220	3,0015e-17	2,94/4234045186-17	6,000/e-12	-10,525	0,3135	-0,504
LaOH	-231138	1,61/1e-16	1,58/951641686e-16	2,5212e-11	-15,/91	0,3084	-0,511
LaSO ₄	-358116	7,5358e-09	7,400056926213e-09	1,//0/e-03	-8,123	0,7947	-0,100
Li ⁺	-79043	2,7516e-07	2,701999926567e-07	1,9099e-03	-6,560	0,7616	-0,118
Lu ⁺³	-176277	5,7066e-12	5,603764404160e-12	9,9846e-07	-11,244	0,0744	-1,128
LuOH ⁺²	-229573	9,9089e-18	9,730398837075e-18	1,9023e-12	-17,004	0,3189	-0,496
LuSO ₄ ⁺	-356551	3,7064e-11	3,639622771413e-11	1,0045e-05	-10,431	0,8140	-0,089
$Mg(CO_3)^*$	-262453	4,1617e-18	4,086752209315e-18	3,5089e-13	-17,381	1,0292	0,012
$Mg(HCO_3)^+$	-265837	4,4634e-12	4,382960790853e-12	3,8082e-07	-11,350	0,7715	-0,113
Mg ⁺²	-113452	7,1977e-04	7,068062782089e-04	1,7494e+01	-3,143	0,3275	-0,485
Mn ⁺²	-59810	4,0405e-04	3,967687605703e-04	2,2198e+01	-3,394	0,3163	-0,500
MnSO ₄ *	-240084	5,3555e-04	5,259042390028e-04	8,0869e+01	-3,271	1,0292	0,012
MoO ₄ -2	-213031	5,7027e-10	5,60000265986e-10	9,1208e-05	-9,244	0,4138	-0,383
N_2^*	-153	5.1101e-04	5.018058105125e-04	1.4315e+01	-3.292	0.9813	-0.008
NO ₂ ⁻	-25746	7.0016e-14	6.875424433148e-14	3.2211e-09	-13,155	0.8426	-0.074
NO ₂ ⁻	-26221	3.0407e-12	2 985881664343e-12	1 8854e-07	-11 517	0.8317	-0.080
Na ⁺	-64582	4 6640e-02	4.579999999999999	1,000 10 07 1,0722e+03	-1 331	0 7423	-0.129
NaOH*	_117878	1 83240-14	1 799381997470e-14	7 32906-10	_13 737	0.9278	-0.033
Nd ⁺³	_17/755	5 8102 10	5 7143501117550 10	8 30366.05	_0 225	0.0721	_1 1/2
NdHCO +2	_207120	1 2721 17	1 250165788221 17	2 6121 12	-9,235	0,0721	-1,142
NANO ⁺²	-32/139	1,2/310-1/	1,2501057002216-17	2,01310-12	-10,073	0,3110	-0,507
NdOU+2	-200970	2 1216 10	2.075201020022-16	5.0407-11	-0,073	0,3270	-0,463
NUCH -	-228031	3,13100-10	5,0752019500558-16	3,04976-11	-15,504	0,3001	-0,514
IN05U4	-355029	4,48186-09	4,4010344/1336e-09	1,0770e-03	-8,349	0,7880	-0,103
IN1 - 2	-21636	4,1345e-08	4,0599998/5185e-08	2,4265e-03	-7,384	0,3259	-0,48/
O_2	-951	2,5988e-04	2,551943419400e-04	8,315/e+00	-3,585	0,9744	-0,011
PO4-3	-267883	1,1285e-17	1,108203347416e-17	1,0718e-12	-16,947	0,1182	-0,928
Pb ⁺²	-14559	1,0813e-06	1,061819835044e-06	2,2405e-01	-5,966	0,3010	-0,521
Pr ⁺³	-176659	6,8309e-10	6,707867877943e-10	9,6253e-05	-9,166	0,0722	-1,141
PrHCO ₃ ⁺²	-329044	1,6997e-17	1,669069985683e-17	3,4321e-12	-16,770	0,3240	-0,489
PrNO ₃ ⁺²	-202880	1,0990e-09	1,079212722683e-09	2,2300e-04	-8,959	0,3283	-0,484
PrOH ⁺²	-229955	2,6217e-16	2,574473259522e-16	4,1401e-11	-15,581	0,3066	-0,513
$PrSO_4^+$	-356933	2,4585e-16	2,414215258859e-16	5,8260e-11	-15,609	0,7894	-0,103
Rb ⁺	-77940	5,1325e-08	5,040000200272e-08	4,3866e-03	-7,290	0,7177	-0,144
SO4-2	-180274	4,5852e-02	4,502552300714e-02	4,4047e+03	-1,339	0,4157	-0,381
Sc ⁺³	-152747	8,5541e-09	8,399999812244e-09	3,8456e-04	-8.068	0.0741	-1.130
Sm ⁺³	-174101	1,3921e-10	1,367022100879e-10	2,0932e-05	-9.856	0.0723	-1.141
SmHCO ₂ +2	-326485	2.5696e-18	2.523351543308e-18	5.4316e-13	-17,590	0.3122	-0.506
SmOH ⁺²	-227397	1.0490e-16	1.030115649742e-16	1.7557e-11	-15 979	0.3073	-0.513
SmSQ.+	_354375	1.0726e-00	1 0532977490330-00	2 64320-04	-8 970	0 7898	-0.102
Sni504 Sn ⁺²	_17371	4 35800 08	4 28040277777770 09	5 17/50.02	_7 361	0,7050	-0.514
Sr ⁺²	-1/57/6	2 85850 08	2 80600051601 00	2 50/60 03	_7 544	0,3003	-0 510
Th ⁺³	-145740	1 630/2 11	1 600800370364- 11	2,50400-05	-10 785	0,0720	-0,310
10	-1/3/04	1,03940-11	1,0070905705046-11	2,00556-00	-10,/03	0,0729	-1,13/

005	
, , , ¬	١
44.	J

Продолжение таблицы 4-3

					11	родолжение	гаолицы 4-5
TbOH ⁺²	-229060	1,7270e-17	1,695918698506e-17	3,0384e-12	-16,763	0,3103	-0,508
TbSO ₄ ⁺	-356038	1,2617e-10	1,239010857461e-10	3,2173e-05	-9,899	0,7966	-0,099
Tl^+	-20826	3,5642e-10	3,499996723764e-10	7,2846e-05	-9,448	0,7157	-0,145
Tl ⁺³	28611	3,2567e-16	3,198005265920e-16	6,6561e-11	-15,487	0,0716	-1,145
Tm ⁺³	-175556	4,5262e-11	4,444678859408e-11	7,6463e-06	-10,344	0,0736	-1,133
TmNO ₃ ⁺²	-201778	2,6022e-11	2,555314847268e-11	6,0095e-06	-10,585	0,3399	-0,469
TmOH ⁺²	-228853	6,6632e-17	6,543151227489e-17	1,2390e-11	-16,176	0,3142	-0,503
VO ⁺²	-125085	1,0180e-13	9,996925053705e-14	6,8148e-09	-12,992	0,3268	-0,486
VO_2^+	-150279	6,1583e-08	6,047379663274e-08	5,1077e-03	-7,211	0,7841	-0,106
WO4-2	-231913	1,0693e-09	1,049999976531e-09	2,6501e-04	-8,971	0,4108	-0,386
Y ⁺³	-176668	4,9899e-09	4,90000020862e-09	4,4363e-04	-8,302	0,0739	-1,131
Yb ⁺³	-168673	4.4135e-11	4.334004358832e-11	7.6371e-06	-10.355	0.0734	-1.135
YbNO ₃ ⁺²	-194894	2.5438e-11	2.497953977259e-11	5.9790e-06	-10.595	0.3381	-0.471
YbOH ⁺²	-221969	7.6989e-17	7.560183920365e-17	1.4632e-11	-16.114	0.3130	-0.504
YbSO ₄ ⁺	-348947	2.8685e-10	2.816803322715e-10	7.7192e-05	-9.542	0.8021	-0.096
BeOH ⁺	-151097	7.7461e-09	7,606579965415e-09	2.0155e-04	-8.111	0.7981	-0.098
CoOH ⁺	-77923	1.1301e-16	1,109716753494e-16	8.5819e-12	-15.947	0.7839	-0.106
Cr ⁺³	-61640	1,1695e-08	1,148390222730e-08	6.0807e-04	-7.932	0.0768	-1.115
$Cr_2 \Omega_7^{-2}$	-324356	1,10900-00	1 237650239497e-08	2 7222e-03	-7 900	0.3565	-0.448
CrO^+	-111552	2 2014e-14	2 161779974286e-14	1 4969e-09	-13 657	0.8135	-0.090
CrQ ₄ -2	-187134	2,2011e-11	2,101///2006 11 2,187087363470e-09	2 5834e-04	-8 652	0.4070	-0.390
CrOH ⁺²	-114936	7 7379e-11	7 598483594125e-11	5 3394e-06	-10.111	0,3374	-0.472
CuO*	-43823	1 1482e-17	1 127491112498e-17	9 1332e-13	-16 940	1 1 5 5 1	0.063
CuOH ⁺	-47207	4 3872e-13	4 308134152838e-13	3 5340e-08	-12 358	0.7770	-0.110
EeOH ⁺²	-82875	1,3072e-18	1 268187303962e-18	9.4088e-14	-17 889	0,7770	-0.492
HgO*	-02075	1,22130-10 1,2330e-12	1,2001075057020-10	2 6706e-07	-11,009	1,0292	0.012
HgOH ⁺	28512	3 4707e 12	3 408181734511e 12	7 5522e 07	11,760	0.7377	0.132
NiOH+	74032	8 1367e 17	7 990075847179e 17	6 1592e 12	-11,400	0,7377	-0,132
PhOH ⁺	67855	8,15076-17	8.0170206146120.11	1 82050 05	-10,090	0,7983	-0,098
FDON SnO [*]	67292	0.04720.11	8,0170290140136-11	1,05056-05	-10,088	1,0202	-0,100
SIIU SnOUt	-07283	9,04726-11	8,884203024427e-11	2,625% 04	-10,045	0.7225	0,012
	-70007	2,94216-09	2,800,001,220,02, 10	2,03386-04	-0,712	0,7333	-0,133
002 Zr ⁺⁴	-241574	2,83146-10	2,8000001329928-10	1,09930-03	-9,343	0,5205	-0,494
Z_{r}	-149525	1,8082e-10	1,7/301087/3386-10	0.10642.04	-9,745	0,0094	-2,027
ZIO ZrO *	-199237	8,37090-09	8,4223001849338-09	9,1904e-04	-0,007	1,0202	-0,403
ZIO_2	-249149	2,70020-12	2,7103721733000-12	1,5(70- 02	-11,556	1,0292	0,012
Zf(UH)	-202621	1,44/80-08	1,421/362105616-08	1,50/0e-03	-7,839	0,0759	-1,120
UH Ut	-55290	3,4052e-12	3,3439006826646-12	5,7914e-08	-11,408	0,9061	-0,043
H	-3384	4,0/11e-03	4,5869707425496-03	4,70820+00	-2,331	0,7061	-0,151
H ₂ U	-30080	5,5510e+01	5,4509967392210+01	1,0000e+00	1,/44	1,0000	0,000
1 a3	00088	1	1 020225808672 - 02	0.04	1.001	1.0000	0.000
CO ₂	-99088		1,0203258086736-02	0,04	-1,991	1,0000	0,000
N ₂	-153		2,/551914340896+01	/5,/8	1,440	1,0000	0,000
NO	-552		9,1194168994986-15	0,00	-14,040	0,9995	-0,000
NO ₂	-1027		4,957518009642e-09	0,00	-8,305	1,0000	0,000
N ₂ O	-628		8,656561606579e-18	0,00	-17,063	0,9946	-0,002
02	-951		7,166567803933e+00	22,52	0,855	1,0000	0,000
H ₂ O	-56680		9,384564485339e-01	1,66	-0,028	1,0000	0,000
Твердая фаза			1				
Алуноген Al ₂ [SO ₄] ₃ ·18H ₂ O	-1833930)	7,315811517864e-04	13,61	-3,136	1,0000	0,000
Гипс CaSO₄·2 H ₂ O	-429598		1,458094429155e-02	70,08	-1,836	1,0000	0,000
Монтмориллони	нт -1243070	0	2,094240874294e-04	2,19	-3,679	1,0000	0,000
Бианкит			0.0000000000	0.07	F 0 C	1 0000	0,000
ZnSO ₄ ·6H ₂ O	-612591		8,666000213617e-06	0,07	-5,062	1,0000	0,000
Фиороферрит Fe[SO ₄](OH)·5H	-546549		1,945092928964e-03	14,06	-2,711	1,0000	0,000

Параметры газов

Парциальное Log парциального Log коэф. Газ Фугитивность Log фугитивности Фугитивности давление давления NH₃ 1,0671e-59 -5,8972e+01 1,0671e-59 -5,8972e+01 0,0000e+00 -3,5435e+00 2,8607e-04 CO_2 2,8607e-04 -3,5435e+00 0,0000e+00 CO 5,5822e-49 -4,8253e+01 5,5822e-49 -4,8253e+01 0,0000e+00 -2,6170e+02 -3,2681e-03 C_2H_6 1,0000e-70 -2,6170e+02 1,0000e-70 H_2 6,3297e-42 -4,1199e+01 6,3297e-42 -4,1199e+01 0,0000e+00 -1,2983e+02 H_2S 1,0000e-70 -1,2983e+02 1,0000e-70 0,0000e+00 CH_4 1,0000e-70 -1,4545e+021,0000e-70 -1,4545e+02 0,0000e+00 N₂ NO 7,7247e-01 7,7247e-01 -1,1212e-01 -1,1212e-01 0,0000e+00 2,5556e-16 -1,5593e+01 2,5568e-16 -1,5592e+01 -2,1019e-04 NO_2 1,3899e-10 -9,8570e+00 1,3899e-10 -9,8570e+00 0,0000e+00 2,4270e-19 N_2O 2,4140e-19 -1,8617e+01 -1,8615e+01 -2,3388e-03

Таблица 4-4

Продолжение таблицы 4-3

O ₂	2,0093e-01	-6,9696e-01	2,0093e-01	-6,9696e-01	0,0000e+00
C_3H_8	1,0000e-70	-3,7649e+02	1,0000e-70	-3,7648e+02	-7,1244e-03
H ₂ O	2,6312e-02	-1,5799e+00	2,6312e-02	-1,5799e+00	0,0000e+00
S ₂	1,0000e-70	-2,0291e+02	1,0000e-70	-2,0291e+02	0,0000e+00
SO_2	2,4216e-43	-4,2616e+01	2,4216e-43	-4,2616e+01	0,0000e+00

Таблица 5

Результаты физико-химического моделирования ионного состава раствора при объемных соотношениях «вода-порода» 14 г. п. / 1 кг H₂O (модель 3.1)

Таблица 5-1

Резервуар 1					
Температура, °С	25,00	G, кал	-3178354	Eh, B	1,0703
Давление, бар	1,00	Н, кал	-3806590	pe	18,1287
Масса, кг	2,014	S, кал/К	2616,576	pН	2,4723
Объем мультисистемы, см ³	886257,938	U, кал	-3779408	Ионная сила	0,2945
Плотность мультисистемы, г/см ³	0,002273	Ср, кал	1229,34	TDS, mg/kgH ₂ O	10474,8839606

Таблица 5-2

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	986,79897	5,47591e+01	994,4127	1,00772e+00	49,36726
Газ	885271,15253	3,57117e+01	1019,9034	1,15208e-03	50,63274

Таблица 5-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

	Функция оТ			Концентрация в	Log	Коэф	Годкоэф
Состав фазы	Функция 51, кал/моль	Моляльность	Мольное количество	мг∕кг Н₂О, или	моляльност	Активности	Активности
	Rush Mostb			вес. %	И	7 ikinbiloeth	TRIBBIOCT
Водный раство	op	1	1	1	n		n
Ag ⁺	9971	9,1459e-07	9,000000357628e-07	9,8655e-02	-6,039	0,6906	-0,161
Al(OH) ⁺²	-173776	1,8824e-06	1,852375935051e-06	8,2805e-02	-5,725	0,2873	-0,542
Al(OH) ₃ *	-280393	7,5700e-12	7,449275628327e-12	5,9049e-07	-11,121	1,0646	0,027
Al^{+3}	-120468	3,6565e-03	3,598147616615e-03	9,8657e+01	-2,437	0,0506	-1,296
AlO ₂ ⁻	-220342	1,3118e-16	1,290902157531e-16	7,7372e-12	-15,882	1,0402	0,017
Au ⁺	29855	2,9470e-07	2,899999916221e-07	5,8046e-02	-6,531	0,6703	-0,174
Au ⁺³	79318	3,3778e-17	3,323914246241e-17	6,6531e-12	-16,471	0,0469	-1,329
Ba ⁺²	-141401	1,6463e-05	1,62000004763e-05	2,2608e+00	-4,784	0,2397	-0,620
Be ⁺²	-94847	1,5618e-08	1,536908311094e-08	1,4075e-04	-7,806	0,3073	-0,512
CO_2^*	-99089	9,1451e-06	8,999203911141e-06	4,0247e-01	-5,039	1,0586	0,025
CO3-2	-149026	3,8842e-17	3,822208574740e-17	2,3309e-12	-16,411	0,4686	-0,329
Ca(CO ₃)*	-286037	9,5247e-18	9,372772100673e-18	9,5330e-13	-17,021	1,0556	0,024
Ca(HCO ₃) ⁺	-289409	5,4646e-12	5,377410069594e-12	5,5244e-07	-11,262	0,6951	-0,158
Ca ⁺²	-137011	1,0103e-03	9,942319480751e-04	4,0493e+01	-2,996	0,2565	-0,591
CaSO ₄ *	-317103	8,1883e-04	8,057680465473e-04	1,1148e+02	-3,087	1,0643	0,027
Cd ⁺²	-26988	2,5405e-06	2,50000000000e-06	2,8558e-01	-5,595	0,2608	-0,584
Ce ⁺³	-171130	2,2843e-06	2,247876916087e-06	3,2007e-01	-5,641	0,0452	-1,345
CeCO ₃ ⁺	-320156	5,3511e-17	5,265718276778e-17	1.0709e-11	-16,272	0,8857	-0,053
CeH ₂ PO ₄ ⁺²	-444865	2,5621e-07	2,521218758514e-07	6,0748e-02	-6,591	0,2705	-0,568
CeHCO ₃ ⁺²	-323527	4,4700e-14	4,398700046665e-14	8,9906e-09	-13,350	0,2522	-0,598
CeOH ⁺²	-224438	4.7981e-13	4.721576782106e-13	7,5389e-08	-12.319	0.2449	-0.611
CeSO ₄ ⁺	-351221	7.0308e-13	6.918633910374e-13	1.6605e-07	-12.153	0.7857	-0.105
Co ⁺²	-21791	1.3211e-06	1,299999939138e-06	7.7855e-02	-5.879	0.2718	-0.566
Cs ⁺	-78443	6.0973e-07	5,999999865889e-07	8.1036e-02	-6.215	0.6498	-0.187
Cu ⁺²	8921	4,1766e-05	4,109995016203e-05	2,6541e+00	-4,379	0,2674	-0,573
Dy ⁺³	-171322	1,2025e-08	1,183365717570e-08	1,9541e-03	-7,920	0,0464	-1,334
DyCO ₃ ⁺	-320349	1,1049e-18	1,087293674156e-18	2,4585e-13	-17,957	0,9146	-0,039
DvHCO ₃ ⁺²	-323720	1.4032e-16	1.380813021840e-16	3.1364e-11	-15.853	0.2617	-0.582
DvOH ⁺²	-224631	9.6632e-15	9,509096210274e-15	1.7346e-09	-14.015	0.2537	-0.596
DvSO ₄ ⁺	-351414	7.9433e-08	7.816632930173e-08	2.0539e-02	-7.100	0.8037	-0.095
Er ⁺³	-172777	7.7264e-09	7.603170960149e-09	1.2923e-03	-8.112	0.0470	-1.328
ErHCO ₃ ⁺²	-325174	1.0614e-16	1.044481303421e-16	2.4230e-11	-15.974	0.2667	-0.574
ErOH ⁺²	-226085	7.3315e-15	7.214508341635e-15	1.3509e-09	-14,135	0.2577	-0.589
ErSO ₄ ⁺	-352868	4.3084e-08	4.239682060232e-08	1.1345e-02	-7.366	0.8148	-0.089
Eu ⁺³	-150409	5.3378e-09	5,252699718088e-09	8.1117e-04	-8,273	0.0460	-1.338
EuHCO ₂ ⁺²	-302807	5.2792e-17	5.195030467000e-17	1.1244e-11	-16.277	0.2584	-0.588
EuOH ⁺²	-203718	3.6340e-15	3.576059202581e-15	6.1405e-10	-14,440	0.2506	-0.601
EuSO4 ⁺	-330501	3.5311e-08	3 474729855339e-08	8,7580e-03	-7.452	0.7948	-0.100
Fe ⁺²	-32807	3 5574e-08	3 500639942990e-08	1 9867e-03	-7 449	0.2698	-0.569
	52007	5,55740.00	5,5000577427700-00	1,70070 05	7,777	0,2070	0,507

Π	родолжение	таблицы 5-3

Fe ⁺³	-8075	2,5860e-02	2,544745302701e-02	1,4442e+03	-1,587	0,0487	-1,313
Ga ⁺³	-47916	1,0467e-06	1,030000001192e-06	7,2979e-02	-5,980	0,0514	-1,289
Gd ⁺³	-169818	1,3211e-07	1,299998719656e-07	2,0774e-02	-6,879	0,0452	-1,345
GdCO ₃ ⁺	-318844	8,7107e-18	8,571704154839e-18	1,8925e-12	-17,060	0,8865	-0,052
GdHCO ₃ ⁺²	-322215	1,5584e-15	1,533530841254e-15	3,4015e-10	-14,807	0,2524	-0,598
GdOH ⁺²	-223126	9,0458e-14	8,901541756732e-14	1,5763e-08	-13,044	0,2451	-0,611
GdSO ₄ ⁺	-349909	4,0810e-14	4,015906438275e-14	1,0338e-08	-13,389	0,7836	-0,106
H ₂ AsO ₄	-185386	1,2762e-04	1,255869949630e-04	1,7987e+01	-3,894	0,8954	-0,048
H_2PO_4	-2/3/30	2,5060e-03	2,466021342152e-03	2,4305e+02	-2,601	0,9203	-0,036
H_2VO_4	-253963	5,56966-08	5,4807/0243827e-08	6,51396-03	-7,254	0,8916	-0,050
H_3PO_4	-2//10/	1,1520e-05	1,1550151901//e-05	1,12890+02	-2,939	1,0004	0,000
	-162013	1,32208-08	1,500925506119e-08	8 77220 05	-7,879	0,4460	-0,531
HNO [*]	-132397	3 2583e-16	3 206278770292e-16	0,7723E-03	-0,042	0,9127	-0,040
HPO. ⁻²	-270365	9.2240e-08	9,076825735279e-08	2,0551e-11 8,8531e-03	-7.035	0,9010	-0,017
HSO4	-183463	9.4178e-03	9.267563003435e-03	9 1420e+02	-2 026	0.8878	-0.052
HsiQ ₃ ⁻	-256173	6.9823e-11	6.870893223965e-11	5.3827e-06	-10.156	0.9672	-0.014
HVO ₄ ⁻²	-250591	2,9020e-13	2,855729221203e-13	3,3648e-08	-12,537	0,4377	-0,359
Hg ⁺²	27605	9,6036e-09	9,450402366272e-09	1,9264e-03	-8,018	0,2513	-0,600
Ho ⁺³	-174830	3,0902e-09	3,040894746089e-09	5,0966e-04	-8,510	0,0462	-1,335
HoHCO ₃ ⁺²	-327227	3,6103e-17	3,552742658721e-17	8,1574e-12	-16,442	0,2604	-0,584
HoOH ⁺²	-228138	2,9434e-15	2,896453438007e-15	5,3552e-10	-14,531	0,2524	-0,598
HoSO ₄ ⁺	-354922	1,7234e-08	1,695910327155e-08	4,4980e-03	-7,764	0,8006	-0,097
K ⁺	-/1153	3,1746e-03	3,124004478729e-03	1,2412e+02	-2,498	0,6/13	-0,173
KUH KSO -	-124462	8,3120e-10	δ,1/9411102238e-10 4 750047022206c 04	4,00350-05	-9,080	1,049/	0,021
L a ⁺³	-231244	1 5832e 07	4,7399470332906-04	2 10020 02	-5,515	0,8090	-0,001
La LaCO ⁺	-324130	1,9250e-18	1,557978519805e-07	3 8290e-13	-0,800	0,0458	-0.046
LaH ₂ PO ₄ ⁺²	-448839	2.0905e-08	2.057153635950e-08	4.9313e-03	-7.680	0.2755	-0.560
LaHCO ₃ ⁺²	-327501	3,6488e-15	3,590592853649e-15	7,2948e-10	-14,438	0,2567	-0,591
LaOH ⁺²	-228412	1,9965e-14	1,964640286846e-14	3,1128e-09	-13,700	0,2491	-0,604
$LaSO_4^+$	-355195	1,0402e-06	1,023630561599e-06	2,4442e-01	-5,983	0,7972	-0,098
Li ⁺	-76125	3,9226e-05	3,859999895096e-05	2,7227e-01	-4,406	0,7359	-0,133
Lu ⁺³	-173519	9,2941e-10	9,145834734704e-10	1,6262e-04	-9,032	0,0480	-1,319
LuHCO ₃ ⁺²	-325917	1,7738e-17	1,745462747192e-17	4,1858e-12	-16,751	0,2747	-0,561
LuOH ⁺²	-226828	1,2262e-15	1,206661088709e-15	2,3540e-10	-14,911	0,2652	-0,576
$LuSO_4$	-353611	5,16/8e-09	5,08541558/234e-09	1,4006e-03	-8,287	0,8342	-0,079
$Mg(UO_3)$	-262021	8,4090e-18	8,2/488214491/e-18 0.512/73/01162e 12	7,0900e-15 8 2478e 07	-17,075	1,0550	0,024
Mg(HCO3) Mg ⁺²	-112995	1 8292e-03	1 799999990488e-03	4 4458e+01	-2 738	0,7340	-0,125
Mn ⁺²	-58951	2.0888e-03	2.055469808797e-03	1.1475e+02	-2,680	0.2611	-0.583
MnSO ₄ *	-239042	3,0319e-03	2,983530130168e-03	4,5782e+02	-2,518	1,0556	0,024
MoO ₄ -2	-210066	8,1297e-08	8,000000379980e-08	1,3002e-02	-7,090	0,4330	-0,363
N_2^*	-154	5,1917e-04	5,108895354601e-04	1,4544e+01	-3,285	0,9652	-0,015
NO ₂ -	-25756	6,5127e-14	6,408856129497e-14	2,9962e-09	-13,186	0,8901	-0,051
NO ₃ -	-26230	2,8678e-12	2,822065058473e-12	1,7782e-07	-11,542	0,8686	-0,061
Na ⁺	-66124	3,6584e-03	3,599999992788e-03	8,4105e+01	-2,437	0,7012	-0,154
NaHSiO ₃	-322297	7,32/1e-12	7,210194688825e-12	/,3330e-0/	-11,135	1,0556	0,024
NaOH Na+3	-119433	1,42086-15	1,3981/09/30/80-13	5,08500-11	-14,847	0,8085	-0,061
NdCO ₂ ⁺	-321018	4 6215e-18	4 547745471730e-18	9.4393e-13	-17 335	0,0433	-1,344
NdHCO ₂ ⁺²	-324390	1.6234e-15	1,597500570631e-15	3,3321e-10	-14,790	0.2529	-0.597
NdNO ₃ ⁺²	-198223	1,5694e-07	1,544401840028e-07	3,2369e-02	-6,804	0,2790	-0,554
NdOH ⁺²	-225301	4,0539e-14	3,989282728899e-14	6,5369e-09	-13,392	0,2456	-0,610
NdSO ₄ ⁺	-352084	6,4918e-07	6,388293108378e-07	1,5600e-01	-6,188	0,7847	-0,105
Ni ⁺²	-18795	5,8940e-06	5,799999823698e-06	3,4592e-01	-5,230	0,2762	-0,559
O ₂ *	-948	2,6729e-04	2,630225077662e-04	8,5528e+00	-3,573	0,9523	-0,021
PO ₄ -3	-266993	5,2265e-17	5,143104222357e-17	4,9637e-12	-16,282	0,1146	-0,941
Pb ⁺²	-11760	1,5415e-04	1,516910579391e-04	3,1940e+01	-3,812	0,2378	-0,624
Pr ⁻⁵	-1/3880	1,1/2/e-0/	1,1540297/1849e-07	1,6525e-02	-6,931	0,0454	-1,343
PrHCO ₂ +2	-322912	2 1265e-15	2 ()92563719901 _{P-} 15	4 2939e-10	-17,405	0,0905	-0,050
PrNO ₂ ⁺²	-200117	1.3678e-07	1.345969549136e-07	2.7754e-02	-6.864	0.2801	-0.553
PrOH ⁺²	-227195	3,4482e-14	3,393196103205e-14	5,4452e-09	-13,462	0,2463	-0,609
PrSO ₄ ⁺	-353978	3,6175e-14	3,559842110903e-14	8,5726e-09	-13,442	0,7873	-0,104
Rb ⁺	-75053	7,3167e-06	7,200000286102e-06	6,2534e-01	-5,136	0,6581	-0,182
SO4 ⁻²	-180091	5,9413e-02	5,846509629827e-02	5,7074e+03	-1,226	0,4367	-0,360
Sc ⁺³	-150071	1,2195e-06	1,199999973178e-06	5,4822e-02	-5,914	0,0476	-1,323
SiO ₂ *	-202865	1,8292e-03	1,799999924081e-03	1,0990e+02	-2,738	1,1042	0,043
Sm ⁺³	-171357	2,2703e-08	2,234125098820e-08	3,4137e-03	-7,644	0,0455	-1,342
SmCU ₃	-320383	1,494/e-18 3 1604a 16	1,4/089/546422e-18	5,1445e-15	-17,825	0,8933	-0,049
$SmHCO_{-+2}$							

Продолжение таблицы 5-3

SmOH ⁺²	-224666	$1.3101e_{-}1/$	$1.289160450211e_{-}14$	2 1926e-09	-13 883	0.2473	-0.607
Smon +	-224000	1,51010-14	1,2001004502110-14	2,17200-07	-15,005	0,2475	-0,007
	-551449	1,5005e-07	1,4703874304040-07	5,09700-02	-0,824	0,7880	-0,105
Sn	-14558	6,2593e-06	6,159501/26/48e-06	7,4305e-01	-5,203	0,2461	-0,609
Sr ⁺²	-142933	4,0750e-06	4,009999930859e-06	3,5705e-01	-5,390	0,2501	-0,602
Tb ⁺³	-173016	2,6770e-09	2,634342021456e-09	4,2545e-04	-8,572	0,0462	-1,336
TbHCO ₃ ⁺²	-325413	2,9006e-17	2,854301056041e-17	6,3796e-12	-16,538	0,2804	-0,552
TbOH ⁺²	-226324	2,1549e-15	2,120497375247e-15	3,7911e-10	-14,667	0,2520	-0,599
TbSO ₄ ⁺	-353107	1,7647e-08	1,736565677924e-08	4,4998e-03	-7,753	0,8009	-0,096
Tl^+	-17940	5,0810e-08	4,999992878428e-08	1,0385e-02	-7,294	0,6547	-0,184
T1+3	31523	7,1234e-14	7,009813016972e-14	1,4559e-08	-13,147	0,0446	-1,351
Tm ⁺³	-172819	7,2002e-09	7,085382131247e-09	1,2164e-03	-8,143	0,0470	-1,328
TmCO ₃ ⁺	-321844	1.0961e-18	1.078577029505e-18	2.5094e-13	-17,960	0.9284	-0.032
TmHCO ₂ +2	-325216	9 9014e-17	9 743448505991e-17	2 2768e-11	-16 004	0.2665	-0.574
TmNO ₂ +2	-199049	2 9619e-09	2 914610288029e-09	6 8401e-04	-8 528	0,2000	-0.524
$TmOH^{+2}$	226127	2,00100 00 8 0862e 15	7.957185714294e 15	1 5036e 00	14.002	0,2578	0,524
VO ⁺²	122140	1,7292 11	1,7007277222620 11	1,50500-09	-14,092	0,2378	-0,569
VO +	-122140	9,7952-06	9 (45175052204- 0)	7,096-00	-10,702	0,2777	-0,330
VO2 ⁻	-14/340	8,78536-06	8,0451/50522946-00	7,28000-01	-5,050	0,7775	-0,109
WO ₄ -	-228952	1,5243e-07	1,499999966472e-07	3,7780e-02	-6,817	0,4271	-0,369
Y+3	-173993	7,1135e-07	7,00000029803e-07	6,3243e-02	-6,148	0,0474	-1,325
Yb ⁺³	-165915	7,2802e-09	7,164114601894e-09	1,2598e-03	-8,138	0,0467	-1,330
YbCO ₃ ⁺	-314942	1,3117e-18	1,290823621886e-18	3,0570e-13	-17,882	0,9229	-0,035
YbHCO ₃ ⁺²	-318313	1,1706e-16	1,151972905956e-16	2,7400e-11	-15,932	0,2646	-0,577
YbNO ₃ ⁺²	-192146	3,0050e-09	2,957085318322e-09	7,0631e-04	-8,522	0,2961	-0,529
YbOH ⁺²	-219224	9,6862e-15	9,531680087194e-15	1,8408e-09	-14,014	0,2561	-0,592
YbSO4 ⁺	-346007	4,0525e-08	3,987878931403e-08	1,0905e-02	-7,392	0,8113	-0,091
Zn ⁺²	-39929	1,2581e-03	1,237997955368e-03	8,2265e+01	-2,900	0,2709	-0,567
AsO ₄ -3	-178643	4,0955e-17	4,030130167686e-17	5,6894e-12	-16,388	0,1079	-0,967
BaOH ⁺	-194709	5.6521e-17	5.561936551123e-17	8.7231e-12	-16.248	0.6617	-0.179
BeOH ⁺	-148156	1.1022e-06	1.084630910929e-06	2.8679e-02	-5.958	0.8037	-0.095
CoOH ⁺	-75099	1 3392e-14	1 317860568108e-14	1.0170e-09	-13 873	0,7770	-0.110
Cr ⁺³	-60034	2 6525e-07	2 610214794516e-07	1 3792e-02	-6 576	0.0509	-1 293
CraOa ⁻²	-321239	2,03250 07	2,0102147749100 07	5 7164e-01	-5 577	0,000	-0.485
Cr_2O_7	100071	2,0400e-00 3 1007e 13	2,004398748012e-00 3 051108331836e 13	2 10830 08	12 500	0,3271	-0,485
CrO -2	185599	2 02662 08	2 8807228648120 08	2,10630-00	7 522	0,000	0.277
$CrOU^{+2}$	-103300	2,93000-08	1 2824000662000 00	0,0002e-05	-7,332	0,4197	-0,377
CrOH-	-115545	1,30436-09	1,2834999663996-09	9,0002e-05	-8,885	0,2949	-0,530
CuO	-41016	1,1539e-15	1,1334097037220-15	9,1/850-11	-14,938	1,3117	0,118
CuOH ¹	-44388	5,2001e-11	5,11/1980/390/e-11	4,1889e-06	-10,284	0,7641	-0,117
FeO ⁺	-58012	3,2041e-04	3,152981253128e-04	2,3020e+01	-3,494	0,7806	-0,108
FeO ₂ -	-107949	2,4614e-15	2,422094640422e-15	2,1622e-10	-14,609	0,9647	-0,016
FeOH ⁺	-86115	1,7944e-15	1,765750596213e-15	1,3073e-10	-14,746	0,7770	-0,110
FeOH ⁺²	-61384	8,7264e-03	8,587213841271e-03	6,3576e+02	-2,059	0,2699	-0,569
HgO [*]	-22332	1,3489e-10	1,327375454258e-10	2,9216e-05	-9,870	1,0556	0,024
$HgOH^+$	-25703	4,2362e-10	4,168605632767e-10	9,2178e-05	-9,373	0,6930	-0,159
NiOH ⁺	-72104	9,5615e-15	9,409014886061e-15	7,2378e-10	-14,019	0,8040	-0,095
PbO*	-61697	3,9322e-17	3,869516591368e-17	8,7767e-12	-16,405	1,0556	0,024
PbOH ⁺	-65069	9,0878e-09	8,942823811472e-09	2,0375e-03	-8,042	0,7770	-0,110
SnO*	-64495	9,7533e-09	9,597690534353e-09	1,3139e-03	-8,011	1,0556	0,024
SnOH ⁺	-67867	2,3464e-07	2,309004396663e-07	3,1845e-02	-6,630	0,6857	-0,164
UO_2^{+2}	-238542	4,0648e-08	4,000000189990e-08	1,0976e-02	-7,391	0,2677	-0,572
ZnO*	-89866	3,3273e-17	3,274211450815e-17	2,7081e-12	-16,478	1,0556	0,024
ZnOH ⁺	-93238	2,1088e-09	2,075149633117e-09	1,7376e-04	-8,676	0,6981	-0,156
Zr ⁺⁴	-146563	4,3534e-08	4,283986622034e-08	3,9714e-03	-7.361	0.0041	-2.384
ZrO ⁺²	-196500	9.8135e-07	9.656942395537e-07	1.0522e-01	-6.008	0.3043	-0.517
$Z_r O_2^*$	-246437	2.6249e-10	2.583003530891e-10	3.2344e-05	-9,581	1,0556	0.024
$7r(OH)^{+3}$	_199871	2,0210010 2,2877e_06	2,2512076/39/16-06	2 4760e-01	-5 6/1	0.0/08	-1 303
OH-	_53308	2,2077-12	2,2512070457410-00	5 03880-08	_11 578	1 0206	0.000
U11 Н+	-33500	5 28060 03	5 1963268/3030-02	5 3225 - 100	-11,520	0.6383	-0 105
и О	-55/1	5 55100-05	5 462454526101 - 01	1,0000-+00	1 744	1,0000	-0,195
	-30000	3,33100+01	3,4024343301910+01	1,0000e+00	1,/44	1,0000	0,000
1 83	00000		1 0002 40020521 02	0.04	1.001	1 0000	0.000
	-99089		1,020348938521e-02	0,04	-1,991	1,0000	0,000
N ₂	-154		2,/55190511089e+01	75,68	1,440	1,0000	0,000
NO	-551		9,146707535332e-15	0,00	-14,039	0,9995	-0,000
NO ₂	-1025		4,984122196371e-09	0,00	-8,302	1,0000	0,000
N ₂ O	-628		8,677046960681e-18	0,00	-17,062	0,9946	-0,002
O ₂	-948		7,209527307749e+00	22,62	0,858	1,0000	0,000
H ₂ O	-56680		9,400690172957e-01	1,66	-0,027	1,0000	0,000

Таблица 5-4

Параметры газов

Газ	Фугитивность	Log фугитивности	Парциальное давление	Log парциального давления	Log коэф. Фугитивности
NH ₃	1,0634e-59	-5,8973e+01	1,0634e-59	-5,8973e+01	0,0000e+00

Продолжение таблицы 5-4

CO ₂	2,8572e-04	-3,5441e+00	2,8572e-04	-3,5441e+00	0,0000e+00
CO	5,5622e-49	-4,8255e+01	5,5622e-49	-4,8255e+01	0,0000e+00
C_2H_6	1,0000e-70	-2,6171e+02	1,0000e-70	-2,6170e+02	-3,2681e-03
H_2	6,3177e-42	-4,1199e+01	6,3177e-42	-4,1199e+01	0,0000e+00
H_2S	1,0000e-70	-1,2968e+02	1,0000e-70	-1,2968e+02	0,0000e+00
CH ₄	1,0000e-70	-1,4545e+02	1,0000e-70	-1,4545e+02	0,0000e+00
N ₂	7,7151e-01	-1,1266e-01	7,7151e-01	-1,1266e-01	0,0000e+00
NO	2,5600e-16	-1,5592e+01	2,5613e-16	-1,5592e+01	-2,1019e-04
NO ₂	1,3957e-10	-9,8552e+00	1,3957e-10	-9,8552e+00	0,0000e+00
N ₂ O	2,4167e-19	-1,8617e+01	2,4297e-19	-1,8614e+01	-2,3388e-03
O ₂	2,0188e-01	-6,9490e-01	2,0188e-01	-6,9490e-01	0,0000e+00
C ₃ H ₈	1,0000e-70	-3,7650e+02	1,0000e-70	-3,7649e+02	-7,1244e-03
H ₂ O	2,6324e-02	-1,5797e+00	2,6324e-02	-1,5797e+00	0,0000e+00
S ₂	1,0000e-70	-2,0262e+02	1,0000e-70	-2,0262e+02	0,0000e+00
SO_2	3,4278e-43	-4,2465e+01	3,4278e-43	-4,2465e+01	0,0000e+00

Таблица б

Результаты физико-химического моделирования ионного состава раствора при объемных соотношениях «вода-порода» 14 г. п. / 1 кг H₂O равновесного с минеральной фазой (модель 3.2)

Таблица 6-1

Pezengyan 1					
Температура, °С	25,00	G, кал	-3186816	Eh, B	1,0710
Давление, бар	1,00	Н, кал	-3813362	pe	18,1407
Масса, кг	2,014	S, кал/К	2617,176	pH	2,4604
Объем мультисистемы, см ³	885374,812	U, кал	-3786163	Ионная сила	0,1659
Плотность мультисистемы, г/см ³	0,002275	Ср, кал	1229,99	TDS, mg/kgH ₂ O	10065,1370131

Таблица 6-2

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)			
Водный раствор	986,28958	5,46759e+01	991,8262	1,00561e+00	49,23314			
Газ	884388,55131	3,56761e+01	1018,7862	1,15197e-03	50,57140			
Твердая фаза								
Алуноген	0,00000	7,31581e-04	0,4875	0,00000e+00	0,02420			
Гипс	0,00000	1,66439e-02	2,8656	0,00000e+00	0,14225			
Монтмориллонит	0,02743	2,09424e-04	0,0784	2,85672e+00	0,00389			
Бианкит	0,00000	8,66600e-06	0,0023	0,00000e+00	0,00012			
Фиброферрит	0,00000	1,94509e-03	0,5038	0,00000e+00	0,02501			

Таблица 6-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. Активности	Log коэф. Активности
Водный раство	op						
Ag^+	7067	6,4162e-09	6,300000250339e-09	6,9210e-04	-8,193	0,7320	-0,135
Al(OH) ⁺²	-189805	2,9393e-18	2,886043586487e-18	1,2930e-13	-17,532	0,3276	-0,485
Al ⁺³	-136479	4,6163e-15	4,532664649015e-15	1,2455e-10	-14,336	0,0735	-1,134
Au ⁺	26959	2,0674e-09	2,029999941411e-09	4,0722e-04	-8,685	0,7198	-0,143
Ba ⁺²	-144214	1,1549e-07	1,13400003334e-07	1,5860e-02	-6,937	0,2958	-0,529
Be ⁺²	-97772	1,0117e-10	9,934222583604e-11	9,1180e-07	-9,995	0,3402	-0,468
CO_2^*	-99088	9,3782e-06	9,208346826096e-06	4,1273e-01	-5,028	1,0326	0,014
CO3-2	-149059	3,9854e-17	3,913215554400e-17	2,3916e-12	-16,400	0,4315	-0,365
$Ca(CO_3)^*$	-285054	5,1221e-17	5,029298827168e-17	5,1265e-12	-16,291	1,0310	0,013
Ca(HCO ₃) ⁺	-288409	2,7928e-11	2,742210851859e-11	2,8234e-06	-10,554	0,7347	-0,134
Ca ⁺²	-135995	4,6845e-03	4,599656502947e-03	1,8775e+02	-2,329	0,3073	-0,512
$CaSO_4^*$	-316238	3,6220e-03	3,556403152470e-03	4,9311e+02	-2,441	1,0357	0,015
Cd^{+2}	-29823	1,7823e-08	1,75000000000e-08	2,0035e-03	-7,749	0,3102	-0,508
Ce ⁺³	-173786	1,6910e-08	1,660405756720e-08	2,3694e-03	-7,772	0,0689	-1,162
CeH ₂ PO ₄ ⁺²	-448112	9,1246e-10	8,959317746685e-10	2,1635e-04	-9,040	0,3166	-0,499
CeHCO ₃ ⁺²	-326200	4,0673e-16	3,993668068548e-16	8,1807e-11	-15,391	0,3044	-0,517
CeOH ⁺²	-227111	4,3065e-15	4,228520206352e-15	6,7665e-10	-14,366	0,2994	-0,524
CeSO ₄ ⁺	-354028	6,1409e-15	6,029664342324e-15	1,4503e-09	-14,212	0,7872	-0,104
Co ⁺²	-24637	9,2679e-09	9,099999562215e-09	5,4618e-04	-8,033	0,3175	-0,498
Cs ⁺	-81330	4,2775e-09	4,199999906122e-09	5,6850e-04	-8,369	0,7074	-0,150
Cu ⁺²	6079	2,9301e-07	2,876996056352e-07	1,8619e-02	-6,533	0,3146	-0,502
Dy ⁺³	-174102	7,3115e-11	7,179070184688e-11	1,1881e-05	-10,136	0,0699	-1,155

					Π	родолжение	габлицы 6-3
DyHCO ₃ ⁺²	-326516	1,0532e-18	1,034157932850e-18	2,3542e-13	-17,977	0,3108	-0,507
DyOH ⁺²	-227428	7,1479e-17	7,018452203605e-17	1,2831e-11	-16,146	0,3054	-0,515
$DySO_4^{+}$	-354345	5,6851e-10	5,582091998048e-10	1,4699e-04	-9,245	0,7973	-0,098
Er ^o ErOH ⁺²	-1/5558	4,/110e-11	4,020238970304e-11	1,0032e 11	-10,327	0,0705	-1,152
ErSO ₄ ⁺	-355801	3.0934e-10	3,037373481603e-10	8.1457e-05	-9.510	0,8035	-0.095
Eu ⁺³	-153186	3.2471e-11	3,188268266120e-11	4.9344e-06	-10.489	0.0696	-1.158
EuOH ⁺²	-206512	2,6851e-17	2,636432260256e-17	4,5370e-12	-16,571	0,3033	-0,518
$EuSO_4^+$	-333429	2,5269e-10	2,481173038832e-10	6,2675e-05	-9,597	0,7924	-0,101
Fe ⁺³	-29580	3,0192e-18	2,964496746329e-18	1,6861e-13	-17,520	0,0718	-1,144
Ga ⁺³	-50637	7,3430e-09	7,21000008345e-09	5,1198e-04	-8,134	0,0741	-1,130
Gd ⁺³	-172506	9,2678e-10	9,099989191875e-10	1,4574e-04	-9,033	0,0689	-1,162
GdHCO ₃ ⁺²	-324920	1,3435e-1/	1,319194305331e-17	2,9325e-12	-16,872	0,3045	-0,516
GdSQ. ⁺	-223831	3 3708e-16	7,555540508005e-10	8 5386e-11	-15,114	0,2990	-0,324
H ₂ AsO ₄ ⁻	-188357	8.9533e-07	8.791109869263e-07	1.2618e-01	-6.048	0.8474	-0.072
H ₂ PO ₄	-274326	9,8861e-04	9,707045763653e-04	9,5883e+01	-3,005	0,8606	-0,065
H ₂ VO ₄	-256931	3,9160e-10	3,845025658263e-10	4,5799e-05	-9,407	0,8454	-0,073
$H_3PO_4^*$	-277681	4,3718e-04	4,292594527847e-04	4,2841e+01	-3,359	1,0002	0,000
HasO ₄ ⁻²	-185002	9,0685e-11	8,904244660049e-11	1,2689e-05	-10,042	0,4197	-0,377
HCO ₃	-152414	1,4888e-09	1,461837448976e-09	9,0842e-05	-8,827	0,8566	-0,067
HNO ₃ ⁺	-29604	3,1864e-16	3,128672650793e-16	2,0078e-11	-15,497	0,9782	-0,010
HPO ₄ ²	-2/09/2	3,5660e-08	3,50142/682250e-08	3,4226e-03	-/,448	0,4274	-0,369
HVO ⁻²	-103397	1,09730-03	1,13+2921019720-05	2,2986e-10	-2,105	0,0435	-0,074
Hg ⁺²	24776	6.6930e-11	6.571737076422e-11	1.3425e-05	-10.174	0.3038	-0.517
Ho ⁺³	-177607	1,8843e-11	1,850164968442e-11	3,1078e-06	-10,725	0,0698	-1,156
HoOH ⁺²	-230931	2,1867e-17	2,147130684853e-17	3,9785e-12	-16,660	0,3045	-0,516
$HoSO_4^+$	-357850	1,2374e-10	1,214983352291e-10	3,2295e-05	-9,907	0,7956	-0,099
K ⁺	-69545	4,4618e-02	4,380980419950e-02	1,7445e+03	-1,350	0,7204	-0,142
KOH*	-122870	1,2442e-08	1,221644811721e-08	6,9805e-04	-7,905	1,0277	0,012
KSO_4^-	-249787	5,8970e-03	5,790183584051e-03	7,9705e+02	-2,229	0,8332	-0,079
La ^H PO ⁺²	-1//8/5	9,0990e-10	9,523901009781e-10	1,54/30-04	-9,013	0,0694	-1,159
LaHCO ₂ ⁺²	-330289	2 7536e-17	2 703748702363e-17	5 5051e-12	-16 560	0.3075	-0,495
LaOH ⁺²	-231201	1.4854e-16	1.458455067968e-16	2.3159e-11	-15,828	0.3022	-0.520
$LaSO_4^+$	-358118	7,5232e-09	7,386968482950e-09	1,7677e-03	-8,124	0,7937	-0,100
Li ⁺	-79045	2,7518e-07	2,701999926567e-07	1,9101e-03	-6,560	0,7587	-0,120
Lu ⁺³	-176306	5,6622e-12	5,559598964850e-12	9,9069e-07	-11,247	0,0713	-1,147
LuOH ⁺²	-229632	9,1293e-18	8,963909999187e-18	1,7526e-12	-17,040	0,3131	-0,504
$LuSO_4^+$	-356550	3,7113e-11	3,644039393013e-11	1,0059e-05	-10,430	0,8142	-0,089
$Mg(UO_3)$	-202521	3,7008e-18	3,033/89009/40e-18 4 113483580388e 12	3,1203e-13	-17,432	0.7692	0,013
Mg(HCO ₃)	-113462	7 1984e-04	7.068062784791e-04	1 7496e+01	-3 143	0.3221	-0.492
Mn ⁺²	-59832	3.9661e-04	3.894235103322e-04	2.1789e+01	-3,402	0,3104	-0.508
MnSO4*	-240075	5,4309e-04	5,332494892405e-04	8,2007e+01	-3,265	1,0310	0,013
MoO4 ⁻²	-213033	5,7033e-10	5,60000265985e-10	9,1217e-05	-9,244	0,4127	-0,384
N_2^*	-153	5,1136e-04	5,020951495187e-04	1,4325e+01	-3,291	0,9802	-0,009
NO ₂ -	-25775	6,6512e-14	6,530711712006e-14	3,0599e-09	-13,177	0,8445	-0,073
NO ₃ No ⁺	-26250	2,8922e-12	2,839819081739e-12	1,/933e-07	-11,539	0,8330	-0,079
NaOH*	-04338	1 8873e-14	+,>,>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	7 5485e-10	-1,297	0,7304	-0,152
Nd ⁺³	-174777	5.8656e-10	5,759356747260e-10	8,4605e-05	-9.232	0.0690	-1.161
NdHCO ₃ ⁺²	-327190	1,1910e-17	1,169463343904e-17	2,4447e-12	-16,924	0,3049	-0,516
NdNO ₃ ⁺²	-201026	1,1960e-09	1,174322835736e-09	2,4667e-04	-8,922	0,3222	-0,492
NdOH ⁺²	-228102	2,9333e-16	2,880134572356e-16	4,7298e-11	-15,533	0,2998	-0,523
NdSO ₄ ⁺	-355019	4,5624e-09	4,479741298271e-09	1,0964e-03	-8,341	0,7866	-0,104
Ni ⁺²	-21645	4,1349e-08	4,059999875692e-08	2,4268e-03	-7,384	0,3204	-0,494
U ₂ PO - ³	-950	2,0049e-04	2,55/69696/409e-04	8,5555e+00	-3,584	0,9728	-0,012
Ph ⁺²	-20/01/	1,79590-17 1 ()814e-06	1,7014550040296-17	2 2407e-01	-10,740	0,1104	-0,934
Pr ⁺³	-176658	7.1574e-10	7.027735425035e-10	1.0085e-04	-9.145	0.0691	-1.161
PrHCO ₃ ⁺²	-329072	1,6491e-17	1,619220549381e-17	3,3299e-12	-16,783	0,3185	-0,497
PrNO ₃ ⁺²	-202908	1,0665e-09	1,047225961188e-09	2,1642e-04	-8,972	0,3229	-0,491
PrOH ⁺²	-229983	2,5528e-16	2,506588158182e-16	4,0313e-11	-15,593	0,3004	-0,522
PrSO ₄ ⁺	-356900	2,6021e-16	2,554993011481e-16	6,1663e-11	-15,585	0,7882	-0,103
Kb ⁺	-77944	5,1330e-08	5,040000200272e-08	4,3870e-03	-7,290	0,7124	-0,147
504 ~ So ⁺³	-180243	4,8451e-02 8,5540a,00	4,/5/341/29430e-02 8 3000008122460.00	4,00440+03	-1,315	0,414/	-0,382
St Sm ⁺³	-132772	1 3805e-10	1 355521333917e-10	2 07580-05	-0,000	0,0709	-1,149
SmHCO ₃ ⁺²	-326546	2,3648e-18	2,321949508420e-18	4,9986e-13	-17.626	0.3061	-0.514
SmOH ⁺²	-227458	9,6655e-17	9,490481014154e-17	1,6177e-11	-16,015	0,3010	-0,521
$SmSO_4^+$	-354375	1,0739e-09	1,054447834039e-09	2,6463e-04	-8,969	0,7885	-0,103

	0	1
• 1	-	
	.)	

Продолжение таблицы 6-3

							P • C • · · · · · · · · · · · · · · ·	
Sn ⁺²	-1738	81	4,3719e-08	4,292730208686e-08	5,1899e-03	-7,359	0,3002	-0,523
Sr ⁺²	-1457	57	2,8588e-08	2,806999951601e-08	2,5049e-03	-7,544	0,3029	-0,519
Tb ⁺³	-1757	94	1.6263e-11	1.596866094830e-11	2.5846e-06	-10.789	0.0697	-1.156
TbOH ⁺²	-2291	20	1.5902e-17	1.561417518297e-17	2.7977e-12	-16,799	0.3042	-0.517
ThSO. ⁺	-3560	37	1 2632e-10	1 240313298665e-10	3 2210e-05	-9 899	0.7958	-0.099
T1+	-2083	30	3 56/6e-10	3 /19996252707e-10	7 2853e-05	-9.448	0.7104	-0.149
T1+3	-200.	50	3 73670 16	3,4999902527076-10	7,20550-05	15 428	0.0684	-0,145
11 Tm ⁺³	1755	66	4 65220 11	4 5680270876702 11	7,05756-11	10 222	0,0084	-1,105
Tm TmNO ⁺²	-1755	15	2,4750a 11	2 421066019702 11	5 7178- 06	-10,552	0,0704	-1,132
$TIIINO_3$ $T_{\rm eff}OU^{\pm 2}$	-2018	01	2,47396-11	2,4310000187938-11	3,/1/80-00	-10,000	0,3330	-0,473
ImOH ¹	-2288	91	0,3025e-17	0,247209418522e-17	1,18516-11	-10,190	0,3082	-0,511
V0 ¹²	-1250	57	1,0861e-13	1,066468948665e-13	7,2707e-09	-12,964	0,3213	-0,493
VO ₂ +	-1502	.80	6,1632e-08	6,051538917454e-08	5,1117e-03	-7,210	0,7825	-0,107
WO_{4}^{-2}	-2319	15	1,0694e-09	1,049999976531e-09	2,6504e-04	-8,971	0,4096	-0,388
Y ⁺³	-1766	93	4,9904e-09	4,90000020862e-09	4,4367e-04	-8,302	0,0708	-1,150
Yb ⁺³	-1687	00	4,4061e-11	4,326276055567e-11	7,6243e-06	-10,356	0,0702	-1,153
YbNO3 ⁺²	-1949	50	2,3504e-11	2,307794944982e-11	5,5244e-06	-10,629	0,3332	-0,477
YbOH ⁺²	-2220	25	7,1389e-17	7,009627210750e-17	1,3567e-11	-16,146	0,3070	-0,513
YbSO4 ⁺	-3489	43	2,8889e-10	2,836592112031e-10	7,7742e-05	-9,539	0,8016	-0,096
BeOH ⁺	-1510	98	7.7409e-09	7.600657732440e-09	2.0141e-04	-8.111	0.7973	-0.098
CoOH ⁺	-7796	52	1.0592e-16	1.039988311802e-16	8.0434e-12	-15.975	0.7823	-0.107
Cr+ ³	-6154	54	1 4090e-08	1 383444683171e-08	7 3261e-04	-7 851	0.0737	-1 132
$Cr_2 O_2^{-2}$.27//	16	1 1507 08	1 1208200175620 00	2 /853 03	_7 030	0 3524	-0.453
Cr_2O_7	-3244	25	2 2061 - 14	2.2642672204522.14	1 5691 - 00	12 627	0,3324	-0,433
CrO -2	-1113	23	2,50010-14	2,2043072200320-14	2,2440a.04	-13,037	0,8137	-0,090
CrO_4^-	-18/1	94	2,02086-09	1,9842289775256-09	2,3440e-04	-8,094	0,4055	-0,392
CrOH 2	-1148	/9	8,6450e-11	8,488403031257e-11	5,96536-06	-10,063	0,3324	-0,478
CuO	-4389	92	1,0128e-17	9,944406035553e-18	8,0562e-13	-16,994	1,1652	0,066
CuOH ⁺	-4724	47	4,1115e-13	4,037008412151e-13	3,3119e-08	-12,386	0,7750	-0,111
FeOH ⁺²	-8290	05	1,2477e-18	1,225054962806e-18	9,0897e-14	-17,904	0,3163	-0,500
HgO^*	-2519	93	1,1020e-12	1,082011937369e-12	2,3868e-07	-11,958	1,0310	0,013
HgOH ⁺	-2855	53	3,2597e-12	3,200620623232e-12	7,0929e-07	-11,487	0,7335	-0,135
NiOH ⁺	-7493	71	7,6211e-17	7,483107894616e-17	5,7690e-12	-16,118	0,7975	-0,098
PbOH ⁺	-6789	97	7,6184e-11	7,480445512666e-11	1,7081e-05	-10,118	0,7823	-0,107
SnO*	-6735	52	8.0382e-11	7.892584489068e-11	1.0828e-05	-10.095	1.0310	0.013
SnOH ⁺	-7070	07	1.8269e-09	1.793771066894e-09	2.4794e-04	-8.738	0.7291	-0.137
LIO ₂ +2	-2413	84	2 8516e-10	2 800000132994e-10	7 7002e-05	-9 545	0.3148	-0.502
7 r ⁺⁴	_1/03	04	2,0310e 10	1 989866394534e-10	1,7002c 05	-9 693	0,0140	-2.061
Z_{r}	1002	75	2,02000-10	8 011785670720° 00	8 7400 04	-9,095	0,0087	-2,001
ZiO *	-1992	15	2,2471-12	2 20450 (010000-12	0,74906-04	-0,000	1,0210	-0,471
ZrO_2	-2492	45	2,34/10-12	2,3045960100996-12	2,8922e-07	-11,629	1,0310	0,013
Zr(OH)	-2026	29	1,48/6e-08	1,460692343529e-08	1,6101e-03	-7,828	0,0728	-1,138
OH	-5332	26	3,2183e-12	3,160031764870e-12	5,4735e-08	-11,492	0,9122	-0,040
H ⁺	-335	5	4,9472e-03	4,857567018323e-03	4,9865e+00	-2,306	0,7003	-0,155
H ₂ O	-5668	80	5,5510e+01	5,450460646260e+01	1,0000e+00	1,744	1,0000	0,000
Газ								
CO ₂	-9908	88		1,020328017860e-02	0,04	-1,991	1,0000	0,000
N ₂	-153	3		2,755191405161e+01	75,76	1,440	1,0000	0,000
NO	-552	2		9,125093211186e-15	0,00	-14,040	0,9995	-0,000
NO ₂	-102	7		4,963068023025e-09	0,00	-8,304	1,0000	0,000
N ₂ O	-628	3		8.660861774440e-18	0.00	-17.062	0.9946	-0.002
02	-95()		7.175492207139e+00	22.54	0.856	1.0000	0.000
H ₂ O	-5669	80		9 384913863743e-01	1.66	-0.028	1,0000	0,000
Thomas depa	-5000	50		7,5847158857456-01	1,00	-0,020	1,0000	0,000
Алуноген Al ₂ [SO ₄] ₃ ·18H ₂ O	, -1	1833930		7,315811517900e-04	12,38	-3,136	1,0000	0,000
Гипс CaSO ₄ ·2H ₂ O	-	429598		1,664394031716e-02	72,78	-1,779	1,0000	0,000
Монтморицтон	ит _1	2430700	1	2 0942408742340-04	1 99	-3 679	1 0000	0.000
Бианчит	-1	2+30700	1	2,0772700772370-04	1,77	5,017	1,0000	0,000
ZnSO ₄ ·6H ₂ O	-	612591		8,666000213622e-06	0,06	-5,062	1,0000	0,000
Фиороферрит Fe[SO₄](OH)•5H		546549		1,945092928965e-03	12,79	-2,711	1,0000	0,000

Параметры газов

Парциальное Log парциального Log коэф. Газ Log фугитивности Фугитивность давление давления Фугитивности -5,8972e+01 NH₃ 1,0658e-59 -5,8972e+01 1,0658e-59 0,0000e+00 CO_2 2,8600e-04 -3,5436e+00 2,8600e-04 -3,5436e+00 0,0000e+00 CO 5,5780e-49 -4,8254e+01 5,5780e-49 -4,8254e+01 0,0000e+00 C_2H_6 1,0000e-70 -2,6170e+02 1,0000e-70 -2,6170e+02 -3,2681e-03 H_2 6,3252e-42 -4,1199e+01 6,3252e-42 -4,1199e+01 0,0000e+00 -1,2977e+02 -1,2977e+02 H_2S 1,0000e-70 1,0000e-70 0,0000e+00 CH_4 1,0000e-70 -1,4545e+02 1,0000e-70 -1,4545e+02 0,0000e+00

Таблица 6-4

Продолжение таблицы 6-4

N_2	7,7228e-01	-1,1223e-01	7,7228e-01	-1,1223e-01	0,0000e+00
NO	2,5565e-16	-1,5592e+01	2,5578e-16	-1,5592e+01	-2,1019e-04
NO ₂	1,3911e-10	-9,8566e+00	1,3911e-10	-9,8566e+00	0,0000e+00
N ₂ O	2,4146e-19	-1,8617e+01	2,4276e-19	-1,8615e+01	-2,3388e-03
O ₂	2,0113e-01	-6,9653e-01	2,0113e-01	-6,9653e-01	0,0000e+00
C_3H_8	1,0000e-70	-3,7649e+02	1,0000e-70	-3,7649e+02	-7,1244e-03
H ₂ O	2,6306e-02	-1,5799e+00	2,6306e-02	-1,5799e+00	0,0000e+00
S_2	1,0000e-70	-2,0278e+02	1,0000e-70	-2,0278e+02	0,0000e+00
SO ₂	2,8174e-43	-4,2550e+01	2,8174e-43	-4,2550e+01	0,0000e+00

Таблица 7

Результаты физико-химического моделирования ионного состава раствора при объемных соотношениях «вода-порода» 20 г. п. / 1 кг H₂O (модель 4.1)

Таблица 7-1

Резервуар 1					
Температура, °С	25,00	G, кал	-3179940	Eh, B	1,0703
Давление, бар	1,00	Н, кал	-3807721	pe	18,1285
Масса, кг	2,020	S, кал/К	2622,587	pН	2,4744
Объем мультисистемы, см ³	889350,500	U, кал	-3780742	Ионная сила	0,3548
Плотность мультисистемы, г/см ³	0,002271	Ср, кал	1227,76	TDS, mg/kgH2O	13316,3952962

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	985,55437	5,47195e+01	995,7729	1,01037e+00	49,30463
Газ	888364,94746	3,58365e+01	1023,8605	1,15252e-03	50,69536

Таблица 7-3

Таблица 7-2

Характеристики зависимых компонентов равновесного состояния мультисистемы

Функция оТ			Концентрация в	Log	Коэф	Log road	
Состав фазы	Функция g1,	Моляльность	Мольное количество	мг/кг H ₂ O, или	моляльност	Актирности	Активности
	RdJ/ MOJIB			вес. %	И	Активности	Активности
Водный раство	op						
Ag^+	9961	9,1591e-07	9,000000357628e-07	9,8797e-02	-6,038	0,6775	-0,169
Al(OH) ⁺²	-173529	2,9343e-06	2,883305791000e-06	1,2908e-01	-5,532	0,2793	-0,554
$Al(OH)_3^*$	-280142	1,1402e-11	1,120348426048e-11	8,8936e-07	-10,943	1,0783	0,033
Al^{+3}	-120223	6,1031e-03	5,997116683004e-03	1,6467e+02	-2,214	0,0458	-1,339
AlO ₂ ⁻	-220088	1,8848e-16	1,852096279387e-16	1,1117e-11	-15,725	1,1098	0,045
Au ⁺	29841	2,9513e-07	2,899999916190e-07	5,8130e-02	-6,530	0,6536	-0,185
Au ⁺³	79304	3,6998e-17	3,635517672268e-17	7,2873e-12	-16,432	0,0418	-1,379
Ba ⁺²	-141438	1,6486e-05	1,62000004763e-05	2,2640e+00	-4,783	0,2246	-0,649
Be ⁺²	-94841	1,6002e-08	1,572437407411e-08	1,4422e-04	-7,796	0,3028	-0,519
CO_2^*	-99091	9,0012e-06	8,844897998930e-06	3,9614e-01	-5,046	1,0710	0,030
CO3-2	-149024	3,6274e-17	3,564425468169e-17	2,1768e-12	-16,440	0,5034	-0,298
$Ca(CO_3)^*$	-285574	2,0583e-17	2,022504184344e-17	2,0600e-12	-16,687	1,0674	0,028
Ca(HCO ₃) ⁺	-288948	1,2104e-11	1,189333540724e-11	1,2236e-06	-10,917	0,6829	-0,166
Ca ⁺²	-136550	2,3151e-03	2,274909419573e-03	9,2785e+01	-2,635	0,2436	-0,613
CaSO ₄ *	-316492	2,2644e-03	2,225090568533e-03	3,0828e+02	-2,645	1,0779	0,033
Cd ⁺²	-27015	2,5442e-06	2,50000000000e-06	2,8599e-01	-5,594	0,2486	-0,605
Ce ⁺³	-171235	2,1608e-06	2,123277370933e-06	3,0276e-01	-5,665	0,0399	-1,399
CeCO ₃ ⁺	-320259	4,3507e-17	4,275179610824e-17	8,7069e-12	-16,361	0,9144	-0,039
CeH ₂ PO ₄ ⁺²	-444650	3,8338e-07	3,767214318533e-07	9,0900e-02	-6,416	0,2597	-0,586
CeHCO ₃ ⁺²	-323633	3,9485e-14	3,879933217041e-14	7,9417e-09	-13,404	0,2386	-0,622
CeOH ⁺²	-224542	4,2785e-13	4,204218855635e-13	6,7225e-08	-12,369	0,2304	-0,637
CeSO ₄ ⁺	-351177	7,5099e-13	7,379494910337e-13	1,7737e-07	-12,124	0,7914	-0,102
Co ⁺²	-21813	1,3230e-06	1,299999939673e-06	7,7967e-02	-5,878	0,2612	-0,583
Cs ⁺	-78460	6,1061e-07	5,999999865890e-07	8,1152e-02	-6,214	0,6296	-0,201
Cu ⁺²	8896	4,1826e-05	4,109995223515e-05	2,6579e+00	-4,379	0,2561	-0,592
Dy ⁺³	-171455	1,0816e-08	1,062831448318e-08	1,7576e-03	-7,966	0,0412	-1,385
DyHCO ₃ ⁺²	-323852	1,1759e-16	1,155519727873e-16	2,6284e-11	-15,930	0,2496	-0,603
DyOH ⁺²	-224761	8,1786e-15	8,036579201453e-15	1,4681e-09	-14,087	0,2404	-0,619
DySO ₄ ⁺	-351397	8,0775e-08	7,937167348955e-08	2,0885e-02	-7,093	0,8134	-0,090
Er ⁺³	-172906	6,9654e-09	6,844422427854e-09	1,1650e-03	-8,157	0,0419	-1,378
ErHCO3 ⁺²	-325304	8,9052e-17	8,750573100609e-17	2,0329e-11	-16,050	0,2553	-0,593
ErOH ⁺²	-226213	6,2160e-15	6,108004462851e-15	1,1454e-09	-14,206	0,2450	-0,611
ErSO ₄ ⁺	-352848	4,3918e-08	4,315557025829e-08	1,1565e-02	-7,357	0,8269	-0,083
Eu ⁺³	-150543	4,7982e-09	4,714828371333e-09	7,2915e-04	-8,319	0,0408	-1,390
EuHCO3 ⁺²	-302941	4,4247e-17	4,347852595078e-17	9,4238e-12	-16,354	0,2458	-0,609

Продолжение таблицы 7-3

EuOH ⁺²	-203850	3,0758e-15	3,022341953879e-15	5,1972e-10	-14,512	0,2368	-0,626
$EuSO_4^+$	-330485	3,5909e-08	3,528517046243e-08	8,9064e-03	-7,445	0,8025	-0,096
Fe ⁺²	-32820	3,6251e-08	3,562139608005e-08	2,0245e-03	-7,441	0,2589	-0,587
Fe ⁺³	-8088	2,8168e-02	2,767848728217e-02	1,5731e+03	-1,550	0,0437	-1,360
Ga ⁺³	-47972	1,0482e-06	1,03000001192e-06	7,3084e-02	-5,980	0,0466	-1,331
Gd ⁺³	-169890	1,3230e-07	1,299998719888e-07	2,0804e-02	-6,878	0,0400	-1,398
GdCO ₃ ⁺	-318913	7,4956e-18	7,365427569992e-18	1,6285e-12	-17,125	0,9153	-0,038
GdHCO ₃ ⁺²	-322287	1.4569e-15	1.431631055166e-15	3.1800e-10	-14.837	0.2389	-0.622
GdOH ⁺²	-223196	8.5371e-14	8.388856536554e-14	1.4877e-08	-13.069	0.2307	-0.637
GdSO ₄ ⁺	-349832	4.6168e-14	4.536579040310e-14	1.1695e-08	-13.336	0.7890	-0.103
H ₂ AsO ₄ ⁻	-185365	1.2781e-04	1.255872952992e-04	1,8013e+01	-3,893	0.9265	-0.033
H ₂ PO ₄ ⁻	-273415	4 1356e-03	4.063804446382e-03	4.0110e+02	-2 383	0.9576	-0.019
H ₂ VO ₄	-253954	5 4611e-08	5 366281006323e-08	6 3871e-03	-7.263	0.9217	-0.035
H ₂ VO ₄	-276789	1.9699e-03	1 935643834768e-03	1.9304e+02	-2 706	1,0005	0,000
HasQ. ⁻²	-181991	1,90996-09	1,270889691382e-08	1,8098e-03	-7 888	0.4743	-0.324
HCO ₂ :	-152307	1,29340-00	1,2700090915020 00	8.4383e-05	-8 859	0.9481	-0.023
HNO [*]	-29593	3 3302e-16	3 272396380765e-16	2,0985e-11	-15 478	0.9539	-0.020
HPO2	270041	1 48559 07	1 450715384386e 07	1.4258e.02	6.828	0,033	0.307
	192216	1,48556-07	1,4397133843806-07	1,42386-02	-0,828	0,4933	-0,307
HoiO -	-165510	1,10796-02	1,1470021085416-02	9 7510a 06	-1,933	1.0166	-0,038
HSIO ₃	-255655	2 7991 - 12	2 7206724462602 12	2,2227,08	-9,945	0.4627	0,007
Hq ⁺²	-230380	2,70010-13	2,1370/2440300e-13 0 4712277514520 00	1 03340 02	-12,333	0,403/	-0,554
Ho ⁺³	174061	2 78502 00	7,4/122//314338-09	1,73340-03	-0,010	0,2370	1 207
	-1/4901	2,70306-09	2,1303002301470-09	4,37520-04 6 8520- 12	-0,333	0,0410	-1,30/
	-32/339	3,03290-17	2,9002009913240-17	0,65290-12	-10,518	0,2481	-0,000
	-228208	2,49/20-13	2,43303491020700	4,34340-10	-14,003	0,2389	-0,022
П05U4 [°]	-354903	1,/3090-08	1,720341020729e-08	4,38536-03	-1,/00	0,8090	-0,092
K KOU*	-/0641	1,12250-03	1,005470665064-00	3,01940+02	-2,112	0,0348	-0,184
KOH	-123947	1,9595e-09	1,9254/0665964e-09	1,0994e-04	-8,708	1,0601	0,025
KSU ₄	-230383	1,43050-03	1,4115907110616-03	1,941/e+02	-2,843	0,8937	-0,049
La ^{-s}	-1/5241	1,41586-07	1,3912115460156-07	1,90000-02	-0,849	0,0406	-1,392
LaCO ₃	-324265	1,4/88e-18	1,453162922096e-18	2,9416e-13	-17,830	0,9315	-0,031
$LaH_2PO_4^{+2}$	-448656	2,9539e-08	2,9025879963536-08	6,9680e-03	-7,530	0,2655	-0,576
LaHCO ₃ ¹²	-32/638	3,0438e-15	2,9909805542476-15	6,08536-10	-14,517	0,2439	-0,613
LaOH	-228547	1,681/e-14	1,6525056727456-14	2,6220e-09	-13,774	0,2351	-0,629
	-355183	1,0501e-06	1,0318529190966-06	2,46/4e-01	-5,979	0,8054	-0,094
L1'	-/612/	3,9282e-05	3,85999998950966-05	2,72666-01	-4,406	0,7314	-0,136
Lu LuLCO ^{±2}	-1/3043	8,3900e-10	8,2502199440576-10	2,5100-12	-9,070	0,0429	-1,307
	-320043	1,48/40-17	1,4615397805536-17	3,5100e-12	-10,828	0,2646	-0,577
	-220932	1,0392e-13	1,021197001070e-13	1,99516-10	-14,965	0,2330	-0,390
$LuSO_4$ $M_{\alpha}(CO)^*$	-333300	1,2465 a 17	1 2220652060272 17	1,42/40-05	-0,270	0,8307	-0,070
$M_2(UCO_3)$	-201/33	1,5403e-17	1,5250652960576-17	1,15520-12	-10,871	0.7522	0,028
$Mg(HCO_3)$	-203109	2.0520a.02	2,000,000,000,466%,02	7.42042+01	-10,607	0,7352	-0,125
Mp ⁺²	-112/12	2 20062 02	2,99999999940086-03	1,42046+01	2,515	0,2094	-0,370
MnSO *	-36922	2,29908-03	2,2390481880138-03	6,11510+02	-2,038	1.0674	-0,004
MoQ ⁻²	210032	4,04976-03 8 1/1/e 08	8,00000379979e.08	1 3021e 02	7 080	0.4577	0,028
N *	-210032	5 2076e 04	5 117153133244e 04	1,50210-02	3 283	0,4577	-0,339
NO -	-130	6 27262 14	6 2620425052010 14	2,02220,00	-3,285	0,9382	-0,019
NO ₂	-25749	2 8205 2 12	2 7002007414120 12	1,76060,07	-13,190	0,9198	-0,030
No ⁺	-20219	0.15010.02	2,1702001414130-12	2 10572+02	-11,347	0,0731	-0,049
NaHSO *	2011/15	3 05200 11	3 0008225506502 11	2,10376+02	-2,030	1.0674	-0,101
NanSiU3 NaOH*	-321443	3,03396-11	3,0000333300396-11	1 1/63 10	-10,515	0.8439	-0.074
Nd ⁺³	-110070	9 10100 09	8 9429244460762 09	1 31270 02	-14,442	0,0400	-0,074
NdCO. ⁺	-1/2110	3 6775 18	3 613630348200 100-00	7 51130 13	-17 /3/	0.0172	-1,370
NdHCO +2	-321134	1 /0220 15	1 37896/57000-16	2 8805- 10	-1/ 852	0.2305	-0,030
NdNO ⁺²	-324308	1,40356-13	1,370704372220-13	2,00000-10	-14,033	0,2393	-0,021
NdOH ⁺²	-170330	3 5380 1/	3 4765080971592 14	5 70402 00	-0,000	0,2093	-0,509
NdSO.+	-223417	6 70220 07	667/3360837/02 07	1 63220 01	-10,401	0,2311	-0,030
Ni+2	-332032	5.00252.06	5 700008241120 06	2 46420 01	5 220	0,7902	-0,102
NI O [*]	-18813	3,9023e-00	2,7999998241138-00	9.7495a+00	-3,229	0,2004	-0,373
02 DO -3	-940	2,73406-04	2,0803101883018-04	8,74636+00	-5,505	0,9428	-0,020
PO4 Db ⁺²	-200008	0,40230-17	0,3133432383376-17	3 10960+01	-10,0/3	0,1220	-0,912
Dr ⁺³	-11/39	1,54576-04	1,0107100249276-04	1 71760 02	-5,011	0,2224	-0,055
PrCO +	-1/3930	3 5125 2 19	3 451440221402~ 10	7.0571.0.12	-0,914	0,0401	-1,390
PILCO +2	-322939	3,3123e-18 2,0210-15	3,4314493314836-18	/,U3/1e-13	-1/,434	0,9201	-0,030
$PIRCU_3^{-1}$	-320333	2,03190-13	1,9903/12930090-13	4,10280-10	-14,092	0,2029	-0,580
PTINU3 =	-200155	1,52526-07	1,5021950/55956-0/	2,08900-02	-0,8/8	0,2708	-0,50/
PTUH ¹²	-22/242	3,3//40-14	3,318/839/4936e-14	5,5555e-09	-13,4/1	0,2320	-0,635
PISU4 Db ⁺	-3338/8	4,24/40-14	4,1/300/3238330-14	6.2625 - 01	-13,372	0,7933	-0,100
KD SO -2	-/3069	7,32/30-00	7,200002861026-06	0,20250-01	-5,135	0,0393	-0,194
S U ₄	-1/9942	1,21596-02	1,0903801303836-02	0,93190+03	-1,142	0,4025	-0,333
SC *	-130137	1,2212e-00 2,0520a,02	1,17777777/31/80-00	1 8244a+02	-3,913	0,0423	-1,372
3102	-20/ 149	1,1,1,1,1,1,1,1,1,1,1	∠.フフフフフフフク 104 188-U1	1.0.3446±07	-27	1.1208	0.012

Продолжение таблицы 7-3

Sm ⁺³	-171492	2,0422e-08	2,006765693406e-08	3,0707e-03	-7,690	0,0403	-1,395
SmCO ₃ ⁺	-320516	1.1554e-18	1.135305807915e-18	2.4305e-13	-17.937	0.9239	-0.034
SmHCO ₂ ⁺²	-323889	2 6531e-16	2 607037543173e-16	5 6081e-11	-15 576	0.2416	-0.617
SmOH ⁺²	-224798	1,1104e-14	1.091100865247e-14	1 858/e-09	-13 955	0.2331	-0.633
SmSO.+	351/3/	1,11040 14	1,001100003247014	3 7600e 02	6.816	0,2331	0,000
Sm304 Sn ⁺²	14502	6 2770 06	6 1670706674060 06	7.45140.01	-0,810	0,7943	-0,100
Sii Su ⁺²	-14392	4.0800a.06	4,00000020858-06	2,57572,01	-3,202	0,2317	-0,033
SI 771 +3	-142903	4,08098-00	4,00999999308388-00	3,37378-01	-3,589	0,2302	-0,027
	-1/3149	2,40/8e-09	2,36598863/161e-09	3,82666-04	-8,618	0,0410	-1,387
TbHCO ₃ ¹²	-325546	2,3942e-17	2,35264/81/096e-1/	5,2659e-12	-16,621	0,2712	-0,567
TbOH ⁺²	-226455	1,8245e-15	1,792796495553e-15	3,2099e-10	-14,739	0,2384	-0,623
TbSO ₄ +	-353090	1,7946e-08	1,763401049631e-08	4,5759e-03	-7,746	0,8100	-0,092
TI ⁺	-17957	5,0884e-08	4,999992179122e-08	1,0400e-02	-7,293	0,6354	-0,197
Tl ⁺³	31506	7,8454e-14	7,709118876377e-14	1,6035e-08	-13,105	0,0393	-1,405
Tm ⁺³	-172873	7,3726e-09	7,244543795569e-09	1,2455e-03	-8,132	0,0418	-1,378
TmHCO ₃ ⁺²	-325270	9,4329e-17	9,269082107667e-17	2,1691e-11	-16,025	0,2551	-0,593
TmNO ₃ ⁺²	-199093	2,8042e-09	2,755448938165e-09	6,4759e-04	-8,552	0,2930	-0,533
TmOH ⁺²	-226179	7,7828e-15	7,647603685024e-15	1,4471e-09	-14,109	0,2451	-0,611
VO ⁺²	-122140	1,7899e-11	1,758824487101e-11	1,1982e-06	-10,747	0,2680	-0,572
VO_2^+	-147341	8,7991e-06	8,646319375408e-06	7,2980e-01	-5,056	0,7813	-0,107
WO4-2	-228919	1,5265e-07	1,499999966472e-07	3,7834e-02	-6,816	0,4503	-0,347
Y ⁺³	-174059	7,1237e-07	7,00000029802e-07	6,3334e-02	-6,147	0,0423	-1,374
Yb ⁺³	-166040	6,6298e-09	6,514614666378e-09	1,1472e-03	-8,179	0,0416	-1,381
YbCO ₃ ⁺	-315063	1,0251e-18	1,007330751652e-18	2,3891e-13	-17,989	0,9608	-0,017
YbHCO ₃ ⁺²	-318437	9.9257e-17	9.753285327861e-17	2.3232e-11	-16.003	0.2528	-0.597
YbNO ₂ ⁺²	-192259	2.5369e-09	2.492876068370e-09	5.9629e-04	-8.596	0.2896	-0.538
YhOH ⁺²	-219346	8 2964e-15	8 152344304586e-15	1 5767e-09	-14 081	0.2431	-0.614
YhSO4 ⁺	-345981	4 1717e-08	4 099249989679e-08	1,1226e-02	-7 380	0.8227	-0.085
70504 7n ⁺²	-39952	1 2599e-03	1 237997996907e-03	8 2384e+01	-2 900	0,0227	-0.585
$\Delta s \Omega^{-3}$	-178617	1,25770-05	3 980808790671e-17	5,6279e-12	-16 392	0,2001	-0.943
BaOH ⁺	-194745	5.4697e-17	5,500000750071017	8.4416e-12	-16 262	0,6436	-0.191
BeOH ⁺	1/81/8	1 1034e 06	1.08/275610965e.06	2 87110 02	5 957	0,0430	0,000
	-146146	1,10340-00	1,084275019905e-00	0.7712e.10	13 801	0,8134	-0,090
СоОП Си ⁺³	-73120	2.8404a.07	2,7008721262872,07	9,77120-10	-13,091	0,7809	-0,107
Cr	-00030	2,64946-07	2,7998721203876-07	5 7052 01	-0,343	0,0401	-1,550
Cr_2O_7	-521241	2,0415e-00	2,3930090009338-00	3,70356-01	-5,578	0,5203	-0,480
CrO ⁺	-109983	2,9815e-13	2,929691212735e-13	2,0273e-08	-12,526	0,8494	-0,071
CrO_4^2	-18558/	2,79996-08	2,751282417922e-08	3,2477e-03	-7,553	0,4408	-0,356
CrOH ¹²	-113356	1,3031e-09	1,280455512743e-09	8,9918e-05	-8,885	0,2882	-0,540
CuO	-41036	1,0549e-15	1,036566225623e-15	8,3911e-11	-14,977	1,3866	0,142
CuOH ⁺	-44410	4,9967e-11	4,909895958686e-11	4,0250e-06	-10,301	0,7654	-0,116
FeO ⁺	-58021	3,1364e-04	3,081938189746e-04	2,2534e+01	-3,504	0,7853	-0,105
FeO ₂	-107954	2,3247e-15	2,284318816659e-15	2,0421e-10	-14,634	1,0135	0,006
FeOH ⁺	-86126	1,7517e-15	1,721265448314e-15	1,2762e-10	-14,757	0,7809	-0,107
FeOH ⁺²	-61395	8,9182e-03	8,763283277457e-03	6,4973e+02	-2,050	0,2590	-0,587
HgO*	-22358	1,2749e-10	1,252785348549e-10	2,7614e-05	-9,895	1,0674	0,028
HgOH+	-25732	4,1063e-10	4,034941886661e-10	8,9351e-05	-9,387	0,6805	-0,167
NiOH ⁺	-72122	9,1528e-15	8,993852807661e-15	6,9284e-10	-14,038	0,8138	-0,089
PbO*	-61731	3,6693e-17	3,605547713427e-17	8,1898e-12	-16,435	1,0674	0,028
PbOH ⁺	-65105	8,4958e-09	8,348270208593e-09	1,9048e-03	-8,071	0,7809	-0,107
SnO*	-64524	9,1777e-09	9,018258647199e-09	1,2363e-03	-8,037	1,0674	0,028
SnOH ⁺	-67898	2,2694e-07	2,230019308053e-07	3,0800e-02	-6,644	0,6717	-0,173
UO2 ⁺²	-238566	4,0707e-08	4,000000189990e-08	1,0992e-02	-7,390	0,2565	-0,591
ZnO*	-89884	3,1886e-17	3,133260774279e-17	2,5952e-12	-16,496	1,0674	0,028
ZnOH ⁺	-93258	2,0696e-09	2,033610815638e-09	1,7053e-04	-8,684	0,6864	-0,163
Zr^{+4}	-146612	4,9711e-08	4,884786467068e-08	4,5349e-03	-7,304	0,0033	-2,477
ZrO ⁺²	-196544	9,2496e-07	9,088991889807e-07	9,9178e-02	-6,034	0,2993	-0,524
ZrO_2^*	-246477	2,4247e-10	2,382587091722e-10	2,9878e-05	-9,615	1,0674	0,028
Zr(OH) ⁺³	-199918	2,3427e-06	2,302014737707e-06	2,5355e-01	-5,630	0,0449	-1,348
OH-	-53306	2,7951e-12	2,746583459856e-12	4,7538e-08	-11,554	1,0846	0,035
H^+	-3374	5,4432e-03	5,348623111821e-03	5,4864e+00	-2,264	0,6162	-0,210
H ₂ O	-56680	5,5510e+01	5,454587128640e+01	1,0000e+00	1.744	1.0000	0.000
Газ		- ,	.,	,	-,	,	-,
	00001		1 020264272461 - 02	0.04	1.001	1.0000	0.000
<u> </u>	-99091		1,0203045/3401e-02	0,04	-1,991	1,0000	0,000
IN2 NO	-130		2,7331904298230+01	/ 3,38	1,440	1,0000	0,000
NO	-548		9,223898824430e-15 5,050767060655,000	0,00	-14,035	0,9995	-0,000
INU ₂	-1018		5,059/6/968965e-09	0,00	-8,296	1,0000	0,000
N ₂ O	-626		8,/3502420///4e-18	0,00	-17,059	0,9946	-0,002
0 ₂	-940		/,331/27043507e+00	22,91	0,865	1,0000	0,000
H_2O	-56680		9,426731613175e-01	1,66	-0,026	1,0000	0,000

Параметры газов

Г	<u>Ф</u>	T 1	Парциальное	Log парциального	Log коэф.
1 83	Фугитивность	Log фугитивности	давление	давления	Фугитивности
NH ₃	1,0499e-59	-5,8979e+01	1,0499e-59	-5,8979e+01	0,0000e+00
CO ₂	2,8473e-04	-3,5456e+00	2,8473e-04	-3,5456e+00	0,0000e+00
CO	5,5061e-49	-4,8259e+01	5,5061e-49	-4,8259e+01	0,0000e+00
C_2H_6	1,0000e-70	-2,6173e+02	1,0000e-70	-2,6173e+02	-3,2681e-03
H ₂	6,2712e-42	-4,1203e+01	6,2712e-42	-4,1203e+01	0,0000e+00
H_2S	1,0000e-70	-1,2959e+02	1,0000e-70	-1,2959e+02	0,0000e+00
CH ₄	1,0000e-70	-1,4547e+02	1,0000e-70	-1,4547e+02	0,0000e+00
N ₂	7,6882e-01	-1,1417e-01	7,6882e-01	-1,1417e-01	0,0000e+00
NO	2,5726e-16	-1,5590e+01	2,5739e-16	-1,5589e+01	-2,1019e-04
NO ₂	1,4119e-10	-9,8502e+00	1,4119e-10	-9,8502e+00	0,0000e+00
N ₂ O	2,4244e-19	-1,8615e+01	2,4375e-19	-1,8613e+01	-2,3388e-03
O ₂	2,0459e-01	-6,8912e-01	2,0459e-01	-6,8912e-01	0,0000e+00
C ₃ H ₈	1,0000e-70	-3,7654e+02	1,0000e-70	-3,7653e+02	-7,1244e-03
H ₂ O	2,6305e-02	-1,5800e+00	2,6305e-02	-1,5800e+00	0,0000e+00
S ₂	1,0000e-70	-2,0242e+02	1,0000e-70	-2,0242e+02	0,0000e+00
SO ₂	4,3497e-43	-4,2362e+01	4,3497e-43	-4,2362e+01	0,0000e+00

Таблица 8

Результаты физико-химического моделирования ионного состава раствора при объемных соотношениях «вода-порода» 20 г. п. / 1 кг H₂O равновесного с минеральной фазой (модель 4.2)

Таблица 8-1

Резервуар 1					i wonindu o i
Температура, °С	25,00	G, кал	-3199640	Eh, B	1,0701
Давление, бар	1,00	Н, кал	-3826461	pe	18,1251
Масса, кг	2,020	S, кал/К	2621,918	pН	2,4773
Объем мультисистемы, см ³	887082,250	U, кал	-3799367	Ионная сила	0,2096
Плотность мультисистемы, г/см ³	0,002279	Ср, кал	1229,48	TDS, mg/kgH ₂ O	13044,1071446

Таблица 8-2

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)		
Водный раствор	985,97805	5,46813e+01	993,9508	1,00809e+00	49,17149		
Газ	886096,23257	3,57450e+01	1020,9771	1,15222e-03	50,50850		
Твердая фаза							
Алуноген	0,00000	1,42106e-03	0,9470	0,00000e+00	0,04685		
Гипс	0,00000	2,55315e-02	4,3958	0,00000e+00	0,21746		
Монтмориллонит	0,06173	4,71204e-04	0,1763	2,85672e+00	0,00872		
Бианкит	0,00000	8,66600e-06	0,0023	0,00000e+00	0,00012		
Фиброферрит	0,00000	3,65740e-03	0,9472	0,00000e+00	0,04686		

Таблица 8-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	концентрация в мг/кг H ₂ O, или	Log моляльност	Коэф. Активности	Log коэф. Активности
Волный раство	 0.0			Bec. %	И		
Ag ⁺	7054	6,4214e-09	6,300000250340e-09	6,9266e-04	-8,192	0,7150	-0,146
Al(OH) ⁺²	-189982	2,3100e-18	2,266385100283e-18	1,0162e-13	-17,636	0,3087	-0,510
Al ⁺³	-136679	3,8644e-15	3,791325626958e-15	1,0427e-10	-14,413	0,0626	-1,203
Au ⁺	26944	2,0691e-09	2,029999941398e-09	4,0755e-04	-8,684	0,7000	-0,155
Ba ⁺²	-144264	1,1558e-07	1,13400003333e-07	1,5873e-02	-6,937	0,2714	-0,566
Be ⁺²	-97794	1,0236e-10	1,004243877241e-10	9,2248e-07	-9,990	0,3238	-0,490
CO_2^*	-99089	9,2734e-06	9,098085255916e-06	4,0812e-01	-5,033	1,0414	0,018
CO3-2	-149016	4,2293e-17	4,149316687591e-17	2,5379e-12	-16,374	0,4372	-0,359
$Ca(CO_3)^*$	-285146	4,3492e-17	4,267016665587e-17	4,3530e-12	-16,362	1,0393	0,017
Ca(HCO ₃) ⁺	-288523	2,3535e-11	2,308985085029e-11	2,3792e-06	-10,628	0,7184	-0,144
Ca ⁺²	-136130	4,0205e-03	3,944497553761e-03	1,6113e+02	-2,396	0,2848	-0,546
$CaSO_4^*$	-316236	3,5919e-03	3,523967727836e-03	4,8900e+02	-2,445	1,0453	0,019
Cd ⁺²	-29866	1,7837e-08	1,75000000000e-08	2,0051e-03	-7,749	0,2882	-0,540
Ce ⁺³	-173926	1,5915e-08	1,561462112348e-08	2,2300e-03	-7,798	0,0577	-1,238
CeH ₂ PO ₄ ⁺²	-447711	1,9217e-09	1,885368758811e-09	4,5564e-04	-8,716	0,2957	-0,529
CeHCO ₃ ⁺²	-326319	3,5952e-16	3,527235515486e-16	7,2311e-11	-15,444	0,2813	-0,551
CeOH ⁺²	-227229	3,8304e-15	3,757975019147e-15	6,0184e-10	-14,417	0,2756	-0,560
$CeSO_4^+$	-354032	6,1222e-15	6,006512096076e-15	1,4459e-09	-14,213	0,7838	-0,106

Таблица 7-4

Co ⁺²	-24676	9,2753e-09	9,099999564728e-09	5,4662e-04	-8,033	0,2967	-0,528
Cs ⁺	-81349	4,2809e-09	4,199999906122e-09	5,6896e-04	-8,368	0,6847	-0,164
Cu ⁺²	6038	2,9324e-07	2,876996152938e-07	1,8634e-02	-6,533	0,2933	-0,533
Dy ⁺³	-174235	6,9408e-11	6,809601134218e-11	1,1279e-05	-10,159	0,0588	-1,230
DyOH ⁺²	-227538	6,4068e-17	6,285702702213e-17	1,1501e-11	-16,193	0,2825	-0,549
DySO ₄ ⁺	-354341	5,7273e-10	5,619038977514e-10	1,4809e-04	-9,242	0,7965	-0,099
Er ⁺³	-175689	4,4770e-11	4,392417474615e-11	7,4883e-06	-10,349	0,0594	-1,226
ErOH ⁺²	-228992	4.8836e-17	4,791325601390e-17	8.9989e-12	-16.311	0.2857	-0.544
ErSO ₄ ⁺	-355795	3.1197e-10	3.060757688107e-10	8.2150e-05	-9.506	0.8043	-0.095
Eu+3	-153320	3 0814e-11	3 023133772032e-11	4 6826e-06	-10 511	0.0585	-1 233
EuOH ⁺²	-206623	2 4079e-17	2 362368563583e-17	4.0687e-12	-16.618	0.2800	-0.553
EuOn EuSO.+	-333426	2,40790 17	2,30230030303050 17	6 31/3e-05	-9 59/	0,2000	-0.102
EuSO ₄ Eo ⁺³	-333420	2,34300-10	2,4970803100700-10	1,5200a,12	17 562	0,7502	1 216
Le Ca+3	-29733	2,73786-18	7.21000008245 00	5 1220 - 04	-17,303	0,0009	-1,210
Ga C 1+3	-30729	7,54696-09	7,210000085438-09	3,12396-04	-6,134	0,0655	-1,199
Guuco +2	-1/2610	9,2753e-10	9,0999894155336-10	1,45856-04	-9,033	0,0578	-1,238
GdHCO3 ¹²	-325003	1,2628e-17	1,23892/0880/8e-1/	2,7563e-12	-16,899	0,2815	-0,551
GdOH ⁺²	-225913	7,2755e-16	7,13/95841/3/0e-16	1,26/8e-10	-15,138	0,2757	-0,560
$GdSO_4^+$	-352716	3,5772e-16	3,509559538418e-16	9,0615e-11	-15,446	0,7823	-0,107
H_2AsO_4	-188347	8,9604e-07	8,791066742557e-07	1,2628e-01	-6,048	0,8602	-0,065
$H_2PO_4^-$	-273785	2,4169e-03	2,371201066407e-03	2,3441e+02	-2,617	0,8772	-0,057
H_2VO_4	-256890	4,1353e-10	4,057134716553e-10	4,8364e-05	-9,383	0,8576	-0,067
$H_3PO_4^*$	-277162	1,0485e-03	1,028707313915e-03	1,0275e+02	-2,979	1,0003	0,000
HasO ₄ ⁻²	-184970	9,5154e-11	9,335511719466e-11	1,3315e-05	-10,022	0,4221	-0,375
HCO ₃ ⁻	-152393	1,5137e-09	1,485067566764e-09	9,2360e-05	-8,820	0,8720	-0,059
HNO ₃ *	-29600	3,2276e-16	3,166574677361e-16	2,0338e-11	-15,491	0,9725	-0,012
HPO ₄ -2	-270408	9,1333e-08	8,960651716625e-08	8,7661e-03	-7,039	0,4320	-0,364
HSO ₄ -	-183484	9,4273e-03	9,249060466819e-03	9,1512e+02	-2,026	0,8550	-0,068
HVO ₄ -2	-253512	2,1996e-15	2,158035751033e-15	2,5504e-10	-14,658	0,4165	-0,380
Hg ⁺²	24730	6,7077e-11	6,580897104584e-11	1,3455e-05	-10,173	0,2806	-0,552
Ho ⁺³	-177739	1.7903e-11	1,756465820703e-11	2.9528e-06	-10.747	0.0587	-1.231
HoOH ⁺²	-231043	1.9559e-17	1.918927916937e-17	3.5585e-12	-16,709	0.2815	-0.551
HoSO4 ⁺	-357845	1.2479e-10	1,224353290184e-10	3,2570e-05	-9.904	0.7944	-0.100
K ⁺	-69405	5,7989e-02	5,689290587776e-02	2.2673e+03	-1.237	0,7008	-0.154
KOH*	-122709	1.6208e-08	1 590202022835e-08	9.0938e-04	-7 790	1.0351	0.015
KSO	-249512	9.2825e-03	9 1070782202020e_03	1.2546e±03	-2.032	0.8421	-0.075
L a ⁺³	178013	9,20230-03	8 975235977388 10	1,23400103	0.030	0.0583	1 235
La LaUDO ⁺²	-176013	9,14026-10	0,9732339773886-10	2.0725 - 05	-9,039	0,0385	-1,233
LaH_2PO_4	-431/9/	1,5025e-10	1,2778991010838-10	3,07236-03	-9,003	0,2996	-0,325
LaHCO ₃ ¹⁻	-330406	2,43/66-1/	2,3914939921916-17	4,8/32e-12	-10,013	0,2849	-0,545
LaOH	-231316	1,3233e-16	1,298320564839e-16	2,0632e-11	-15,878	0,2788	-0,555
	-358119	7,5168e-09	7,374686150579e-09	1,7662e-03	-8,124	0,7919	-0,101
Li	-79052	2,7541e-07	2,701999926567e-07	1,9116e-03	-6,560	0,7481	-0,126
Lu ⁺³	-176435	5,3825e-12	5,280/8500/60/e-12	9,4176e-07	-11,269	0,0603	-1,220
LuOH ⁺²	-229739	8,1810e-18	8,026366671130e-18	1,5705e-12	-17,087	0,2916	-0,535
LuSO ₄ ⁺	-356541	3,7427e-11	3,671920883821e-11	1,0144e-05	-10,427	0,8179	-0,087
$Mg(CO_3)^*$	-262072	7,8222e-18	7,674375067104e-18	6,5953e-13	-17,107	1,0393	0,017
$Mg(HCO_3)^+$	-265450	8,6828e-12	8,518657905654e-12	7,4083e-07	-11,061	0,7612	-0,119
Mg ⁺²	-113057	1,5190e-03	1,490314127316e-03	3,6920e+01	-2,818	0,3022	-0,520
Mn ⁺²	-59557	6,7841e-04	6,655896538821e-04	3,7271e+01	-3,169	0,2883	-0,540
MnSO ₄ *	-239663	1,0774e-03	1,057083345691e-03	1,6270e+02	-2,968	1,0393	0,017
MoO ₄ -2	-213031	5,7079e-10	5,60000265986e-10	9,1291e-05	-9,244	0,4133	-0,384
N_2^*	-154	5,1259e-04	5,029053938747e-04	1,4360e+01	-3,290	0,9751	-0,011
NO ₂ -	-25750	6,8354e-14	6,706170394593e-14	3,1446e-09	-13,165	0,8566	-0,067
NO ₃ -	-26222	2,9943e-12	2,937685703486e-12	1,8566e-07	-11,524	0,8418	-0,075
Na ⁺	-64380	6,7272e-02	6,5999999999999999999999999999999999999	1,5466e+03	-1,172	0,7229	-0,141
NaOH*	-117684	2,6076e-14	2,558300834071e-14	1,0430e-09	-13,584	0,9046	-0,044
Nd ⁺³	-174898	5,6924e-10	5,584813354145e-10	8,2107e-05	-9,245	0,0578	-1,238
NdHCO ₃ ⁺²	-327291	1,0856e-17	1,065038488640e-17	2,2282e-12	-16,964	0,2819	-0,550
NdNO3 ⁺²	-201121	1,0861e-09	1,065570075906e-09	2,2400e-04	-8,964	0,3023	-0,520
NdOH ⁺²	-228202	2,6904e-16	2,639503639136e-16	4,3381e-11	-15,570	0,2761	-0,559
$NdSO_4^+$	-355004	4,6947e-09	4,605948422521e-09	1,1282e-03	-8,328	0,7831	-0,106
Ni ⁺²	-21683	4,1382e-08	4,059999875891e-08	2,4287e-03	-7,383	0,3002	-0,523
0_2^*	-946	2,6411e-04	2,591220496172e-04	8,4513e+00	-3,578	0,9658	-0,015
PO ₄ -3	-267030	5.0144e-17	4,919574939509e-17	4,7622e-12	-16.300	0.1120	-0.951
Pb ⁺²	-14622	1.0823e-06	1.061828425892e-06	2.2425e-01	-5.966	0.2698	-0.569
Pr ⁺³	-176738	7.4487e-10	7.307939519885e-10	1.0496e-04	-9 128	0.0579	-1 237
PrHCO ₂ +2	_329131	1 5937e-17	1 5636098845650-17	3 21826-12	-16 798	0 2979	-0 526
PrNO- ⁺²	_202060	1,0388-00	1 019205530508- 00	2 10700-04	_8 082	0 3031	_0 518
PrOH ⁺²	_230042	2 5102 16	2 462722123303900-09	3 9630-11	-15 600	0.2766	-0 558
DrSO.+	-230042	2,51020-10	2,702/221233400-10	6 8005 - 11	15 542	0,2700	0.105
Ph ⁺	-330044	2,009/0-10 5 1271 - 00	2,0134904002040-10	4 2006 - 02	-13,342	0,7030	-0,105
KU 50-2	-//901	3,13/1e-08	5,040002002/10-08	4,39000-03	-/,289	0,0909	-0,101
SU4 ~	-180106	6,0750e-02	5,960202210941e-02	5,8359e+03	-1,216	0,4159	-0,381
5C	-1528/1	8,20186-09	8,399999812249e-09	3,8491e-04	-8,06/	0,0399	-1,223

Продолжение та	аблицы	8-3
----------------	--------	-----

Sm ⁺³	-174266	1,3108e-10	1,285995072138e-10	1,9709e-05	-9,882	0,0580	-1,236
SmHCO3 ⁺²	-326659	2,1083e-18	2,068464764934e-18	4,4565e-13	-17,676	0,2834	-0,548
SmOH ⁺²	-227570	8,6722e-17	8,508247502623e-17	1,4514e-11	-16,062	0,2774	-0,557
$SmSO_4^+$	-354372	1,0818e-09	1,061400470295e-09	2,6659e-04	-8,966	0,7854	-0,105
Sn ⁺²	-17428	4,3791e-08	4,296338370443e-08	5,1984e-03	-7,359	0,2765	-0,558
Sr ⁺²	-145804	2,8611e-08	2,806999951601e-08	2,5069e-03	-7,543	0,2796	-0,553
Tb ⁺³	-175927	1,5440e-11	1,514851675198e-11	2,4539e-06	-10,811	0,0586	-1,232
TbOH ⁺²	-229231	1,4273e-17	1,400324501220e-17	2,5111e-12	-16,845	0,2811	-0,551
TbSO4 ⁺	-356033	1,2726e-10	1,248514756999e-10	3,2449e-05	-9,895	0,7946	-0,100
Tl^+	-20848	3,5674e-10	3,499995967891e-10	7,2912e-05	-9,448	0,6884	-0,162
Tl ⁺³	28605	4,0301e-16	3,953877997169e-16	8,2367e-11	-15,395	0,0572	-1,242
Tm ⁺³	-175652	4,7708e-11	4,680582531241e-11	8,0594e-06	-10,321	0,0594	-1,226
TmNO ₃ ⁺²	-201874	2,3641e-11	2,319411687330e-11	5,4596e-06	-10,626	0,3176	-0,498
TmOH ⁺²	-228955	6,1547e-17	6,038369127286e-17	1,1444e-11	-16,211	0,2858	-0,544
VO ⁺²	-125083	1,1073e-13	1,086397657309e-13	7,4126e-09	-12,956	0,3013	-0,521
VO_2^+	-150283	6,1660e-08	6,049417606433e-08	5,1141e-03	-7,210	0,7778	-0,109
WO4-2	-231914	1,0702e-09	1,049999976531e-09	2,6525e-04	-8,971	0,4093	-0,388
Y ⁺³	-176793	4,9944e-09	4,90000020861e-09	4,4403e-04	-8,302	0,0597	-1,224
Yb ⁺³	-168827	4,2176e-11	4,137898326390e-11	7,2982e-06	-10,375	0,0592	-1,228
YbNO3 ⁺²	-195049	2,0973e-11	2,057669239358e-11	4,9296e-06	-10,678	0,3154	-0,501
YbOH ⁺²	-222130	6,4495e-17	6,327557074462e-17	1,2257e-11	-16,190	0,2844	-0,546
YbSO4 ⁺	-348933	2,9359e-10	2,880442524629e-10	7,9007e-05	-9,532	0,8019	-0,096
BeOH ⁺	-151098	7,7460e-09	7,599575570551e-09	2,0155e-04	-8,111	0,7965	-0,099
CoOH ⁺	-77979	1,0344e-16	1,014863980695e-16	7,8554e-12	-15,985	0,7776	-0,109
Cr ⁺³	-61656	1,3895e-08	1,363199766498e-08	7,2247e-04	-7,857	0,0629	-1,201
Cr ₂ O ₇ -2	-324435	1,1598e-08	1,137912906469e-08	2,5051e-03	-7,936	0,3386	-0,470
CrO ⁺	-111582	2,0830e-14	2,043645506759e-14	1,4164e-09	-13,681	0,8172	-0,088
CrO ₄ -2	-187181	2,0706e-09	2,031439045591e-09	2,4017e-04	-8,684	0,4043	-0,393
CrOH ⁺²	-114959	7,9794e-11	7,828555805356e-11	5,5060e-06	-10,098	0,3145	-0,502
CuO*	-43888	9,7896e-18	9,604580960768e-18	7,7872e-13	-17,009	1,2130	0,084
CuOH ⁺	-47265	4,0163e-13	3,940425561491e-13	3,2353e-08	-12,396	0,7684	-0,114
FeOH ⁺²	-83039	1,0658e-18	1,045609144555e-18	7,7645e-14	-17,972	0,2953	-0,530
HgO^*	-25197	1,0857e-12	1,065144434060e-12	2,3514e-07	-11,964	1,0393	0,017
HgOH ⁺	-28579	3,1861e-12	3,125887844922e-12	6,9329e-07	-11,497	0,7168	-0,145
NiOH ⁺	-74986	7,4241e-17	7,283783011875e-17	5,6199e-12	-16,129	0,7968	-0,099
PbOH ⁺	-67926	7,2959e-11	7,157944803381e-11	1,6358e-05	-10,137	0,7776	-0,109
SnO*	-67354	7,9318e-11	7,781864874802e-11	1,0685e-05	-10,101	1,0393	0,017
SnOH ⁺	-70732	1,7927e-09	1,758796645466e-09	2,4330e-04	-8,746	0,7114	-0,148
UO_2^{+2}	-241425	2,8539e-10	2,800000132993e-10	7,7064e-05	-9,545	0,2936	-0,532
Zr^{+4}	-149407	2,3233e-10	2,279340556569e-10	2,1194e-05	-9,634	0,0064	-2,196
ZrO ⁺²	-199333	7,7739e-09	7,626948325402e-09	8,3354e-04	-8,109	0,3216	-0,493
ZrO_2^*	-249259	2,2733e-12	2,230291732864e-12	2,8012e-07	-11,643	1,0393	0,017
$Zr(OH)^{+3}$	-202710	1,5251e-08	1,496288767769e-08	1,6507e-03	-7,817	0,0619	-1,209
OH-	-53303	3,2247e-12	3,163698029409e-12	5,4843e-08	-11,492	0,9442	-0,025
H^{+}	-3377	4,9281e-03	4,834915236996e-03	4,9672e+00	-2,307	0,6761	-0,170
H ₂ O	-56681	5,5510e+01	5,446074755427e+01	1,0000e+00	1,744	1,0000	0,000
Газ			•				
CO_2	-99089		1,020339041687e-02	0,04	-1,991	1,0000	0,000
N ₂	-154		2,755191324141e+01	75,60	1,440	1,0000	0,000
NO	-550		9,168184947127e-15	0,00	-14,038	0,9995	-0,000
NO ₂	-1023		5,005223656660e-09	0,00	-8,301	1,0000	0,000
N ₂ O	-627		8,693372707406e-18	0,00	-17,061	0,9946	-0,002
O ₂	-946		7,243422575193e+00	22,70	0,860	1,0000	0,000
H ₂ O	-56681		9,394493228405e-01	1,66	-0,027	1,0000	0,000
Твердая фаза			•				
Алуноген Al ₂ [SO ₄] ₃ ·18H ₂ O	-183393	80	1,421057591517e-03	14,64	-2,847	1,0000	0,000
Гипс CaSO ₄ ·2H ₂ O	-42959	8	2,553153469531e-02	67,95	-1,593	1,0000	0,000
Монтмориллони	ит -124307	00	4,712041967157e-04	2,73	-3,327	1,0000	0,000
Бианкит ZnSO4·6H2O	-61259	1	8,666000213622e-06	0,04	-5,062	1,0000	0,000
Фиброферрит Fe[SO ₄](OH)·5H	-54654	9	3,657396590169e-03	14,64	-2,437	1,0000	0,000

Таблица 8-4

Параметры газов

Газ	Футитириости	Log dyrutupuoctu	Парциальное	Log парциального	Log коэф.
1 43	Фугитивность	сод футитивности	давление	давления	Фугитивности
NH ₃	1,0574e-59	-5,8976e+01	1,0574e-59	-5,8976e+01	0,0000e+00
CO ₂	2,8545e-04	-3,5445e+00	2,8545e-04	-3,5445e+00	0,0000e+00
CO	5,5465e-49	-4,8256e+01	5,5465e-49	-4,8256e+01	0,0000e+00

Продолжение таблицы 8-4

C_2H_6	1,0000e-70	-2,6171e+02	1,0000e-70	-2,6171e+02	-3,2681e-03
H_2	6,2958e-42	-4,1201e+01	6,2958e-42	-4,1201e+01	0,0000e+00
H_2S	1,0000e-70	-1,2970e+02	1,0000e-70	-1,2970e+02	0,0000e+00
CH ₄	1,0000e-70	-1,4546e+02	1,0000e-70	-1,4546e+02	0,0000e+00
N ₂	7,7079e-01	-1,1306e-01	7,7079e-01	-1,1306e-01	0,0000e+00
NO	2,5636e-16	-1,5591e+01	2,5649e-16	-1,5591e+01	-2,1019e-04
NO ₂	1,4003e-10	-9,8538e+00	1,4003e-10	-9,8538e+00	0,0000e+00
N ₂ O	2,4190e-19	-1,8616e+01	2,4321e-19	-1,8614e+01	-2,3388e-03
O ₂	2,0264e-01	-6,9327e-01	2,0264e-01	-6,9327e-01	0,0000e+00
C ₃ H ₈	1,0000e-70	-3,7651e+02	1,0000e-70	-3,7651e+02	-7,1244e-03
H ₂ O	2,6282e-02	-1,5803e+00	2,6282e-02	-1,5803e+00	0,0000e+00
S_2	1,0000e-70	-2,0266e+02	1,0000e-70	-2,0266e+02	0,0000e+00
SO ₂	3,2758e-43	-4,2485e+01	3,2758e-43	-4,2485e+01	0,0000e+00

Таблица 9

Результаты физико-химического моделирования ионного состава раствора при объемных соотношениях «вода-порода» 30 г. п. / 1 кг H₂O (модель 5.1)

Таблица 9-1

Резервуар 1					
Температура, °С	25,00	G, кал	-3194221	Eh, B	1,0695
Давление, бар	1,00	Н, кал	-3824049	pe	18,1152
Масса, кг	2,030	S, кал/К	2632,292	pН	2,4899
Объем мультисистемы, см ³	892791,250	U, кал	-3797172	Ионная сила	0,4490
Плотность мультисистемы, г/см ³	0.002274	Ср. кал	1228.91	TDS, mg/kgH ₂ O	17273.0003980

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	987,54564	5,48738e+01	1001,5547	1,01419e+00	49,34216
Газ	891803,68739	3,59752e+01	1028,2607	1,15301e-03	50,65784

Таблица 9-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. Активности	Log коэф. Активности
Водный раство	op			-			
Ag^+	9946	9,1418e-07	9,00000357628e-07	9,8610e-02	-6,039	0,6616	-0,179
$Al(OH)^{+2}$	-173190	5,3027e-06	5,220484965839e-06	2,3326e-01	-5,276	0,2737	-0,563
$Al(OH)_3^*$	-279763	2,1175e-11	2,084698761832e-11	1,6518e-06	-10,674	1,1001	0,041
Al ⁺³	-119904	1,1574e-02	1,139477949419e-02	3,1229e+02	-1,937	0,0413	-1,384
AlO ₂ ⁻	-219688	3,3252e-16	3,273657741288e-16	1,9612e-11	-15,478	1,2354	0,092
Au ⁺	29821	2,9457e-07	2,899999916178e-07	5,8020e-02	-6,531	0,6322	-0,199
Au ⁺³	79247	3,8128e-17	3,753714275423e-17	7,5100e-12	-16,419	0,0368	-1,434
Ba ⁺²	-141485	1,6455e-05	1,62000004763e-05	2,2597e+00	-4,784	0,2076	-0,683
Be ⁺²	-94847	1,5811e-08	1,556622288011e-08	1,4250e-04	-7,801	0,3032	-0,518
CO_2^*	-99093	8,7970e-06	8,660579597131e-06	3,8715e-01	-5,056	1,0907	0,038
CO3-2	-148985	3,3753e-17	3,322917328028e-17	2,0255e-12	-16,472	0,5768	-0,239
$Ca(CO_3)^*$	-285509	2,2545e-17	2,219561513071e-17	2,2565e-12	-16,647	1,0860	0,036
Ca(HCO ₃) ⁺	-288904	1,3313e-11	1,310679960694e-11	1,3459e-06	-10,876	0,6683	-0,175
Ca ⁺²	-136524	2,5591e-03	2,519401626083e-03	1,0256e+02	-2,592	0,2302	-0,638
CaSO ₄ *	-316269	3,2307e-03	3,180598360810e-03	4,3983e+02	-2,491	1,0996	0,041
Cd ⁺²	-27046	2,5394e-06	2,50000000000e-06	2,8545e-01	-5,595	0,2361	-0,627
Ce ⁺³	-171387	1,9195e-06	1,889724582015e-06	2,6895e-01	-5,717	0,0347	-1,459
CeCO ₃ ⁺	-320372	3,3946e-17	3,341959330076e-17	6,7934e-12	-16,469	0,9669	-0,015
CeH ₂ PO ₄ ⁺²	-444389	6,1989e-07	6,102742404252e-07	1,4698e-01	-6,208	0,2496	-0,603
CeHCO ₃ ⁺²	-323767	3,3474e-14	3,295527753825e-14	6,7328e-09	-13,475	0,2243	-0,649
CeOH ⁺²	-224674	3,6752e-13	3,618213478639e-13	5,7746e-08	-12,435	0,2145	-0,669
CeSO ₄ ⁺	-351133	7,9508e-13	7,827489523996e-13	1,8778e-07	-12,100	0,8054	-0,094
Co ⁺²	-21836	1,3205e-06	1,299999939900e-06	7,7820e-02	-5,879	0,2514	-0,600
Cs ⁺	-78486	6,0945e-07	5,999999865890e-07	8,0999e-02	-6,215	0,6030	-0,220
Cu ⁺²	8870	4,1747e-05	4,109995311294e-05	2,6529e+00	-4,379	0,2452	-0,610
Dy ⁺³	-171626	9,2255e-09	9,082389627619e-09	1,4991e-03	-8,035	0,0362	-1,441
DyHCO ₃ ⁺²	-324005	9,5394e-17	9,391436084384e-17	2,1322e-11	-16,020	0,2374	-0,625
DyOH ⁺²	-224912	6,7270e-15	6,622665875497e-15	1,2075e-09	-14,172	0,2263	-0,645
DySO4 ⁺	-351371	8,2192e-08	8,091759978089e-08	2,1252e-02	-7,085	0,8337	-0,079
Er ⁺³	-173073	5,9602e-09	5,867799745232e-09	9,9691e-04	-8,225	0,0369	-1,433

Таблица 9-2

Продолжение таблицы 9-3

ErHCO3 ⁺²	-325452	7,2341e-17	7,121908485408e-17	1,6514e-11	-16,141	0,2443	-0,612
ErOH ⁺²	-226359	5,1247e-15	5,045261465147e-15	9,4432e-10	-14,290	0,2319	-0,635
$ErSO_4^+$	-352818	4,4827e-08	4,413219402014e-08	1,1804e-02	-7,348	0,8513	-0,070
Eu ⁺³	-150716	4,0900e-09	4,026607654271e-09	6,2154e-04	-8,388	0,0357	-1,448
EuHCO ₃ ⁺²	-303096	3,5908e-17	3,535092290635e-17	7,6477e-12	-16,445	0,2328	-0,633
EuOH ⁺²	-204003	2,5305e-15	2,491261878451e-15	4,2759e-10	-14,597	0,2221	-0,653
EuSO ₄ ⁺	-330462	3,6540e-08	3,597339171879e-08	9,0630e-03	-7,437	0,8197	-0,086
Fe ⁺²	-32783	4,0117e-08	3,949476898587e-08	2,2404e-03	-7,397	0,2486	-0,604
Fe ⁺³	-8070	3,2574e-02	3,206869401186e-02	1,8192e+03	-1,487	0,0389	-1,410
Ga ⁺³	-48031	1,0462e-06	1,03000001192e-06	7,2946e-02	-5,980	0,0423	-1,374
Gd ⁺³	-169972	1,3205e-07	1,299998660453e-07	2,0764e-02	-6,879	0,0348	-1,458
GdCO ₃ ⁺	-318957	6,5720e-18	6,470065350597e-18	1,4278e-12	-17,182	0,9681	-0,014
GdHCO ₃ ⁺²	-322352	1,3880e-15	1,366472806124e-15	3,0295e-10	-14,858	0,2246	-0,649
GdOH ⁺²	-223259	8,2408e-14	8,11300/08517/e-14	1,4360e-08	-13,084	0,2148	-0,668
$GdSO_4^+$	-349718	5,4987e-14	5,4133814/4008e-14	1,3929e-08	-13,260	0,8022	-0,096
H ₂ AsO ₄	-185330	1,2757e-04	1,2558/622/444e-04	1,/9/9e+01	-3,894	0,9831	-0,007
H ₂ PO ₄	-273001	7,75876-03	7,638415023784e-03	7,5250e+02	-2,110	1,0250	0,011
H_2VO_4	-253906	5,5815e-08	5,494959181300e-08	6,52/9e-03	-7,253	0,9767	-0,010
H_3PO_4	-2/0390	3,81996-03	5,760665500112e-05	3,74550+02	-2,418	1,0006	0,000
HasO ₄ -	-181930	1,23700-08	1,2381451/38816-08	1,/598e-05	-7,900	0,5349	-0,272
HNO *	-132380	2 42250 16	2 2604621724560 16	2 15660 11	-0,075	0.0420	0,003
HPO -2	-29364	2 7107e 07	2,668630017133e.07	2,13000-11	-13,400	0,9420	-0,020
	-1831/0	2,71076-07 1.4839e-02	2,008030917133e-07	1.4405e±03	-0,307	0,9704	-0,230
HsiO ₂ ⁻	-255437	2 1138e-10	2 080994439975-10	1,6295e-05	-1,029	1 1057	0.044
HVQ4 ⁻²	-250512	2,7891e-13	2,745819596415e-13	3,2338e-08	-12 555	0 5198	-0 284
Ho ⁺²	27537	9 6249e-09	9 475622846630e-09	1 9307e-03	-8 017	0,2231	-0.652
Ho ⁺³	-175132	2.3809e-09	2,343943920459e-09	3.9268e-04	-8.623	0.0360	-1.444
HoHCO ₂ ⁺²	-327512	2.4657e-17	2,427460377345e-17	5.5712e-12	-16.608	0.2355	-0.628
HoOH ⁺²	-228418	2.0585e-15	2.026560441408e-15	3.7451e-10	-14.686	0.2246	-0.649
HoSO ₄ ⁺	-354877	1,7934e-08	1,765605497846e-08	4,6807e-03	-7,746	0,8289	-0,082
K ⁺	-70546	9,3484e-03	9,203446539329e-03	3,6551e+02	-2,029	0,6336	-0,198
KOH*	-123833	2,3380e-09	2,301773987320e-09	1,3118e-04	-8,631	1,0767	0,032
KSO4 ⁻	-250292	2,2312e-03	2,196551158897e-03	3,0157e+02	-2,651	0,9392	-0,027
La ⁺³	-175421	1,1934e-07	1,174925689523e-07	1,6577e-02	-6,923	0,0354	-1,451
LaCO ₃ ⁺	-324407	1,0940e-18	1,077017414524e-18	2,1761e-13	-17,961	0,9899	-0,004
LaH ₂ PO ₄ ⁺²	-448423	4,5240e-08	4,453877448678e-08	1,0672e-02	-7,344	0,2567	-0,591
LaHCO ₃ ⁺²	-327801	2,4446e-15	2,406695968939e-15	4,8873e-10	-14,612	0,2305	-0,637
LaOH ⁺²	-228708	1,3691e-14	1,347836291104e-14	2,1345e-09	-13,864	0,2201	-0,657
$LaSO_4^+$	-355167	1,0543e-06	1,037968613853e-06	2,4773e-01	-5,977	0,8235	-0,084
Li ⁺	-76130	3,9208e-05	3,859999895096e-05	2,7214e-01	-4,407	0,7289	-0,137
Lu ⁺³	-173813	7,1245e-10	7,014020307066e-10	1,2466e-04	-9,147	0,0381	-1,419
LuHCO ₃ ⁺²	-326193	1,1934e-17	1,174928064885e-17	2,8163e-12	-16,923	0,2555	-0,593
LuOH+2	-227100	8,4659e-16	8,334631655681e-16	1,6252e-10	-15,072	0,2422	-0,616
$LuSO_4$	-353553	5,3821e-09	5,298597408972e-09	1,458/e-03	-8,269	0,8824	-0,054
$Mg(CO_3)$	-261335	2,5986e-17	2,558342957534e-17	2,1910e-12	-16,585	1,0860	0,036
$Mg(HCO_3)^2$	-204729	2,94030-11	2,900659075917e-11	2,51396-00	-10,551	0,7505	-0,121
Mp ⁺²	-112330	2 75820 02	27155576640170.02	1,40720+02	-2,237	0,2014	-0,585
MnSO.*	-30044	2,7363E-03	6.223112271010e.03	0.5455e+02	2,539	1,0860	-0,020
MnSO ₄ MoQ. ⁻²	-200067	8 1260e-08	8,00000379979e-08	<u>9,54556+02</u> 1 2997e-02	-2,199	0.5114	-0.291
N ₂ *	-158	5 2418e-04	5 160494706641e-04	1 4684e+01	-3 281	0.9474	-0.023
NO ₂ ⁻	-25724	6.2789e-14	6.181521295406e-14	2.8886e-09	-13.202	0.9742	-0.011
NO ₃ ⁻	-26189	2.8398e-12	2.795760945901e-12	1.7608e-07	-11.547	0.9385	-0.028
Na ⁺	-65461	1.1580e-02	1.139999992570e-02	2.6621e+02	-1.936	0.6772	-0.169
NaHSiO ₃ *	-320898	7.5468e-11	7.429744054341e-11	7.5529e-06	-10.122	1.0860	0.036
NaOH*	-118748	4,8541e-15	4,778867204261e-15	1,9415e-10	-14,314	0,8066	-0,093
Nd ⁺³	-172269	7,9937e-08	7,869738705514e-08	1,1530e-02	-7,097	0,0349	-1,458
NdCO ₃ ⁺	-321254	2,8366e-18	2,792624836690e-18	5,7938e-13	-17,547	0,9707	-0,013
NdHCO3 ⁺²	-324648	1,1760e-15	1,157759187302e-15	2,4138e-10	-14,930	0,2253	-0,647
NdNO ₃ ⁺²	-198458	1,1232e-07	1,105800711823e-07	2,3166e-02	-6,950	0,2616	-0,582
NdOH ⁺²	-225555	3,0044e-14	2,957850114959e-14	4,8446e-09	-13,522	0,2154	-0,667
NdSO ₄ ⁺	-352014	7,1176e-07	7,007225265208e-07	1,7104e-01	-6,148	0,8038	-0,095
Ni ⁺²	-18836	5,8914e-06	5,799999824326e-06	3,4576e-01	-5,230	0,2577	-0,589
O2"	-932	2,8150e-04	2,771364990270e-04	9,0077e+00	-3,551	0,9282	-0,032
PO ₄ -3	-266213	1,5545e-16	1,530387737392e-16	1,4763e-11	-15,808	0,1436	-0,843
Pb ⁺²	-11847	1,5408e-04	1,516921452205e-04	3,1926e+01	-3,812	0,2051	-0,688
Pr ⁻³	-174000	1,2537e-07	1,234249360475e-07	1,7666e-02	-6,902	0,0350	-1,456
$PrCO_3^{+2}$	-322985	3,1723e-18	5,123080433262e-18	6,5/36e-13	-17,499	0,9745	-0,011
PTHCU3 ⁺²	-326380	1,9465e-15	1,910328355/32e-15	3,9305e-10	-14,/11	0,2535	-0,596
$PrOH^{+2}$	-200189	1,205/e-0/ 3 3578e 1/	3 30572110////20 1/	2,00080-02 5 3025e-00	-0,891	0.2031	-0,380
1 1 1 1 1 1 1 1	-441400				= 1.7.4 / 4	V.410H	-11.00.1

					11	родолжение	iuomign / .
$PrSO_4^+$	-353745	5,2101e-14	5,129322652411e-14	1,2346e-08	-13,283	0,8080	-0,093
Rb ⁺	-75093	7,3134e-06	7,20000286102e-06	6,2506e-01	-5,136	0,6147	-0,211
SO4-2	-179745	8,9679e-02	8,828806907640e-02	8,6149e+03	-1,047	0,5181	-0,286
Sc ⁺³	-150210	1,2189e-06	1,199999973178e-06	5,4797e-02	-5,914	0,0376	-1,425
SiO ₂ *	-202150	5,7898e-03	5,699999717603e-03	3,4788e+02	-2,237	1,1631	0,066
Sm ⁺³	-171667	1,7415e-08	1,714521362985e-08	2,6186e-03	-7,759	0,0351	-1,454
SmHCO3 ⁺²	-324046	2,1571e-16	2,123659763016e-16	4,5596e-11	-15,666	0,2278	-0,642
SmOH ⁺²	-224953	9,1499e-15	9,008040501063e-15	1,5314e-09	-14,039	0,2176	-0,662
$SmSO_4^+$	-351412	1,5526e-07	1,528547863876e-07	3,8260e-02	-6,809	0,8091	-0,092
Sn ⁺²	-14633	6,2675e-06	6,170272199162e-06	7,4401e-01	-5,203	0,2161	-0,665
Sr ⁺²	-143004	4,0732e-06	4,009999930859e-06	3,5689e-01	-5,390	0,2214	-0,655
Tb ⁺³	-173320	2,0543e-09	2,022467336354e-09	3,2648e-04	-8,687	0,0359	-1,445
TbHCO3 ⁺²	-325700	1,8970e-17	1,867589444021e-17	4,1723e-12	-16,722	0,2637	-0,579
TbOH ⁺²	-226607	1,5017e-15	1,478393161001e-15	2,6419e-10	-14,823	0,2240	-0,650
TbSO4 ⁺	-353066	1,8261e-08	1,797753211641e-08	4,6563e-03	-7,738	0,8294	-0,081
Tl^+	-17982	5,0787e-08	4,999991857956e-08	1,0380e-02	-7,294	0,6099	-0,215
T1 ⁺³	31445	8,1568e-14	8,030285238840e-14	1,6671e-08	-13,088	0,0341	-1,468
Tm ⁺³	-172937	7,4967e-09	7,380484825516e-09	1,2665e-03	-8,125	0,0369	-1,433
TmHCO ₃ ⁺²	-325320	9,0582e-17	8,917747761759e-17	2,0829e-11	-16,043	0,2440	-0,613
TmNO ₃ ⁺²	-199128	2,6608e-09	2,619508094857e-09	6,1448e-04	-8,575	0,2908	-0,536
TmOH ⁺²	-226227	7,5822e-15	7,464584298474e-15	1,4098e-09	-14,120	0,2320	-0,634
VO ⁺²	-122155	1,7995e-11	1,771597265590e-11	1,2046e-06	-10,745	0,2597	-0,585
VO_2^+	-147334	8,7812e-06	8,645032465316e-06	7,2832e-01	-5,056	0,7924	-0,101
WO ₄ -2	-228857	1,5236e-07	1,499999966472e-07	3,7763e-02	-6,817	0,5008	-0,300
Y ⁺³	-174133	7,1103e-07	7,00000029802e-07	6,3214e-02	-6,148	0,0373	-1,428
Yb ⁺³	-166201	5,7327e-09	5,643774270832e-09	9,9198e-04	-8,242	0,0366	-1,437
YbHCO ₃ ⁺²	-318581	8,1534e-17	8,026936380278e-17	1,9084e-11	-16,089	0,2413	-0,617
YbNO3 ⁺²	-192391	2,0520e-09	2,020176154914e-09	4,8231e-04	-8,688	0,2864	-0,543
YbOH ⁺²	-219487	6,9128e-15	6,805626454902e-15	1,3138e-09	-14,160	0,2296	-0,639
YbSO4 ⁺	-345946	4,3003e-08	4,233604157001e-08	1,1572e-02	-7,367	0,8458	-0,073
Zn ⁺²	-39976	1,2575e-03	1,237997966349e-03	8,2228e+01	-2,900	0,2501	-0,602
AsO ₄ -3	-178541	4,0011e-17	3,939091437105e-17	5,5583e-12	-16,398	0,1310	-0,883
BaOH ⁺	-194771	5,4214e-17	5,337364612788e-17	8,3671e-12	-16,266	0,6199	-0,208
BeOH ⁺	-148133	1,1015e-06	1,084433771159e-06	2,8661e-02	-5,958	0,8337	-0,079
CoOH ⁺	-75123	1,2611e-14	1,241581747477e-14	9,5772e-10	-13,899	0,7918	-0,101
Cr ⁺³	-60131	2,7449e-07	2,702294602464e-07	1,4272e-02	-6,561	0,0417	-1,380
$Cr_2O_7^{-2}$	-321227	2,6422e-06	2,601270163957e-06	5,7069e-01	-5,578	0,3335	-0,477
CrO ⁺	-110023	2,6831e-13	2,641535379297e-13	1,8244e-08	-12,571	0,8807	-0,055
CrO ₄ -2	-185560	2,6470e-08	2,605995970377e-08	3,0704e-03	-7,577	0,4876	-0,312
CrOH ⁺²	-113418	1,1885e-09	1,170107190648e-09	8,2013e-05	-8,925	0,2848	-0,546
CuO*	-41022	9,9020e-16	9,748467101507e-16	7,8766e-11	-15,004	1,5124	0,180
CuOH ⁺	-44416	4,8981e-11	4,822122612038e-11	3,9456e-06	-10,310	0,7719	-0,112
FeO ⁺	-57962	3,4093e-04	3,356396282397e-04	2,4494e+01	-3,467	0,7975	-0,098
FeO ₂ -	-107854	2,5294e-15	2,490180327054e-15	2,2220e-10	-14,597	1,1013	0,042
FeOH ⁺	-86069	1,8992e-15	1,869705729784e-15	1,3836e-10	-14,721	0,7918	-0,101
FeOH ⁺²	-61356	9,8991e-03	9,745626865124e-03	7,2120e+02	-2,004	0,2488	-0,604
HgO^*	-22356	1,2569e-10	1,237457623129e-10	2,7224e-05	-9,901	1,0860	0,036
HgOH ⁺	-25750	4,0694e-10	4,006318660319e-10	8,8550e-05	-9,390	0,6652	-0,177
NiOH ⁺	-72122	8,9196e-15	8,781298480775e-15	6,7519e-10	-14,050	0,8343	-0,079
PbO*	-61739	3,5560e-17	3,500866216202e-17	7,9370e-12	-16,449	1,0860	0,036
PbOH ⁺	-65134	7,9793e-09	7,855542447035e-09	1,7890e-03	-8,098	0,7918	-0,101
SnO*	-64525	8,9955e-09	8,856013999774e-09	1,2118e-03	-8,046	1,0860	0,036
SnOH ⁺	-67920	2,2435e-07	2,208716437869e-07	3,0448e-02	-6,649	0,6545	-0,184
UO2 ⁺²	-238592	4,0630e-08	4,00000189990e-08	1,0971e-02	-7,391	0,2457	-0,610
ZnO*	-89868	3,2214e-17	3,171408915297e-17	2,6218e-12	-16,492	1,0860	0,036
ZnOH ⁺	-93262	2,0967e-09	2,064168611416e-09	1,7276e-04	-8,678	0,6726	-0,172
Zr^{+4}	-146686	5,5787e-08	5,492161267244e-08	5,0891e-03	-7,253	0,0026	-2,582
ZrO ⁺²	-196578	8,7524e-07	8,616684782366e-07	9,3846e-02	-6,058	0,2987	-0,525
ZrO_2^*	-246470	2,4103e-10	2,372913664022e-10	2,9700e-05	-9,618	1,0860	0,036
Zr(OH) ⁺³	-199972	2,3801e-06	2,343172667792e-06	2,5760e-01	-5,623	0,0403	-1,395
OH-	-53286	2,6111e-12	2,570638918027e-12	4,4408e-08	-11,583	1,2001	0,079
H ⁺	-3394	5,5156e-03	5,430070297870e-03	5,5594e+00	-2,258	0,5868	-0,232
H ₂ O	-56681	5,5510e+01	5,464918903307e+01	1,0000e+00	1,744	1,0000	0,000
Газ							
CO ₂	-99093		1,020382808405e-02	0,04	-1,991	1,0000	0,000
N ₂	-158		2,755189997743e+01	75,06	1,440	1,0000	0,000
NO	-545		9,309024630534e-15	0,00	-14,031	0,9995	-0,000
NO ₂	-1011		5,143645361945e-09	0,00	-8,289	1,0000	0,000
N ₂ O	-624		8,798624945853e-18	0,00	-17,056	0,9946	-0,002
O ₂	-932		7,467679302050e+00	23,24	0,873	1,0000	0,000
H_2O	-56681	1	9,454432897955e-01	1,66	-0,024	1,0000	0,000

Продолжение таблицы 9-3

Параметры газов

Fan	Φι πι πιστρικο απι	Log dy my my py comy	Парциальное	Log парциального	Log коэф.
1 83	Фугитивность	Log фугитивности	давление	давления	Фугитивности
NH ₃	1,0351e-59	-5,8985e+01	1,0351e-59	-5,8985e+01	0,0000e+00
CO ₂	2,8363e-04	-3,5472e+00	2,8363e-04	-3,5472e+00	0,0000e+00
CO	5,4453e-49	-4,8264e+01	5,4453e-49	-4,8264e+01	0,0000e+00
C_2H_6	1,0000e-70	-2,6176e+02	1,0000e-70	-2,6175e+02	-3,2681e-03
H ₂	6,2201e-42	-4,1206e+01	6,2201e-42	-4,1206e+01	0,0000e+00
H_2S	1,0000e-70	-1,2949e+02	1,0000e-70	-1,2949e+02	0,0000e+00
CH ₄	1,0000e-70	-1,4548e+02	1,0000e-70	-1,4548e+02	0,0000e+00
N ₂	7,6586e-01	-1,1585e-01	7,6586e-01	-1,1585e-01	0,0000e+00
NO	2,5864e-16	-1,5587e+01	2,5876e-16	-1,5587e+01	-2,1019e-04
NO ₂	1,4298e-10	-9,8447e+00	1,4298e-10	-9,8447e+00	0,0000e+00
N ₂ O	2,4326e-19	-1,8614e+01	2,4457e-19	-1,8612e+01	-2,3388e-03
O ₂	2,0758e-01	-6,8282e-01	2,0758e-01	-6,8282e-01	0,0000e+00
C_3H_8	1,0000e-70	-3,7657e+02	1,0000e-70	-3,7657e+02	-7,1244e-03
H ₂ O	2,6280e-02	-1,5804e+00	2,6280e-02	-1,5804e+00	0,0000e+00
S ₂	1,0000e-70	-2,0221e+02	1,0000e-70	-2,0221e+02	0,0000e+00
SO ₂	5,6176e-43	-4,2250e+01	5,6176e-43	-4,2250e+01	0,0000e+00

Таблица 10

Результаты физико-химического моделирования ионного состава раствора при объемных соотношениях «вода-порода» 30 г.п. / 1 кг H₂O равновесного с минеральной фазой (модель 5.2)

I GOMING I V I	Таблица	10)-1
----------------	---------	----	-----

Резервуар 1					
Температура, °С	25,00	G, кал	-3218168	Eh, B	1,0702
Давление, бар	1,00	Н, кал	-3844870	pe	18,1272
Масса, кг	2,030	S, кал/К	2629,536	pН	2,4775
Объем мультисистемы, см ³	890218,125	U, кал	-3817972	Ионная сила	0,2680
Плотность мультисистемы, г/см ³	0,002283	Ср, кал	1228,49	TDS, mg/kgH ₂ O	17259,0241611

Таблица 10-2

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	985,04427	5,46595e+01	996,4673	1,01160e+00	49,02869
Газ	889232,92821	3,58715e+01	1024,9957	1,15267e-03	50,43236
Твердая фаза					
Алуноген	0,00000	3,34738e-03	2,2308	0,00000e+00	0,10976
Гипс	0,00000	3,69378e-02	6,3597	0,00000e+00	0,31291
Монтмориллонит	0,10631	8,11518e-04	0,3037	2,85672e+00	0,01494
Бианкит	0,00000	8,66600e-06	0,0023	0,00000e+00	0,00011
Фиброферрит	0,00000	7,94339e-03	2,0573	0,0000e+00	0,10122

Таблица 10-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. Активности	Log коэф. Активности
Водный раство	op						
Ag^+	7041	6,4318e-09	6,300000250340e-09	6,9379e-04	-8,192	0,6973	-0,157
Al(OH) ⁺²	-190208	1,6641e-18	1,630018988937e-18	7,3203e-14	-17,779	0,2925	-0,534
Al ⁺³	-136903	3,0925e-15	3,029091294133e-15	8,3439e-11	-14,510	0,0535	-1,271
Au ⁺	26927	2,0725e-09	2,029999941368e-09	4,0821e-04	-8,684	0,6786	-0,168
Ba ⁺²	-144316	1,1577e-07	1,134000003334e-07	1,5899e-02	-6,936	0,2480	-0,605
Be ⁺²	-97789	1,0749e-10	1,052861048213e-10	9,6871e-07	-9,969	0,3109	-0,507
$\mathrm{CO_2}^*$	-99092	9,1256e-06	8,938619459615e-06	4,0162e-01	-5,040	1,0532	0,023
CO3-2	-149020	4,0205e-17	3,938113168473e-17	2,4127e-12	-16,396	0,4564	-0,341
$Ca(CO_3)^*$	-285302	3,3005e-17	3,232865104708e-17	3,3034e-12	-16,481	1,0505	0,021
$Ca(HCO_3)^+$	-288679	1,8504e-11	1,812510752792e-11	1,8707e-06	-10,733	0,7015	-0,154
Ca ⁺²	-136283	3,3516e-03	3,282880321687e-03	1,3432e+02	-2,475	0,2638	-0,579
CaSO ₄ *	-316235	3,5521e-03	3,479328411048e-03	4,8359e+02	-2,450	1,0583	0,025
Cd ⁺²	-29908	1,7866e-08	1,75000000000e-08	2,0084e-03	-7,748	0,2678	-0,572
Ce ⁺³	-174075	1,4790e-08	1,448729535798e-08	2,0724e-03	-7,830	0,0483	-1,316
CeH ₂ PO ₄ ⁺²	-447470	3,0757e-09	3,012695143972e-09	7,2926e-04	-8,512	0,2768	-0,558
CeHCO ₃ ⁺²	-326471	3,0073e-16	2,945653826340e-16	6,0486e-11	-15,522	0,2597	-0,586
CeOH ⁺²	-227380	3,2340e-15	3,167685223754e-15	5,0813e-10	-14,490	0,2529	-0,597
$CeSO_4^+$	-354027	6,1617e-15	6,035429760329e-15	1,4553e-09	-14,210	0,7841	-0,106

Таблица 9-4

Продолжение таблицы	10-3

Co ⁺²	-24713	9,2904e-09	9,099999571169e-09	5,4751e-04	-8,032	0,2780	-0,556
Cs ⁺	-81369	4,2879e-09	4,199999906123e-09	5,6988e-04	-8,368	0,6597	-0,181
Cu ⁺²	6000	2,9372e-07	2,876996402855e-07	1,8665e-02	-6,532	0,2739	-0,562
Dy ⁺³	-174379	6,4708e-11	6,338166807137e-11	1,0515e-05	-10,189	0,0494	-1,306
DyOH ⁺²	-227684	5,4168e-17	5,305835117460e-17	9,7236e-12	-16,266	0,2611	-0,583
$DySO_4^+$	-354331	5,7847e-10	5,666182509729e-10	1,4957e-04	-9,238	0,8005	-0,097
Er ⁺³	-175830	4,1802e-11	4,094513590064e-11	6,9918e-06	-10,379	0,0500	-1,301
ErOH ⁺²	-229135	4,1323e-17	4,047640733285e-17	7,6145e-12	-16,384	0,2649	-0,577
$ErSO_4^+$	-355783	3,1552e-10	3,090548152098e-10	8,3084e-05	-9,501	0,8105	-0,091
Eu ⁺³	-153465	2,8720e-11	2,813151644113e-11	4,3644e-06	-10,542	0,0490	-1,310
EuOH ⁺²	-206770	2,0360e-17	1,994261491429e-17	3,4403e-12	-16,691	0,2582	-0,588
$EuSO_4^+$	-333418	2,5714e-10	2,518684766250e-10	6,3778e-05	-9,590	0,7924	-0,101
Fe ⁺³	-29884	2,5077e-18	2,456326489497e-18	1,4005e-13	-17,601	0,0516	-1,287
Ga ⁺³	-50819	7,3609e-09	7,21000008345e-09	5,1322e-04	-8,133	0,0542	-1,266
Gd ⁺³	-172714	9,2904e-10	9,099989787353e-10	1,4609e-04	-9,032	0,0483	-1,316
GdHCO ₃ ⁺²	-325110	1,1385e-17	1,115206686364e-17	2,4851e-12	-16,944	0,2599	-0,585
GdOH ⁺²	-226019	6,6209e-16	6,485257546002e-16	1,1537e-10	-15,179	0,2531	-0,597
GdSO ₄ ⁺	-352666	3,8825e-16	3,802968874718e-16	9,8350e-11	-15,411	0,7823	-0,107
H ₂ AsO ₄	-188330	8,9750e-07	8,791073740373e-07	1,2649e-01	-6,047	0,8833	-0,054
H_2PO_4	-273395	4,5115e-03	4,419054508876e-03	4,3756e+02	-2,346	0,9056	-0,043
H ₂ VO ₄	-256891	4,0149e-10	3,932612957184e-10	4,6956e-05	-9,396	0,8798	-0,056
H ₃ PO ₄	-2/6//2	2,0222e-03	1,980//6/02/61e-03	1,9817e+02	-2,694	1,0004	0,000
HasO ₄ ⁻²	-184953	9,4594e-11	9,265533577845e-11	1,3236e-05	-10,024	0,4363	-0,360
HCO ₃ [*]	-152396	1,4586e-09	1,428/08236/25e-09	8,9000e-05	-8,836	0,8988	-0,046
HNO ₃	-29591	3,2962e-16	3,2286961579476-16	2,07/1e-11	-15,482	0,9650	-0,015
HPO ₄ ²	-2/0019	1,6904e-07	1,655/2/5502/8e-0/	1,6224e-02	-6,772	0,4495	-0,347
HSO_4	-183329	1,1923e-02	1,16/8/23/3216e-02	1,15/4e+03	-1,924	0,8764	-0,057
HVO_4^-	-255515	2,1257e-15	2,0821357755166-15	2,404/e-10	-14,072	0,4289	-0,308
Hg ⁺²	24084	0,/1510-11	0,5//489982005e-11	1,34/00-05	-10,173	0,2589	-0,587
	-1//003	1,0/13e-11	1,0371994731446-11	2,73076-00	-10,777	0,0493	-1,307
	-231100	1,05046-17	1,0224702312946-17	3,01306-12	-10,781	0,2399	-0,385
K+	-337833	7 4529e 02	7 300200197453e 02	2.01400-03	-9,099	0,7977	-0,098
KOH*	-122579	1,9965e-08	1.955565562247e-08	1,1201e-03	-7,700	1.0451	0.019
KSO.	-249227	1,5505C-08	1,75550550522470-08	1,12010-03	-1,700	0.8595	-0.066
La ⁺³	-178163	8 4577e-10	8 284373056422e-10	1,748e-04	-9 073	0.0488	-1 311
LaH ₂ PO ₄ ⁺²	-451559	2 0716e-10	2 029143512478e-10	4 8867e-05	-9 684	0.2815	-0.551
LaHCO ₂ ⁺²	-330560	2,0263e-17	1.984760401037e-17	4.0510e-12	-16.693	0.2640	-0.578
LaOH ⁺²	-231468	1.1106e-16	1.087860329686e-16	1,7316e-11	-15,954	0.2568	-0.590
LaSO4 ⁺	-358116	7.5228e-09	7.368648026713e-09	1.7676e-03	-8.124	0.7946	-0.100
Li ⁺	-79058	2,7585e-07	2,701999926567e-07	1,9147e-03	-6,559	0,7388	-0,131
Lu ⁺³	-176574	5,0284e-12	4,925326162302e-12	8,7980e-07	-11,299	0,0510	-1,293
LuOH ⁺²	-229879	6,9166e-18	6,774813125915e-18	1,3278e-12	-17,160	0,2719	-0,566
LuSO ₄ ⁺	-356527	3,7850e-11	3,707466895447e-11	1,0259e-05	-10,422	0,8281	-0,082
$Mg(CO_3)^*$	-261750	1,3327e-17	1,305432640416e-17	1,1237e-12	-16,875	1,0505	0,021
Mg(HCO ₃) ⁺	-265126	1,5082e-11	1,477246690620e-11	1,2868e-06	-10,822	0,7554	-0,122
Mg ⁺²	-112730	2,7962e-03	2,738874330275e-03	6,7961e+01	-2,553	0,2846	-0,546
Mn ⁺²	-59162	1,4192e-03	1,390107751244e-03	7,7968e+01	-2,848	0,2680	-0,572
MnSO ₄ *	-239115	2,6876e-03	2,632565248329e-03	4,0584e+02	-2,571	1,0505	0,021
MoO ₄ -2	-213013	5,7172e-10	5,60000265985e-10	9,1439e-05	-9,243	0,4248	-0,372
N ₂ *	-156	5,1377e-04	5,032441059778e-04	1,4393e+01	-3,289	0,9683	-0,014
NO ₂	-25746	6,7028e-14	6,565461962461e-14	3,0837e-09	-13,174	0,8784	-0,056
NO ₃ ⁻	-26214	2,9705e-12	2,909646407607e-12	1,8419e-07	-11,527	0,8591	-0,066
Na'	-64225	8,9229e-02	8,7399999999999997e-02	2,0513e+03	-1,049	0,/0/1	-0,151
NaOH N 1+3	-11/530	3,4720e-14	3,400848329248e-14	1,388/e-09	-13,459	0,8796	-0,056
Nd ¹³	-1/5029	5,4580e-10	5,346100231422e-10	7,8726e-05	-9,263	0,0484	-1,316
NdHCO ₃ ¹⁻	-32/425	9,300/e-18	9,1747598105596-18	1,9220e-12	-17,028	0,2604	-0,584
NdNO ₃ ¹⁻	-201243	9,30896-10	9,1/69231145386-10	2 7785 2 11	-9,028	0,2847	-0,546
NdOn NdCO +	-226333	2,54556-10	4,7776075251572,00	1,1721-02	-13,030	0,2353	-0,396
Ni+2	-334961	4,07776-09	4,7770975351576-09	2 42270 02	-0,312	0,7832	-0,100
NI O:*	-21/10	2 6000 01	4,03999987037810e-08	8 63930+00	-7,362	0,2822	-0,549
PO ₄ -3	-750	9 508/a 17	9 4016702087630 17	9 1157 12	-3,309	0,9505	-0,019
Ph ⁺²	-14675	1 0841e-06	1 061834727064e-06	2 2462e-01	-10,010	0.2462	-0,545
Pr ⁺³	-176806	7 9256e-10	7 763182524195-10	1 11680-04	_9 101	0.0484	_1 315
PrHCO ₂ +2	-329203	1 5036e-17	1 472742467754e-17	3.0361e-12	-16 823	0 2794	-0 554
PrNO ₂ ⁺²	-203021	9.9405e-10	9.736811971905e-10	2.0171e-04	-9,003	0.2857	-0.544
PrOH ⁺²	-230111	2.4261e-16	2.376418544875e-16	3.8312e-11	-15.615	0.2542	-0.595
PrSO ₄ ⁺	-356759	3.3085e-16	3.240693251914e-16	7.8402e-11	-15.480	0.7857	-0.105
Rb ⁺	-77980	5.1454e-08	5.040000200271e-08	4.3977e-03	-7.289	0.6674	-0.176
SO4-2	-179952	7.6446e-02	7,487941020237e-02	7.3437e+03	-1.117	0.4281	-0.368
Sc ⁺³	-152970	8,5757e-09	8,399999812245e-09	3,8553e-04	-8,067	0,0506	-1,296

Продолжение таб	5лицы 10-3
продолжение та	JINGDI IO J

Sm ⁺³	-1	74413	1,2217e-10	1,196706357559e-10	1,8370e-05	-9,913	0,0486	-1,314
SmHCO ₃ ⁺²	-3	326809	1,7678e-18	1,731536243387e-18	3,7366e-13	-17,753	0,2621	-0,581
SmOH ⁺²	-2	227717	7,3406e-17	7,190159813836e-17	1,2286e-11	-16,134	0,2551	-0,593
SmSO ₄ ⁺	-3	354365	1.0927e-09	1.070329355274e-09	2.6927e-04	-8.961	0.7863	-0.104
Sn ⁺²	-	17475	4.3971e-08	4.306966209809e-08	5.2198e-03	-7.357	0.2540	-0.595
Sr ⁺²	-1	45850	2,8657e-08	2,806999951601e-08	2,5110e-03	-7,543	0,2577	-0,589
Tb ⁺³	-1	76072	1.4400e-11	1.410492583873e-11	2.2885e-06	-10.842	0.0492	-1.308
TbOH ⁺²	-2	229377	1,2073e-17	1,182565890781e-17	2,1240e-12	-16,918	0,2595	-0,586
TbSO ₄ +	-3	356024	1.2853e-10	1.258950688251e-10	3.2773e-05	-9.891	0.7980	-0.098
Tl ⁺	-	20867	3.5732e-10	3.499995298397e-10	7.3031e-05	-9.447	0.6642	-0.178
T1 ⁺³	2	28592	4.7201e-16	4.623371825135e-16	9.6471e-11	-15.326	0.0477	-1.321
Tm ⁺³	-1	75730	4.9527e-11	4.851209057931e-11	8.3668e-06	-10.305	0.0500	-1.301
TmNO ₂ +2	-2	201945	2.1937e-11	2.148785532966e-11	5.0662e-06	-10,659	0.3032	-0.518
TmOH ⁺²	-2	229035	5.7899e-17	5 671273320402e-17	1.0766e-11	-16.237	0.2650	-0.577
VO ⁺²	-1	25083	1 1750e-13	1 150875873502e-13	7.8653e-09	-12 930	0.2835	-0.547
VO ₂ ⁺	-1	50282	6 1773e-08	6.050662186835e-08	5 1234e-03	-7 209	0,2055	-0.110
WO ₄ -2		231898	1.0720e-09	1 049999976531e-09	2 6568e-04	-8 970	0,4195	-0.377
V ⁺³	-1	76892	5.0025e-09	4 90000020862e-09	2,03080-04 4 4475e-04	-8 301	0,0504	-1.298
Yh ⁺³	1	68963	3,0025e 05	3 897087/2826/e-11	6.88/6e-06	-10.400	0,0304	-1.303
YbNO ⁺²	1	95177	1 7600e-11	1 733581933892e-11	4 1599e-06	-10,400	0,0498	-0.522
VhOH+2	-1	000068	5 5156e 17	5 402517895500e 17	1,0482e 11	16 258	0,2634	0.579
VhSO. ⁺	-2	222208	2 9984e 10	2 936932/386999 10	8.0687e.05	-10,238	0,2034	-0,373
	-0	51002	7 75260 00	75047128524560.00	2,01752,04	-9,323	0,8074	-0,093
	-1	78018	9 7034e 17	0 504585726707e 17	7 36880 12	-6,110	0,8003	-0,097
Cr+3	-	61684	<u>9,70346-17</u> 1,5458e,08	1 514074628369e 08	8.0373e.04	7 811	0,7702	-0,110
$Cr O^{-2}$	-	224487	1,0170.08	1,0602805222040.08	2 25702 02	-7,011	0,0338	-1,209
$C_{12}O_7$ $C_{7}O^+$	-2	11612	1,09176-08	1,0092895325946-08	2,33796-03	-7,902	0,3291	-0,483
CrO^{-2}	-1	87207	1,93296-14	1,9128937089016-14	1,52796-09	-13,709	0,8271	-0,082
$CrOH^{+2}$	-1	14090	7.0502-11	7,706186560548-11	2,24400-04	-6,/15	0,4129	-0,384
CrOH	- 1	14989	7,9595e-11	7,7901805005486-11	5,4922e-06	-10,099	0,2995	-0,524
CuO C. OUt		43928	8,6504e-18	8,4/3081/91456e-18	6,8810e-13	-17,063	1,2801	0,107
CuOH [*]		47305	3,/6//e-13	3,690520496941e-13	3,0350e-08	-12,424	0,7645	-0,117
HgO H=OH+	-	25244	9,91086-13	9,707710829323e-13	2,1466e-07	-12,004	1,0505	0,021
HgOH ⁺	-	28368	5,5224e-12	5,254552421257e-12	7,22958-07	-11,4/9	0,0996	-0,155
NIOH PLOUI [±]	-	75025	6,9392e-17	6,7909932751406-17	5,25280-12	-10,159	0,8008	-0,096
PbOH [*]	-	67980	6,6644e-11	6,52/82/64051/e-11	1,4942e-05	-10,176	0,7762	-0,110
SnO	-	67403	/,2161e-11	7,068220822329e-11	9,7208e-06	-10,142	1,0505	0,021
SnOH ¹	-	/0/80	1,6944e-09	1,659654692326e-09	2,2996e-04	-8,//1	0,6928	-0,159
UO2 ¹²	-2	241463	2,8586e-10	2,800000132993e-10	/,/190e-05	-9,544	0,2743	-0,562
Zr^{4}	-	49477	2,8258e-10	2,767865682054e-10	2,5778e-05	-9,549	0,0046	-2,333
ZrO ⁺²	- 1	199405	7,1713e-09	7,024351486981e-09	7,6893e-04	-8,144	0,3081	-0,511
ZrO_2	-2	249333	1,9820e-12	1,94138/291480e-12	2,4423e-07	-11,703	1,0505	0,021
Zr(OH) ⁺³	-2	202782	1,5842e-08	1,551692090800e-08	1,7146e-03	-7,800	0,0527	-1,278
OH-	-	53305	3,0498e-12	2,987275969703e-12	5,1869e-08	-11,516	0,9949	-0,002
H ⁺		-3377	5,1314e-03	5,026236438367e-03	5,1721e+00	-2,290	0,6491	-0,188
H ₂ O		56681	5,5510e+01	5,437240070231e+01	1,0000e+00	1,744	1,0000	0,000
Газ				1	1	I		
CO_2	-99	092		1,020354993773e-02	0,04	-1,991	1,0000	0,000
N ₂	-1	.56		2,755191290276e+01	75,30	1,440	1,0000	0,000
NO	-5	547		9,246561047349e-15	0,00	-14,034	0,9995	-0,000
NO_2	-1(016		5,082178480344e-09	0,00	-8,294	1,0000	0,000
N ₂ O	-6	525		8,752212280181e-18	0,00	-17,058	0,9946	-0,002
O ₂	-9	38		7,367795770050e+00	23,00	0,867	1,0000	0,000
H ₂ O	-56	681		9,416101367162e-01	1,65	-0,026	1,0000	0,000
Твердая фаза					-			
Алуноген Al ₂ [SO ₄] ₃ ·18H ₂ O)	-1833930		3,347376963184e-03	20,37	-2,475	1,0000	0,000
Гипс CaSO₄·2H ₂ O		-429598		3,693779124913e-02	58,06	-1,433	1,0000	0,000
Монтмориллони	ИT	-12430700)	8,115183387857e-04	2,77	-3,091	1,0000	0,000
Бианкит		-612591		8,666000213626e-06	0,02	-5,062	1,0000	0,000
ZnSO4·6H2O Фиброферрит		546540		7 9/33913/07202 02	19.79	2 100	1 0000	0.000
Fe[SO ₄](OH)·5H	$_{2}O$	-540549		1,7433713471376-03	10,70	-2,100	1,0000	0,000

Параметры газов

Таблица 10-4

Fan	Филитириости	Log durumunuoomu	Парциальное	Log парциального	Log коэф.
1 43	Фугитивность	сод фугитивности	давление	давления	Фугитивности
NH ₃	1,0430e-59	-5,8982e+01	1,0430e-59	-5,8982e+01	0,0000e+00
CO ₂	2,8445e-04	-3,5460e+00	2,8445e-04	-3,5460e+00	0,0000e+00
CO	5,4899e-49	-4,8260e+01	5,4899e-49	-4,8260e+01	0,0000e+00

Продолжение таблицы 10-4

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C_2H_6	1,0000e-70	-2,6174e+02	1,0000e-70	-2,6174e+02	-3,2681e-03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H_2	6,2457e-42	-4,1204e+01	6,2457e-42	-4,1204e+01	0,0000e+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H_2S	1,0000e-70	-1,2960e+02	1,0000e-70	-1,2960e+02	0,0000e+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CH_4	1,0000e-70	-1,4547e+02	1,0000e-70	-1,4547e+02	0,0000e+00
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N_2	7,6807e-01	-1,1460e-01	7,6807e-01	-1,1460e-01	0,0000e+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NO	2,5764e-16	-1,5589e+01	2,5777e-16	-1,5589e+01	-2,1019e-04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NO ₂	1,4168e-10	-9,8487e+00	1,4168e-10	-9,8487e+00	0,0000e+00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N ₂ O	2,4268e-19	-1,8615e+01	2,4399e-19	-1,8613e+01	-2,3388e-03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O ₂	2,0539e-01	-6,8741e-01	2,0539e-01	-6,8741e-01	0,0000e+00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_3H_8	1,0000e-70	-3,7655e+02	1,0000e-70	-3,7654e+02	-7,1244e-03
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H ₂ O	2,6250e-02	-1,5809e+00	2,6250e-02	-1,5809e+00	0,0000e+00
SO ₂ 4,2323e-43 -4,2373e+01 4,2323e-43 -4,2373e+01 0,0000e+00	S_2	1,0000e-70	-2,0245e+02	1,0000e-70	-2,0245e+02	0,0000e+00
	SO_2	4,2323e-43	-4,2373e+01	4,2323e-43	-4,2373e+01	0,0000e+00

Таблица 11

Результаты физико-химического моделирования ионного состава раствора при объемных соотношениях «вода-порода» 50 г. п. / 1 кг H₂O (модель 6.1)

Таблица 11-1

Резервуар 1					
Температура, °С	25,00	G, кал	-3203902	Eh, B	1,0715
Давление, бар	1,00	Н, кал	-3833655	pe	18,1494
Масса, кг	2,050	S, кал/К	2654,981	pН	2,4618
Объем мультисистемы, см ³	903897,250	U, кал	-3807452	Ионная сила	0,6363
Плотность мультисистемы, г/см ³	0.002268	Ср. кал	1226.30	TDS, mg/kgH ₂ O	25634,2256295

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	985,36590	5,48350e+01	1007,1376	1,02210e+00	49,13829
Газ	902911,91068	3,64233e+01	1042,4608	1,15455e-03	50,86171

Таблица 11-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. Активности	Log коэф. Активности
Водный раство	р						
Ag^+	9929	9,1658e-07	9,000000357628e-07	9,8870e-02	-6,038	0,6396	-0,194
Al(OH) ⁺²	-172887	8,7072e-06	8,549634694993e-06	3,8302e-01	-5,060	0,2774	-0,557
Al(OH) ₃ *	-279541	2,9534e-11	2,900000557414e-11	2,3038e-06	-10,530	1,1448	0,059
Al ⁺³	-119560	2,2397e-02	2,199145033630e-02	6,0429e+02	-1,650	0,0381	-1,419
AlO ₂ -	-219504	3,6060e-16	3,540752367630e-16	2,1268e-11	-15,443	1,5498	0,190
Au ⁺	29793	2,9534e-07	2,899999916079e-07	5,8173e-02	-6,530	0,5997	-0,222
Au ⁺³	79312	4,8350e-17	4,747563908815e-17	9,5234e-12	-16,316	0,0323	-1,490
Ba ⁺²	-141543	1,6498e-05	1,62000004763e-05	2,2657e+00	-4,783	0,1876	-0,727
Be ⁺²	-94767	1,7066e-08	1,675711885773e-08	1,5380e-04	-7,768	0,3208	-0,494
CO_2^*	-99101	8,3641e-06	8,212742590903e-06	3,6810e-01	-5,078	1,1309	0,053
CO3-2	-149073	2,1006e-17	2,062633116581e-17	1,2606e-12	-16,678	0,7981	-0,098
$Ca(CO_3)^*$	-285581	1,9251e-17	1,890266231783e-17	1,9268e-12	-16,716	1,1240	0,051
Ca(HCO ₃) ⁺	-288936	1,2954e-11	1,271966036169e-11	1,3096e-06	-10,888	0,6488	-0,188
Ca ⁺²	-136509	2,7789e-03	2,728636023597e-03	1,1137e+02	-2,556	0,2171	-0,663
$CaSO_4^*$	-315900	5,7759e-03	5,671363963684e-03	7,8633e+02	-2,238	1,1441	0,058
Cd ⁺²	-27072	2,5461e-06	2,50000000000e-06	2,8621e-01	-5,594	0,2251	-0,648
Ce ⁺³	-171585	1,5999e-06	1,570979951023e-06	2,2417e-01	-5,796	0,0298	-1,526
CeCO ₃ ⁺	-320658	1,8472e-17	1,813747606543e-17	3,6966e-12	-16,733	1,0951	0,039
CeH ₂ PO ₄ ⁺²	-444152	9,4614e-07	9,290187980261e-07	2,2433e-01	-6,024	0,2435	-0,613
CeHCO ₃ ⁺²	-324013	2,3636e-14	2,320794808722e-14	4,7539e-09	-13,626	0,2092	-0,679
CeOH ⁺²	-224912	2,6763e-13	2,627875948166e-13	4,2051e-08	-12,572	0,1965	-0,707
CeSO ₄ ⁺	-350977	9,8272e-13	9,649369793590e-13	2,3210e-07	-12,008	0,8452	-0,073
Co ⁺²	-21847	1,3240e-06	1,299999941430e-06	7,8025e-02	-5,878	0,2460	-0,609
Cs ⁺	-78526	6,1105e-07	5,999999865889e-07	8,1212e-02	-6,214	0,5608	-0,251
Cu ⁺²	8854	4,1857e-05	4,109995904218e-05	2,6599e+00	-4,378	0,2375	-0,624
Dy ⁺³	-171920	6,4341e-09	6,317668098862e-09	1,0455e-03	-8,192	0,0315	-1,501
DyHCO ₃ ⁺²	-324347	5,5977e-17	5,496381643134e-17	1,2512e-11	-16,252	0,2268	-0,644
DyOH ⁺²	-225247	4,0766e-15	4,002816491871e-15	7,3177e-10	-14,390	0,2120	-0,674
DySO ₄ ⁺	-351311	8,5224e-08	8,368232396877e-08	2,2036e-02	-7,069	0,8877	-0,052

Таблица 11-2

Er ⁺³	-173358	4,1811e-09	4,105417429698e-09	6,9932e-04	-8,379	0,0325	-1,489
ErHCO ₃ ⁺²	-325786	4,2548e-17	4,177777238694e-17	9,7126e-12	-16,371	0,2362	-0,627
ErOH ⁺²	-226685	3,1187e-15	3,062287959765e-15	5,7468e-10	-14,506	0,2193	-0,659
ErSO_{4}^{+}	-352750	4,6740e-08	4,589457834839e-08	1,2308e-02	-7,330	0,9144	-0,039
Eu ⁺³	-151014	2,8494e-09	2,797867764874e-09	4,3301e-04	-8,545	0,0309	-1,510
EuHCO ₃ ⁺²	-303442	2,1095e-17	2,071311993863e-17	4,4928e-12	-16,676	0,2206	-0,656
EuOH ⁺²	-204341	1,5348e-15	1,507061222240e-15	2,5934e-10	-14,814	0,2064	-0,685
EuSO ₄ ⁺	-330406	3,7888e-08	3,720213260713e-08	9,3972e-03	-7,422	0,8666	-0,062
Fe ⁺²	-32737	4,4425e-08	4,362163987229e-08	2,4810e-03	-7,352	0,2422	-0,616
Fe ⁺³	-7977	4,2318e-02	4,155220103742e-02	2,3633e+03	-1,373	0,0349	-1,457
Ga ⁺³	-48071	1,0490e-06	1,03000001192e-06	7,3138e-02	-5,979	0,0393	-1,406
Gd ¹³	-1/0061	1,3240e-07	1,299998502068e-07	2,0819e-02	-6,878	0,0298	-1,525
GdCO3 ⁺	-319133	4,3014e-18	4,223562811256e-18	9,34516-13	-17,366	1,0971	0,040
	-322488	1,1/886-15	1,1574434433366-15	2,5729e-10	-14,929	0,2096	-0,679
	-225300	7,2178e-14	7,087234760243e-14	2,07520,08	-13,142	0,1909	-0,700
	-549455	0,1925e-14	0,044125145000e-14	1.80260+01	-13,087	0,8400	-0,073
H_PO_:	-185250	1,27906-04	1,255901510509e-04	1,00200+01	-3,893	1,1212	0,030
H ₂ IO ₄	-2723060	1,5710c-02	1,3058070775070-02 4 396124543267e-08	5 2362e-03	-7.3/9	1,1090	0,075
$H_2 V O_4$ $H_2 P O_4^*$	-275921	8 4936e-03	8 339965337855e-03	8 3233e+02	-7,347	1,0009	0,040
HasQ4 ⁻²	-181895	1.0034e-08	9.852565208817e-09	1.4040e-03	-7,999	0.7173	-0.144
HCO ₃ ⁻	-152428	1,0634e-09	1.044169032938e-09	6.4886e-05	-8.973	1,1686	0.068
HNO ₃ *	-29555	3.6768e-16	3.610261755998e-16	2.3168e-11	-15.435	0.9188	-0.037
HPO ₄ -2	-269211	3,8545e-07	3,784805551075e-07	3,6996e-02	-6,414	0,7695	-0,114
HSO ₄ -	-182747	2,5346e-02	2,488700180179e-02	2,4603e+03	-1,596	1,1007	0,042
HsiO ₃ ⁻	-255048	3,3957e-10	3,334248927808e-10	2,6178e-05	-9,469	1,3243	0,122
HVO ₄ ⁻²	-250605	1,7968e-13	1,764280333461e-13	2,0833e-08	-12,746	0,6887	-0,162
Hg ⁺²	27501	9,7160e-09	9,540208364410e-09	1,9489e-03	-8,013	0,2077	-0,683
Ho ⁺³	-175424	1,6700e-09	1,639809739168e-09	2,7544e-04	-8,777	0,0313	-1,505
HoHCO ₃ ⁺²	-327851	1,4566e-17	1,430289277526e-17	3,2912e-12	-16,837	0,2243	-0,649
HoOH ⁺²	-228751	1,2559e-15	1,233135535568e-15	2,2849e-10	-14,901	0,2096	-0,679
$HoSO_4^+$	-354815	1,8698e-08	1,836018996325e-08	4,8802e-03	-7,728	0,8803	-0,055
K ⁺	-70403	1,2509e-02	1,228251504421e-02	4,8907e+02	-1,903	0,6017	-0,221
KOH*	-123730	2,6896e-09	2,640929026366e-09	1,5090e-04	-8,570	1,1104	0,045
KSO ₄	-249795	4,6007e-03	4,517482314856e-03	6,2184e+02	-2,337	1,0509	0,022
La ⁺³	-175724	8,2698e-08	8,120192383494e-08	1,148/e-02	-7,083	0,0306	-1,514
$LaH_2PO_4^{+2}$	-448290	5,7203e-08	5,616/69/03/55e-08	1,3494e-02	-7,243	0,2534	-0,596
LaHCO ₃ ¹²	-328152	1,4303e-15	1,4044342428336-15	2,85956-10	-14,845	0,2175	-0,662
	-229031	0,2000e-15	0,110411027001e-15	2 54200 01	-14,085	0,2037	-0,091
LaSO ₄	-76123	3.9311e-05	1,002030342782e-00	2,34296-01	-4,405	0,8722	-0,039
Lu ⁺³	-174096	4 9523e-10	4 862713338004e-10	8 6649e-05	-9 305	0,0339	-1 469
LuHCO ₂ +2	-326529	6.8641e-18	6,739883910238e-18	1.6198e-12	-17,163	0.2518	-0.599
LuOH ⁺²	-227428	5.0405e-16	4.949310829167e-16	9.6765e-11	-15.298	0.2334	-0.632
$LuSO_4^+$	-353475	5,6153e-09	5,513728449471e-09	1,5219e-03	-8,251	0,9621	-0,017
Mg(CO ₃)*	-261033	4,1694e-17	4,093981815830e-17	3,5154e-12	-16,380	1,1240	0,051
Mg(HCO ₃) ⁺	-264388	5,1152e-11	5,022690573206e-11	4,3644e-06	-10,291	0,7734	-0,112
Mg ⁺²	-111961	1,1203e-02	1,0999999994977e-02	2,7228e+02	-1,951	0,2600	-0,585
Mn ⁺²	-58821	2,9990e-03	2,944712772444e-03	1,6476e+02	-2,523	0,2255	-0,647
MnSO ₄ *	-238213	1,1502e-02	1,129428716652e-02	1,7369e+03	-1,939	1,1240	0,051
MoO ₄ -2	-209802	8,1474e-08	8,000000379979e-08	1,3031e-02	-7,089	0,6729	-0,172
N ₂ *			F 100 < 11001 1 < 0 0 1				0 0 0 0 0
NO_2^-	-165	5,2853e-04	5,189641881469e-04	1,4806e+01	-3,277	0,9263	-0,033
	-165 -25748	5,2853e-04 5,2979e-14	5,189641881469e-04 5,202058356581e-14	1,4806e+01 2,4373e-09	-3,277 -13,276	0,9263 1,1068	-0,033
NO ₃	-165 -25748 -26200	5,2853e-04 5,2979e-14 2,4887e-12	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12	1,4806e+01 2,4373e-09 1,5431e-07	-3,277 -13,276 -11,604	0,9263 1,1068 1,0498	-0,033 0,044 0,021
NO ₃ ⁻ Na ⁺	-165 -25748 -26200 -65243	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02	-3,277 -13,276 -11,604 -1,767	0,9263 1,1068 1,0498 0,6611	-0,033 0,044 0,021 -0,180
NO ₃ - Na ⁺ NaAlO ₂ *	-165 -25748 -26200 -65243 -284747 220201	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0204e,05	-3,277 -13,276 -11,604 -1,767 -17,972	0,9263 1,1068 1,0498 0,6611 1,0770	-0,033 0,044 0,021 -0,180 0,032 0,051
$\frac{NO_{3}}{Na^{+}}$ $\frac{NaAlO_{2}}{NaHSiO_{3}}$ $\frac{NaOH^{*}}{NaOH^{*}}$	-165 -25748 -26200 -65243 -284747 -320291 118570	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e,15	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011800e,15	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604a,10	-3,277 -13,276 -11,604 -1,767 -17,972 -9,693	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375	-0,033 0,044 0,021 -0,180 0,032 0,051 0,122
NO3 [*] Na ⁺ NaAIO2 [*] NaHSiO3 [*] NaOH [*] Nd ⁺³	-165 -25748 -26200 -65243 -284747 -320291 -118570 -172540	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e-15 5,8769e-08	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011890e-15 5,770564474500e-08	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604e-10 8,4768e.03	-3,277 -13,276 -11,604 -1,767 -17,972 -9,693 -14,146 -7,231	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375 0,0299	-0,033 0,044 0,021 -0,180 0,032 0,051 -0,132 -1 524
NO3 ⁻ Na ⁺ NaAIO2 [*] NaHSiO3 [*] NaOH [*] Nd ⁺³ NdCO2 ⁺	-165 -25748 -26200 -65243 -284747 -320291 -118570 -172540 -321613	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e-15 5,8769e-08 1,3611e-18	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011890e-15 5,770564474590e-08 1 336471059094e-18	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604e-10 8,4768e-03 2,7800e-13	-3,277 -13,276 -11,604 -1,767 -17,972 -9,693 -14,146 -7,231 -17,866	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375 0,0299 1,1012	0,033 0,044 0,021 0,180 0,032 0,051 0,132 1,524 0.042
NO3 ⁻ Na ⁺ NaAlO2 [*] NaHSiO3 [*] NaOH [*] Nd ⁺³ NdCO3 ⁺ NdHCO3 ⁺²	-165 -25748 -26200 -65243 -284747 -320291 -118570 -172540 -321613 -324968	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e-15 5,8769e-08 1,3611e-18 7,3200e-16	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011890e-15 5,770564474590e-08 1,336471059094e-18 7,187582016019e-16	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604e-10 8,4768e-03 2,7800e-13 1,5025e-10	-3,277 -13,276 -11,604 -1,767 -17,972 -9,693 -14,146 -7,231 -17,866 -15,135	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375 0,0299 1,1012 0,2106	$\begin{array}{r} -0.033\\ \hline 0.044\\ \hline 0.021\\ -0.180\\ \hline 0.032\\ \hline 0.051\\ -0.132\\ -1.524\\ \hline 0.042\\ -0.677\end{array}$
NO3 ⁻ Na ⁺ NaAIO2 [*] NaHSiO3 [*] NaOH [*] Nd ⁺³ NdCO3 ⁺² NdNO3 ⁺²	-165 -25748 -26200 -65243 -284747 -320291 -118570 -172540 -321613 -324968 -198740	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e-15 5,8769e-08 1,3611e-18 7,3200e-16 6,9956e-08	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011890e-15 5,770564474590e-08 1,336471059094e-18 7,187582016919e-16 6,869068839582e-08	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604e-10 8,4768e-03 2,7800e-13 1,5025e-10 1,4428e-02	-3,277 -13,276 -11,604 -1,767 -17,972 -9,693 -14,146 -7,231 -17,866 -15,135 -7,155	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375 0,0299 1,1012 0,2106 0,2603	0,033 0,044 0,021 -0,180 0,032 0,051 -0,132 -1,524 0,042 -0,677 -0,585
NO3 ⁻ Na ⁺ NaAlO2 [*] NaHSiO3 [*] NaOH [*] Nd ⁺³ NdCO3 ⁺ NdHCO3 ⁺² NdOH ⁺²	-165 -25748 -26200 -65243 -284747 -320291 -118570 -172540 -321613 -324968 -198740 -225867	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e-15 5,8769e-08 1,3611e-18 7,3200e-16 6,9956e-08 1,9292e-14	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011890e-15 5,770564474590e-08 1,336471059094e-18 7,187582016919e-16 6,869068839582e-08 1,894339796039e-14	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604e-10 8,4768e-03 2,7800e-13 1,5025e-10 1,4428e-02 3,1109e-09	-3,277 -13,276 -11,604 -1,767 -17,972 -9,693 -14,146 -7,231 -17,866 -15,135 -7,155 -13,715	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375 0,0299 1,1012 0,2106 0,2603 0,1976	0,033 0,044 0,021 -0,180 0,032 0,051 -0,132 -1,524 0,042 -0,677 -0,585 -0,704
NO3 ⁻ Na ⁺ NaAIO2 [*] NaHSiO3 [*] NaOH [*] NdCO3 ⁺ NdHCO3 ⁺² NdOH ⁺² NdSO4 ⁺	-165 -25748 -26200 -65243 -284747 -320291 -118570 -172540 -321613 -324968 -198740 -225867 -351932	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e-15 5,8769e-08 1,3611e-18 7,3200e-16 6,9956e-08 1,9292e-14 7,7767e-07	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011890e-15 5,770564474590e-08 1,336471059094e-18 7,187582016919e-16 6,869068839582e-08 1,894339796039e-14 7,636036626920e-07	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604e-10 8,4768e-03 2,7800e-13 1,5025e-10 1,4428e-02 3,1109e-09 1,8688e-01	-3,277 -13,276 -11,604 -1,767 -17,972 -9,693 -14,146 -7,231 -17,866 -15,135 -7,155 -13,715 -6,109	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375 0,0299 1,1012 0,2106 0,2603 0,1976 0,8429	0,033 0,044 0,021 -0,180 0,032 0,051 -0,132 -1,524 0,042 -0,677 -0,585 -0,704 -0,074
NO3 ⁻ Na ⁺ NaAIO2 [*] NaHSiO3 [*] NaOH [*] NdCO3 ⁺ NdHCO3 ⁺² NdOH ⁺² NdOH ⁺² NdSO4 ⁺ Ni ⁺²	-165 -25748 -26200 -65243 -284747 -320291 -118570 -172540 -321613 -324968 -198740 -225867 -351932 -18840	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e-15 5,8769e-08 1,3611e-18 7,3200e-16 6,9956e-08 1,9292e-14 7,7767e-07 5,9069e-06	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011890e-15 5,770564474590e-08 1,336471059094e-18 7,187582016919e-16 6,869068839582e-08 1,894339796039e-14 7,636036626920e-07 5,799999825495e-06	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604e-10 8,4768e-03 2,7800e-13 1,5025e-10 1,4428e-02 3,1109e-09 1,8688e-01 3,4667e-01	-3,277 -13,276 -11,604 -1,767 -17,972 -9,693 -14,146 -7,231 -17,866 -15,135 -7,155 -13,715 -6,109 -5,229	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375 0,0299 1,1012 0,2106 0,2603 0,1976 0,8429 0,2548	0,033 0,044 0,021 -0,180 0,032 0,051 -0,132 -1,524 0,042 -0,677 -0,585 -0,704 -0,074 -0,074 -0,594
NO3 ⁻ Na ⁺ NaAIO2 [*] NaHSiO3 [*] NaOH [*] NdCO3 ⁺ NdHCO3 ⁺² NdOH ⁺² NdOH ⁺² NdSO4 ⁺ Ni ⁺² O2 [*]	-165 -25748 -26200 -65243 -284747 -320291 -118570 -172540 -321613 -324968 -198740 -225867 -351932 -18840 -905	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e-15 5,8769e-08 1,3611e-18 7,3200e-16 6,9956e-08 1,9292e-14 7,7767e-07 5,9069e-06 3,0307e-04	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011890e-15 5,770564474590e-08 1,336471059094e-18 7,187582016919e-16 6,869068839582e-08 1,894339796039e-14 7,636036626920e-07 5,799999825495e-06 2,975866905515e-04	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604e-10 8,4768e-03 2,7800e-13 1,5025e-10 1,4428e-02 3,1109e-09 1,8688e-01 3,4667e-01 9,6979e+00	-3,277 -13,276 -11,604 -1,767 -17,972 -9,693 -14,146 -7,231 -17,866 -15,135 -7,155 -13,715 -6,109 -5,229 -3,518	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375 0,0299 1,1012 0,2106 0,2603 0,1976 0,8429 0,2548 0,8998	0,033 0,044 0,021 -0,180 0,032 0,051 -0,132 -1,524 0,042 -0,677 -0,585 -0,704 -0,074 -0,074 -0,594 -0,046
$\begin{array}{c} NO_{3}^{-} \\ Na^{+} \\ NaAIO_{2}^{*} \\ NaHSiO_{3}^{*} \\ NaOH^{*} \\ NdCO_{3}^{+} \\ NdCO_{3}^{+2} \\ NdNO_{3}^{+2} \\ NdOH^{+2} \\ NdSO_{4}^{+} \\ Ni^{+2} \\ O_{2}^{*} \\ PO_{4}^{-3} \\ \end{array}$	-165 -25748 -26200 -65243 -284747 -320291 -118570 -172540 -321613 -324968 -198740 -225867 -351932 -18840 -905 -2658 <u>5</u> 6	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e-15 5,8769e-08 1,3611e-18 7,3200e-16 6,9956e-08 1,9292e-14 7,7767e-07 5,9069e-06 3,0307e-04 1,8274e-16	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011890e-15 5,770564474590e-08 1,336471059094e-18 7,187582016919e-16 6,869068839582e-08 1,894339796039e-14 7,636036626920e-07 5,799999825495e-06 2,975866905515e-04 1,794347885223e-16	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604e-10 8,4768e-03 2,7800e-13 1,5025e-10 1,4428e-02 3,1109e-09 1,8688e-01 3,4667e-01 9,6979e+00 1,7355e-11	-3,277 -13,276 -11,604 -1,767 -17,972 -9,693 -14,146 -7,231 -17,866 -15,135 -7,155 -13,715 -6,109 -5,229 -3,518 -15,7 <u>3</u> 8	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375 0,0299 1,1012 0,2106 0,2603 0,1976 0,8429 0,2548 0,8998 0,2225	0,033 0,044 0,021 -0,180 0,032 0,051 -0,132 -1,524 0,042 -0,677 -0,585 -0,704 -0,074 -0,074 -0,074 -0,046 -0,0653
NO3 ⁻ Na ⁺ NaAIO2 [*] NaHSiO3 [*] NaOH [*] NdCO3 ⁺ NdHCO3 ⁺² NdNO3 ⁺² NdOH ⁺² NdSO4 ⁺ Ni ⁺² O2 [*] PO4 ⁻³ Pb ⁺²	-165 -25748 -26200 -65243 -284747 -320291 -118570 -172540 -321613 -324968 -198740 -225867 -351932 -18840 -905 -265856 -11908	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e-15 5,8769e-08 1,3611e-18 7,3200e-16 6,9956e-08 1,9292e-14 7,7767e-07 5,9069e-06 3,0307e-04 1,8274e-16 1,5449e-04	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011890e-15 5,770564474590e-08 1,336471059094e-18 7,187582016919e-16 6,869068839582e-08 1,894339796039e-14 7,636036626920e-07 5,799999825495e-06 2,975866905515e-04 1,794347885223e-16 1,516936739194e-04	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604e-10 8,4768e-03 2,7800e-13 1,5025e-10 1,4428e-02 3,1109e-09 1,8688e-01 3,4667e-01 9,6979e+00 1,7355e-11 3,2010e+01	-3,277 -13,276 -11,604 -1,767 -17,972 -9,693 -14,146 -7,231 -17,866 -15,135 -7,155 -13,715 -6,109 -5,229 -3,518 -15,738 -3,811	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375 0,0299 1,1012 0,2106 0,2603 0,1976 0,8429 0,2548 0,8998 0,2225 0,1843	0,033 0,044 0,021 -0,180 0,032 0,051 -0,132 -1,524 0,042 -0,677 -0,585 -0,704 -0,074 -0,074 -0,074 -0,046 -0,653 -0,734
$\begin{array}{c} NO_{3}^{-} \\ Na^{+} \\ NaAlO_{2}^{*} \\ NaHSiO_{3}^{*} \\ NaOH^{*} \\ NdCO_{3}^{+} \\ NdCO_{3}^{+2} \\ NdHCO_{3}^{+2} \\ NdNO_{4}^{+2} \\ NdSO_{4}^{+} \\ Ni^{+2} \\ O_{2}^{*} \\ PO_{4}^{+3} \\ Pb^{+2} \\ Pb^{+3} \\ Pt^{*3} \\ \end{array}$	-165 -25748 -26200 -65243 -284747 -320291 -118570 -172540 -321613 -324968 -198740 -225867 -351932 -18840 -905 -265856 -11908 -174039	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e-15 5,8769e-08 1,3611e-18 7,3200e-16 6,9956e-08 1,9292e-14 7,7767e-07 5,9069e-06 3,0307e-04 1,8274e-16 1,5449e-04 1,3631e-07	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011890e-15 5,770564474590e-08 1,336471059094e-18 7,187582016919e-16 6,869068839582e-08 1,894339796039e-14 7,636036626920e-07 5,799999825495e-06 2,975866905515e-04 1,794347885223e-16 1,516936739194e-04 1,338468899000e-07	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604e-10 8,4768e-03 2,7800e-13 1,5025e-10 1,4428e-02 3,1109e-09 1,8688e-01 3,4667e-01 9,6979e+00 1,7355e-11 3,2010e+01 1,9208e-02	-3,277 -13,276 -11,604 -1,767 -17,972 -9,693 -14,146 -7,231 -17,866 -15,135 -7,155 -13,715 -6,109 -5,229 -3,518 -15,738 -3,811 -6,865	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375 0,0299 1,1012 0,2106 0,2603 0,1976 0,8429 0,2548 0,8998 0,2225 0,1843 0,0301	0,033 0,044 0,021 0,180 0,032 0,051 0,132 1,524 0,042 0,677 0,585 0,704 0,704 0,074 0,074 0,046 0,653 0,734 1,522
$\begin{array}{c} NO_{3}^{-} \\ Na^{+} \\ NaAlO_{2}^{*} \\ NaHSiO_{3}^{*} \\ NaOH^{*} \\ NdCO_{3}^{+} \\ NdCO_{3}^{+2} \\ NdHCO_{3}^{+2} \\ NdNO_{4}^{+2} \\ NdSO_{4}^{+} \\ Ni^{+2} \\ O_{2}^{*} \\ PO_{4}^{+3} \\ Pb^{+2} \\ Pb^{+2} \\ Pr^{+3} \\ PrCO_{3}^{+} \\ \end{array}$	-165 -25748 -26200 -65243 -284747 -320291 -118570 -172540 -321613 -324968 -198740 -225867 -351932 -18840 -905 -265856 -11908 -174039 -323112	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e-15 5,8769e-08 1,3611e-18 7,3200e-16 6,9956e-08 1,9292e-14 7,7767e-07 5,9069e-06 3,0307e-04 1,8274e-16 1,5449e-04 1,3631e-07 2,2504e-18	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011890e-15 5,770564474590e-08 1,336471059094e-18 7,187582016919e-16 6,869068839582e-08 1,894339796039e-14 7,636036626920e-07 5,799999825495e-06 2,975866905515e-04 1,794347885223e-16 1,516936739194e-04 1,338468899000e-07 2,209715598295e-18	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604e-10 8,4768e-03 2,7800e-13 1,5025e-10 1,4428e-02 3,1109e-09 1,8688e-01 3,4667e-01 9,6979e+00 1,7355e-11 3,2010e+01 1,9208e-02 4,5215e-13	-3,277 -13,276 -11,604 -1,767 -17,972 -9,693 -14,146 -7,231 -17,866 -15,135 -7,155 -13,715 -6,109 -5,229 -3,518 -15,738 -3,811 -6,865 -17,648	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375 0,0299 1,1012 0,2106 0,2603 0,1976 0,8429 0,2548 0,8998 0,2225 0,1843 0,0301 1,1073	0,033 0,044 0,021 0,180 0,032 0,051 0,132 1,524 0,042 0,677 0,585 0,704 0,704 0,074 0,074 0,046 0,653 0,734 1,522 0,044
$\begin{array}{c} NO_{3}^{-} \\ Na^{+} \\ NaAlO_{2}^{*} \\ NaHSiO_{3}^{*} \\ NaOH^{*} \\ NdOH^{*} \\ NdCO_{3}^{+} \\ NdHCO_{3}^{+2} \\ NdHO_{3}^{+2} \\ NdSO_{4}^{+} \\ NdSO_{4}^{+} \\ Ni^{+2} \\ O_{2}^{*} \\ PO_{4}^{-3} \\ Pb^{+2} $	-165 -25748 -26200 -65243 -284747 -320291 -118570 -172540 -321613 -324968 -198740 -225867 -351932 -18840 -905 -265856 -11908 -11908 -174039 -323112 -326467	5,2853e-04 5,2979e-14 2,4887e-12 1,7110e-02 1,0671e-18 2,0278e-10 7,1515e-15 5,8769e-08 1,3611e-18 7,3200e-16 6,9956e-08 1,9292e-14 7,7767e-07 5,9069e-06 3,0307e-04 1,8274e-16 1,5449e-04 1,3631e-07 2,2504e-18 1,7079e-15	5,189641881469e-04 5,202058356581e-14 2,443646679995e-12 1,679999980088e-02 1,047759901841e-18 1,991083790935e-10 7,022105011890e-15 5,770564474590e-08 1,336471059094e-18 7,187582016919e-16 6,869068839582e-08 1,894339796039e-14 7,636036626920e-07 5,799999825495e-06 2,975866905515e-04 1,794347885223e-16 1,516936739194e-04 1,338468899000e-07 2,209715598295e-18 1,677041563197e-15	1,4806e+01 2,4373e-09 1,5431e-07 3,9334e+02 8,7467e-14 2,0294e-05 2,8604e-10 8,4768e-03 2,7800e-13 1,5025e-10 1,4428e-02 3,1109e-09 1,8688e-01 3,4667e-01 9,6979e+00 1,7355e-11 3,2010e+01 1,9208e-02 4,5215e-13 3,4488e-10	$\begin{array}{r} -3,277\\ -13,276\\ -11,604\\ -1,767\\ -17,972\\ -9,693\\ -14,146\\ -7,231\\ -17,866\\ -15,135\\ -7,155\\ -13,715\\ -6,109\\ -5,229\\ -3,518\\ -15,738\\ -3,811\\ -6,865\\ -17,648\\ -14,768\end{array}$	0,9263 1,1068 1,0498 0,6611 1,0770 1,1240 0,7375 0,0299 1,1012 0,2106 0,2603 0,1976 0,8429 0,2548 0,8998 0,2225 0,1843 0,0301 1,1073 0,2490	0,033 0,044 0,021 0,180 0,032 0,051 0,132 1,524 0,042 0,677 0,585 0,704 0,678 0,704 0,074 0,594 0,046 0,653 0,734 1,522 0,044 0,604

PrOH ⁺²	-227366	3,1869e-14	3,129196933513e-14	5,0325e-09	-13,497	0,1989	-0,701
$PrSO_4^+$	-353431	8,4114e-14	8,259224490520e-14	1,9933e-08	-13,075	0,8492	-0,071
Rb^+	-75128	7,3327e-06	7,200000286102e-06	6,2671e-01	-5,135	0,5764	-0,239
SO ₄ -2	-179392	1,2285e-01	1,206276221240e-01	1,1801e+04	-0,911	0,6855	-0,164
Sc ⁺³	-150279	1,2221e-06	1,199999973178e-06	5,4941e-02	-5,913	0,0333	-1,478
SiO ₂ *	-201721	1,1203e-02	1,099999946747e-02	6,7310e+02	-1,951	1,2387	0,093
Sm ⁺³	-171968	1,2143e-08	1,192351026662e-08	1,8259e-03	-7,916	0,0303	-1,519
SmHCO ₃ ⁺²	-324396	1,2717e-16	1,248704785573e-16	2,6881e-11	-15,896	0,2139	-0,670
SmOH ⁺²	-225295	5,5663e-15	5,465624029831e-15	9,3162e-10	-14,254	0,2005	-0,698
$SmSO_4^+$	-351360	1,6099e-07	1,580764933812e-07	3,9671e-02	-6,793	0,8507	-0,070
Sn ⁺²	-14679	6,3096e-06	6,195450065895e-06	7,4901e-01	-5,200	0,1985	-0,702
St ⁺²	-143046	4,0839e-06	4,009999930859e-06	3,5783e-01	-5,389	0,2055	-0,687
	-1/3615	1,4344e-09	1,408442224272e-09	2,2796e-04	-8,843	0,0312	-1,506
TbHCO ₃ ¹²	-326043	1,0633e-17	1,044051639654e-17	2,3386e-12	-16,973	0,2632	-0,580
TbOH *	-226942	9,1213e-16	8,95632/33/543e-16	1,604/e-10	-15,040	0,2089	-0,680
T0504 T1+	-353007	1,89346-08	1,8591557819556-08	4,82806-03	-7,723	0,8812	-0,055
11 T1+3	-16019	1.05250.12	4,9999695557220-06	2 15110 08	-7,295	0,3700	-0,244
Tm ⁺³	172085	7 8674e 00	7 7250/19656330 00	1 3201e 03	-12,978	0,0290	-1,538
TmHCO.+2	-325416	7,80746-09	7,723041903033e-09	1,32910-03	-16,009	0,0324	-1,490
TmNO ₂ ⁺²	-199185	2 3169e-09	2 274951666600e-09	5 3505e-04	-10,077	0,2338	-0,028
TmOH ⁺²	-226315	6.8886e-15	6 764008044963e-15	1 2809e-09	-14 162	0,3024	-0.658
VO ⁺²	-122093	2.0085e-11	1.972187031665e-11	1,3445e-06	-10.697	0.2576	-0.589
VO ₂ ⁺	-147306	8,8155e-06	8,656018903953e-06	7,3116e-01	-5.055	0,8259	-0,083
WO ₄ -2	-228697	1,5276e-07	1,499999966472e-07	3,7862e-02	-6,816	0,6533	-0,185
Y ⁺³	-174204	7,1290e-07	7,00000029801e-07	6,3381e-02	-6,147	0,0330	-1,482
Yb ⁺³	-166478	4,0947e-09	4,020654450160e-09	7,0855e-04	-8,388	0,0320	-1,494
YbHCO3 ⁺²	-318906	4,8895e-17	4,801042418428e-17	1,1444e-11	-16,311	0,2321	-0,634
YbNO ₃ ⁺²	-192678	1,2199e-09	1,197855574000e-09	2,8674e-04	-8,914	0,2960	-0,529
YbOH ⁺²	-219805	4,2847e-15	4,207212725326e-15	8,1430e-10	-14,368	0,2163	-0,665
$YbSO_4^+$	-345870	4,5607e-08	4,478148460267e-08	1,2273e-02	-7,341	0,9059	-0,043
Zn ⁺²	-39987	1,2608e-03	1,237998097348e-03	8,2444e+01	-2,899	0,2442	-0,612
AsO ₄ -3	-178540	2,6862e-17	2,637613671695e-17	3,7317e-12	-16,571	0,1953	-0,709
BaOH ⁺	-194870	4,8737e-17	4,785517241209e-17	7,5218e-12	-16,312	0,5833	-0,234
BeOH ⁺	-148094	1,1032e-06	1,083242875182e-06	2,8705e-02	-5,957	0,8877	-0,052
CoOH ⁺	-75174	1,1087e-14	1,088619333495e-14	8,4194e-10	-13,955	0,8252	-0,083
Cr ⁺³	-59967	3,9070e-07	3,836305998082e-07	2,0315e-02	-6,408	0,0386	-1,414
$Cr_2O_7^{-2}$	-321180	2,5946e-06	2,547708152534e-06	5,6041e-01	-5,586	0,3672	-0,435
CrO ⁺	-109939	2,8324e-13	2,781169725990e-13	1,9259e-08	-12,548	0,9594	-0,018
CrO_4^{-2}	-1855/6	1,9922e-08	1,9561261105//e-08	2,3108e-03	-/,/01	0,6290	-0,201
CION CuO*	-115294	7.06782.16	6.0200782282020.16	9,7800e-03	-0,049	0,2955	-0,332
	-41118	/,0078e-10	1 2202270/1/0/e 11	3 4696e 06	-13,131	0.7050	0,233
FeO ⁺	-57949	3 3253e-04	3 265105956127e-04	2 3891e+01	-10,500	0,8336	-0,079
FeO ₂ ⁻	-107921	1.8837e-15	1 849583620561e-15	1.6547e-10	-14 725	1 3170	0.120
FeOH ⁺	-86064	1,8355e-15	1.802310880608e-15	1,3373e-10	-14.736	0.8252	-0.083
FeOH ⁺²	-61304	1,1072e-02	1.087124474532e-02	8.0661e+02	-1.956	0.2424	-0.615
HgO*	-22471	9,9706e-11	9,790265550569e-11	2,1595e-05	-10,001	1,1240	0,051
HgOH ⁺	-25826	3,6856e-10	3,618894550583e-10	8,0197e-05	-9,433	0,6446	-0,191
NiOH ⁺	-72167	7,7522e-15	7,611946202685e-15	5,8682e-10	-14,111	0,8885	-0,051
PbO*	-61880	2,7048e-17	2,655899406527e-17	6,0372e-12	-16,568	1,1240	0,051
PbOH ⁺	-65235	6,4434e-09	6,326843470871e-09	1,4447e-03	-8,191	0,8252	-0,083
SnO*	-64651	7,0215e-09	6,894444720814e-09	9,4586e-04	-8,154	1,1240	0,051
SnOH ⁺	-68006	2,0130e-07	1,976553463329e-07	2,7320e-02	-6,696	0,6299	-0,201
UO2 ⁺²	-238608	4,0737e-08	4,000000189991e-08	1,1000e-02	-7,390	0,2382	-0,623
ZnO*	-89959	2,6617e-17	2,613584782781e-17	2,1664e-12	-16,575	1,1240	0,051
ZnOH ⁺	-93314	1,9688e-09	1,933169075209e-09	1,6222e-04	-8,706	0,6548	-0,184
Zr ⁺⁴	-146670	7,4428e-08	7,308118146315e-08	6,7896e-03	-7,128	0,0020	-2,697
ZrU' ²	-196642	/,454/e-07	/,519/88/4/888e-07	7,9931e-02	-6,128	0,3140	-0,503
ZrO_2	-246614	1,8219e-10	1,788921510296e-10	2,2450e-05	-9,739	1,1240	0,051
ZI(UH)	-19999/	2,5000e-06	2,454/011010050-00	2,/0586-01	-5,602	0,030/	-1,435
<u>Uп</u> u+	-33321	1,7033e-12	1,9277401349910-12 6 282048202865 - 02	5,55900-08	-11,/0/	1,48/3	0,172
H ₂ O	-3333	5 5510e+01	5 4505740774450101	1 00000 00	-2,194 1 744	1 0000	-0,208
<u>Газ</u>	50002	5,55100+01	5,7505777777795701	1,00000 F00	1,/77	1,0000	0,000
CO ₂	-99101		1.020427616906e-02	0.04	-1.991	1.0000	0.000
N2	-165		2.755189708932e+01	74.04	1.440	1.0000	0.000
NO	-535		9.578247444939e-15	0.00	-14.019	0.9995	-0.000
NO ₂	-988		5,411862173672e-09	0.00	-8.267	1.0000	0.000
N ₂ O	-618		8,997225326182e-18	0,00	-17.046	0,9946	-0,002
O ₂	-905		7,905866028259e+00	24,27	0,898	1,0000	0,000
H ₂ O	-56682		9,553630575883e-01	1,65	-0,020	1,0000	0,000
						•	

Параметры газов

Γ	ф	I 1	Парциальное	Log парциального	Log коэф.
1 83	Фугитивность	Log фугитивности	давление	давления	Фугитивности
NH ₃	9,9191e-60	-5,9004e+01	9,9191e-60	-5,9004e+01	0,0000e+00
CO ₂	2,8016e-04	-3,5526e+00	2,8016e-04	-3,5526e+00	0,0000e+00
CO	5,2598e-49	-4,8279e+01	5,2598e-49	-4,8279e+01	0,0000e+00
C_2H_6	1,0000e-70	-2,6184e+02	1,0000e-70	-2,6183e+02	-3,2681e-03
H ₂	6,0710e-42	-4,1217e+01	6,0710e-42	-4,1217e+01	0,0000e+00
H_2S	1,0000e-70	-1,2921e+02	1,0000e-70	-1,2921e+02	0,0000e+00
CH ₄	1,0000e-70	-1,4553e+02	1,0000e-70	-1,4553e+02	0,0000e+00
N ₂	7,5644e-01	-1,2123e-01	7,5644e-01	-1,2123e-01	0,0000e+00
NO	2,6284e-16	-1,5580e+01	2,6297e-16	-1,5580e+01	-2,1019e-04
NO ₂	1,4858e-10	-9,8280e+00	1,4858e-10	-9,8280e+00	0,0000e+00
N ₂ O	2,4569e-19	-1,8610e+01	2,4702e-19	-1,8607e+01	-2,3388e-03
O ₂	2,1706e-01	-6,6343e-01	2,1706e-01	-6,6343e-01	0,0000e+00
C_3H_8	1,0000e-70	-3,7669e+02	1,0000e-70	-3,7668e+02	-7,1244e-03
H ₂ O	2,6229e-02	-1,5812e+00	2,6229e-02	-1,5812e+00	0,0000e+00
S ₂	1,0000e-70	-2,0163e+02	1,0000e-70	-2,0163e+02	0,0000e+00
SO ₂	1,1421e-42	-4,1942e+01	1,1421e-42	-4,1942e+01	0,0000e+00

Таблица 12

Результаты физико-химического моделирования ионного состава раствора при объемных соотношениях «вода-порода» 50 г.п. / 1 кг H₂O равновесного с минеральной фазой (модель 6.2)

Таблица 12-1

Резервуар 1					
Температура, °С	25,00	G, кал	-3254596	Eh, B	1,0697
Давление, бар	1,00	Н, кал	-3881809	pe	18,1187
Масса, кг	2,050	S, кал/К	2643,634	pH	2,4900
Объем мультисистемы, см ³	895771,250	U, кал	-3855242	Ионная сила	0,3709
Плотность мультисистемы, г/см ³	0,002290	Ср, кал	1227,47	TDS, mg/kgH ₂ O	24863,2197484

Таблица 12-2

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	984,06473	5,46569e+01	1001,6876	1,01791e+00	48,83013
Газ	894786,96065	3,60956e+01	1032,1121	1,15347e-03	50,31326
Твердая фаза					
Алуноген	0,00000	5,44739e-03	3,6303	0,00000e+00	0,17697
Гипс	0,00000	5,71689e-02	9,8429	0,00000e+00	0,47982
Монтмориллонит	0,23661	1,80628e-03	0,6759	2,85672e+00	0,03295
Бианкит	0,00000	8,66600e-07	0,0002	0,00000e+00	0,00001
Фиброферрит	0,00000	1,32164e-02	3,4230	0,00000e+00	0,16686

Таблица 12-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. Активности	Log коэф. Активности
Водный раство	р						
Ag^+	5660	6,4461e-10	6,300000250340e-10	6,9533e-05	-9,191	0,6745	-0,171
Al(OH) ⁺²	-190531	1,0129e-18	9,898958610659e-19	4,4554e-14	-17,994	0,2778	-0,556
Al ⁺³	-137241	2,0835e-15	2,036285124732e-15	5,6216e-11	-14,681	0,0448	-1,348
Au ⁺	25539	2,0771e-10	2,029999941587e-10	4,0912e-05	-9,683	0,6496	-0,187
Ba ⁺²	-145745	1,1603e-08	1,134000003338e-08	1,5934e-03	-7,935	0,2212	-0,655
Be ⁺²	-99153	1,1022e-11	1,077223564940e-11	9,9333e-08	-10,958	0,3024	-0,519
CO_2^*	-99095	8,8719e-06	8,670806657429e-06	3,9045e-01	-5,052	1,0743	0,031
CO3-2	-148993	3,7233e-17	3,638888058645e-17	2,2343e-12	-16,429	0,5143	-0,289
$Ca(CO_3)^*$	-285506	2,2909e-17	2,238995105537e-17	2,2929e-12	-16,640	1,0705	0,030
$Ca(HCO_3)^+$	-288899	1,3146e-11	1,284803034647e-11	1,3290e-06	-10,881	0,6801	-0,167
Ca ⁺²	-136513	2,4828e-03	2,426530026218e-03	9,9506e+01	-2,605	0,2408	-0,618
CaSO ₄ *	-316232	3,4835e-03	3,404576984832e-03	4,7426e+02	-2,458	1,0816	0,034
Cd ⁺²	-31320	1,7906e-09	1,75000000000e-09	2,0128e-04	-8,747	0,2460	-0,609
Ce ⁺³	-175634	1,3187e-09	1,288836044821e-09	1,8477e-04	-8,880	0,0388	-1,411
CeH ₂ PO ₄ ⁺²	-448623	4,7186e-10	4,611630400048e-10	1,1188e-04	-9,326	0,2575	-0,589
CeHCO ₃ ⁺²	-328020	2,4213e-17	2,366441174856e-17	4,8701e-12	-16,616	0,2357	-0,628
CeOH ⁺²	-228925	2,6468e-16	2,586798327012e-16	4,1587e-11	-15,577	0,2272	-0,644
$CeSO_4^+$	-355354	6,4751e-16	6,328303189177e-16	1,5293e-10	-15,189	0,7934	-0,100

Таблица 11-4

продолжение таолицы 12-	Прод	олжение	таблиць	ы 12-	-3
-------------------------	------	---------	---------	-------	----

Co ⁺²	-26116	9,3111e-10	9,099999576187e-10	5,4873e-05	-9,031	0,2590	-0,587
Cs ⁺	-82763	4.2974e-10	4 199999906123e-10	5.7115e-05	-9.367	0.6247	-0.204
Cu ⁺²	4503	2 0/37e 08	2 8760065072569 08	1 8706e 03	7 531	0.2538	0,596
Cu D +3	4393	2,94376-08	2,8709903972308-08	1,87000-05	-7,331	0,2338	-0,390
Dy ¹³	-1/5953	5,5805e-12	5,453956/4890/e-12	9,0682e-07	-11,253	0,0402	-1,396
DyOH ⁺²	-229243	4,2752e-18	4,178330317544e-18	7,6744e-13	-17,369	0,2375	-0,624
$DySO_4^+$	-355672	5,8881e-11	5,754603636076e-11	1,5224e-05	-10,230	0,8164	-0,088
Er ⁺³	-177400	3.6145e-12	3.532593232436e-12	6.0457e-07	-11.442	0.0408	-1.389
ErOH ⁺²	-230690	3 2677e-18	3 193586953641e-18	6.0212e-13	-17 486	0.2423	-0.616
ErSO ⁺	250090	2 2107o 11	2 1467402701670 11	8 47820 06	10,402	0.8207	0.091
EISO4	-55/119	3,21976-11	3,140/402/910/e-11	0,47030-00	-10,492	0,8307	-0,081
Eu ¹⁵	-155041	2,4/53e-12	2,419220////8/e-12	3,/616e-0/	-11,606	0,0397	-1,401
EuOH ⁺²	-208332	1,6079e-18	1,571455247072e-18	2,7169e-13	-17,794	0,2338	-0,631
EuSO ₄ ⁺	-334761	2,6174e-11	2,558077898069e-11	6,4919e-06	-10,582	0,8051	-0,094
Fe ⁺³	-30125	2.0173e-18	1.971615643846e-18	1.1266e-13	-17.695	0.0426	-1.370
Ga+3	52283	7 3772e 10	7 21000008345e 10	5 1/360 05	0.132	0.0457	1 3/1
Oa 1+3	-52265	0.2111 11	0.0000000000000000000000000000000000000	1,14306-05	-9,132	0,0437	-1,341
Gd	-1/4204	9,3111e-11	9,099989646709e-11	1,4642e-05	-10,031	0,0389	-1,410
GdHCO ₃ ⁺²	-326590	1,0304e-18	1,007029892682e-18	2,2490e-13	-17,987	0,2360	-0,627
GdOH ⁺²	-227495	6,0908e-17	5,952776522375e-17	1,0614e-11	-16,215	0,2275	-0,643
GdSO4 ⁺	-353924	4.5916e-17	4.487565746220e-17	1.1631e-11	-16.338	0.7909	-0.102
HaAsO	-189657	8 9950e-08	8 791090377720e-08	1 2677e-02	-7.046	0.9355	-0.029
112/1304 11 DO -	272089	9,7715 o 02	8 1817252602042 02	9 1102a + 02	2,077	0,0692	0,027
	-272988	8,5/150-05	8,181/332092946-03	8,11930+02	-2,077	0,9085	-0,014
H_2VO_4	-258219	4,0274e-11	3,936085928891e-11	4,7102e-06	-10,395	0,9305	-0,031
$H_3PO_4^*$	-276381	3,9065e-03	3,817963725427e-03	3,8282e+02	-2,408	1,0005	0,000
HasO ₄ -2	-186265	9,3102e-12	9,099160115459e-12	1,3028e-06	-11,031	0,4833	-0,316
HCO ₂ -	-152386	1.3901e-09	1.358628373509e-09	8.4822e-05	-8.857	0.9583	-0.018
HNO.*	_29576	3 4182e-16	3 340748936308e-16	2 1530e-11	-15/66	0.9510	-0.021
	-27570	2 0749- 07	2 005144109292- 07	2,15570-11	-13,400	0,5025	-0,021
	-209396	3,0/48e-0/	3,005144198686e-0/	2,9512e-02	-0,512	0,5035	-0,298
HSO ₄ -	-183112	1,6257e-02	1,588828079211e-02	1,5781e+03	-1,789	0,9255	-0,034
HVO ₄ ⁻²	-254827	2,1047e-16	2,056976181005e-16	2,4403e-11	-15,677	0,4720	-0,326
Hg ⁺²	23268	6.7746e-12	6.621048007554e-12	1.3589e-06	-11.169	0.2347	-0.630
Ho ⁺³	-179/56	1.4451e-12	1 /123/2791052e-12	2 3834e-07	-11.840	0.0400	_1 398
110 11-011+2	-177450	1,77510-12	1,4125427710526-12	2,305+0-07	17,090	0,0400	-1,570
HOUH	-232740	1,3128e-18	1,283030807734e-18	2,38856-15	-17,882	0,2360	-0,627
$HoSO_4^+$	-359175	1,2880e-11	1,258765659088e-11	3,3615e-06	-10,890	0,8125	-0,090
K^+	-69114	1,0175e-01	9,944339883531e-02	3,9782e+03	-0,992	0,6509	-0,187
KOH*	-122404	2,6302e-08	2,570584367471e-08	1,4757e-03	-7,580	1,0629	0,026
KSO	-248833	2 7173e-02	2 655657545885e-02	3.6727e+03	-1 566	0,9009	-0.045
L a ⁺³	170746	7 2230e 11	7.060150280238e 11	1.0034e.05	10.141	0.0305	1 404
La L LI DO +?	-179740	2,0205, 11	7,0001392802386-11	7,00346-03	-10,141	0,0395	-1,404
LaH ₂ PO ₄ ⁻²	-452734	3,0385e-11	2,969641278526e-11	/,16/66-06	-10,517	0,2635	-0,579
LaHCO ₃ ⁺²	-332131	1,5601e-18	1,524714462135e-18	3,1189e-13	-17,807	0,2411	-0,618
LaOH ⁺²	-233036	8,6959e-18	8,498731746939e-18	1,3558e-12	-17,061	0,2320	-0,634
$LaSO_4^+$	-359465	7.5686e-10	7.397021492958e-10	1.7784e-04	-9.121	0.8081	-0.093
L i ⁺	-80426	2 7647e-08	2 701999926567e-08	1 9190e-04	-7 558	0.7306	-0.136
Lu ⁺³	179120	4 25220 12	4 2525521240070 12	7,6140a.08	12 261	0.0410	1 279
Lu L CO ±	-1/0139	4,33226-13	4,2333331249976-13	1,01496-08	-12,301	0,0419	-1,378
LuSO ₄	-35/858	3,8622e-12	3,774644886990e-12	1,0468e-06	-11,413	0,8556	-0,068
$Mg(CO_3)^*$	-261283	2,8683e-17	2,803244595786e-17	2,4184e-12	-16,542	1,0705	0,030
$Mg(HCO_3)^+$	-264675	3,2291e-11	3,155883533367e-11	2,7551e-06	-10,491	0,7534	-0,123
Mg ⁺²	-112290	6.2376e-03	6.096204155795e-03	1.5160e+02	-2.205	0.2675	-0.573
Mn ⁺²	-59008	2.0009e=03	1 955501361001e-03	$1.0992e\pm02$	-2 699	0.2462	-0.609
MnSO.*	238727	5.0615e.03	4 9467659389569 03	7.6429e+02	2,099	1.0705	0,009
MIDO4	-236727	5,00136-03	4,9407039389306-03	7,04296+02	-2,290	1,0705	0,030
MOO ₄ ²	-214320	5,/299e-11	5,60000265986e-11	9,1642e-06	-10,242	0,4656	-0,332
N ₂	-160	5,1581e-04	5,041207045842e-04	1,4450e+01	-3,288	0,9563	-0,019
NO ₂ -	-25722	6,5851e-14	6,435829180656e-14	3,0295e-09	-13,181	0,9285	-0,032
NO ₃ -	-26184	2,9778e-12	2,910285694328e-12	1,8464e-07	-11,526	0,9003	-0,046
Na ⁺	-64022	1.2892e-01	1.259999999999e-01	2.9639e+03	-0.890	0.6876	-0.163
NaOH*	-117313	5 2511e-14	5 132100599621e-14	2 1003e-09	-13 280	0.8374	-0.077
NJ1+3	17(500	4.9694-11	4759066624695-11	7,0000-07	10,212	0,0374	-0,077
INU INC. 12	-1/0388	4,00846-11	4,/30000240830-11	1,0222e-06	-10,513	0,0389	-1,410
NdNO ₃ ⁺²	-202771	7,5369e-11	7,366013906339e-11	1,5544e-05	-10,123	0,2677	-0,572
NdOH ⁺²	-229878	1,9183e-17	1,874841166914e-17	3,0932e-12	-16,717	0,2280	-0,642
$NdSO_4^+$	-356307	5,1340e-10	5,017596854667e-10	1,2337e-04	-9,290	0,7922	-0,101
Ni ⁺²	-23118	4.1542e-09	4.059999876777e-09	2.4381e-04	-8.382	0.2644	-0.578
0.*	024	2 80470 04	2 7/11/2301816% 0/	8 97/70100	_3 552	0.0402	_0.027
DO -3	-724	1,004/0-04	1762247052047	1,7104 11	-5,552	0,2403	-0,027
PO4-3	-266203	1,8031e-16	1,/6224/053047e-16	1,/124e-11	-15,744	0,1254	-0,902
Pb ⁺²	-16106	1,0865e-07	1,061840990908e-07	2,2512e-02	-6,964	0,2189	-0,660
Pr ⁺³	-178262	8,4049e-11	8,214414903327e-11	1,1843e-05	-10,075	0,0390	-1,408
PrHCO ₂ +2	-330648	1.4019e-18	1.370169709090e-18	2.8309e-13	-17.853	0.2608	-0.584
PrNO ⁺²	-204446	9 5009e-11	9 285578869277e-11	1.9270e-05	-10.022	0.2690	-0.570
DrOLI+2	201552	2 2605 - 17	2 2060 / 2070072 - 17	2 7075 - 10	16,022	0,2000	0,270
PION -	-231333	2,30030-17	2,3009438/90/30-1/	5,12/50-12	-10,02/	0,2288	-0,041
$PrSO_4^+$	-357982	4,1380e-17	4,044209500005e-17	9,8059e-12	-16,383	0,7956	-0,099
Rb^+	-79371	5,1569e-09	5,040000200272e-09	4,4075e-04	-8,288	0,6347	-0,197
SO_4^{-2}	-179719	1,0281e-01	1,004754626438e-01	9,8759e+03	-0,988	0,4707	-0,327
Sc ⁺³	-154450	8 5948e-10	8 399999812245e-10	3 8639e-05	-9.066	0.0414	-1 383
Sm+3	175001	1 05262 11	1 020696922640- 11	1 50/1 - 00	10.077	0.0202	1,305
SIII C	-1/3991	1,05366-11	1,0290808326496-11	1,58410-00	-10,977	0,0392	-1,407
I SmOH ⁺²	-229281	5.8058e-18	5.674224996601e-18	9./171e-13	-17.236	0.2299	-0.638

Продолжение таблицы 12-3

					11p	одолжение і	uomingbi 12 J
$SmSO_4^+$	-355710	1,1122e-10	1,087031324664e-10	2,7408e-05	-9,954	0,7964	-0,099
Sn ⁺²	-18898	4.4146e-09	4.314524757031e-09	5.2406e-04	-8.355	0.2286	-0.641
Sr ⁺²	-147271	2.8721e-09	2.806999951601e-09	2.5165e-04	-8.542	0.2332	-0.632
Tb ⁺³	-177646	1.2425e-12	1.214379605862e-12	1.9747e-07	-11.906	0.0399	-1.399
ThSO ₄ ⁺	-357366	1 3082e-11	1 278562012674e-11	3 3358e-06	-10.883	0.8129	-0.090
T1+	-22260	3 5812e-11	3 499994654531e-11	7 3193e-06	-10.446	0.6307	-0.200
T1+3	27176	5 3894e-17	5,1555510510510510	1 1015e-11	-16 268	0.0382	-1 418
Tm ⁺³	-177193	5 1344e-12	5.018018552341e-12	8 6738e-07	-11 290	0.0408	-1 389
TmNO ₂ +2	-203377	2.0279e-12	1 981976418248e-12	4 6833e-07	-11,290	0.2921	-0.534
TmOH+2	-230483	5 4863e-18	5 361893272840e-18	1,0201e-12	-17 261	0.2424	-0.615
VO ⁺²	-126459	1 2256e-14	1 197863056443e-14	8 2046e-10	-13 912	0,2661	-0.575
VO ₂ ⁺	-151639	6 1910e-09	6 050626989986e-09	5 1348e-04	-8 208	0.7828	-0,575
WO ₄ -2	-233208	1 0744e-10	1.049999976531e-10	2 6628e-05	-9.969	0.4577	-0.339
V ⁺³	-178372	5.0137e-10	4 90000020862e-10	4 4574e-05	-9 300	0.0412	-1 385
Yh ⁺³	-170572	3.4816e-12	3 402695871940e-12	6.0246e-07	-11 458	0.0405	-1,303
YbNO-+2	-196711	1 38330-12	1 351076/882269-12	3 2515e-07	-11,450	0,0405	-0.540
VbOH ⁺²	-120711	1,30336-12	4 3136907079939-18	8 38820-13	-17 355	0,2003	-0,540
VbSO.+	-350246	3.09/7e-11	3.024532254409e-11	8 3279-06	-10,509	0,2403	-0.083
BeOH ⁺	-152444	7.7684e-10	7 592277601948e-10	2.0213e-05	-9,110	0,8164	-0,005
CoOH ⁺	-79407	9.2115e-18	9.002658864699e-18	6.0052e-13	-17.036	0.7824	-0,000
Cr ⁺³	-62777	2 9051e-09	2 8392662350180-09	1 5105e-04	-8 537	0.0452	-1.345
Cr-O2	-326531	3.4769e-10	3 3980782402376-10	7 5007e-05	-9,357	0.3271	-0.485
CrO^+	-112675	3 1386e-15	3.067/522308010-15	2 13/16-10	-14 503	0,5271	-0.068
CrO ₂ -2	-112075	3 2539e-10	3 1801525887729-10	3 77/30-05	-14,303	0,4477	-0.349
CrOH+2	-116067	1 3/19e-11	1 311/78653150e-11	9,77450-05	-10.872	0,4477	-0,542
CuOH ⁺	-18608	3 57720-14	3 4961290990869-14	2 8816e-09	-13.446	0,2671	-0,116
HgO*	-46078	9.3570e-14	9 1/57962/81299-1/	2,00100-09	-13,440	1.0705	0.030
HgOH ⁺	-20030	2.9416e-13	2 87/0/80//335e-13	6.4009e-08	-12 531	0.6775	-0.169
NjOU+	-30022	2,9410c-13	6 3077606072530 18	4.95530.13	17 184	0,0775	-0,107
PhOH ⁺	-60307	6.0383e-12	5 901///3292133e-12	1 3538-06	-11,104	0,810	-0,088
SnO [*]	-68796	6.7327e-12	6 580104069379e-12	9,0696e-07	-11,217	1.0705	0.030
SnOU ⁺	-08720	1.62580.10	1 588050441370a 10	2,00500-07	0.780	0.6685	0,030
UO. ⁺²	-242870	2 8649e-11	2 80000132993e-11	7.7361e-06	-9,789	0,0085	-0,175
7 r ⁺⁴	-242870	2,004/0-11	3 403611072000a 11	3 17600 06	10,545	0,2342	2 400
Z_{r} Z_{r}	-130941	6 5638e-10	6 415004682710e-10	7.0379e-05	-10,438	0,0032	-2,499
ZiO 7rO.*	-250737	1.8154e-13	1 774248267041e-13	2 2370e-08	-12 741	1.0705	0.030
$Zr(OH)^{+3}$	204232	1,61350.00	1,6062860255822.00	1,77880,04	9 784	0.0430	1 358
OH-	-53290	2 81280-12	2 7490419836069-12	1,778380-04	-11 551	1 1030	0.043
- Н ⁺	-3303	5 2980e-03	5 177949535841e-03	4,78580-08	-2.276	0.6108	-0.214
H ₂ O	-56683	5,5510e+01	5 425169288383e+01	$1,0000e\pm00$	1 744	1,0000	0,000
<u>Гр</u>	-50005	5,55100+01	3,4231072003030101	1,00000100	1,/++	1,0000	0,000
CO	-99095		1.020381780911e-02	0.04	-1 991	1.0000	0.000
N2	-160		2 755191202698e+01	74 78	1 440	1,0000	0,000
NO	-100		9 383750947048e-15	0.00	-14 028	0.9995	-0.000
NO	-1004		5 217834428820e-09	0,00	-8 283	1,0000	0,000
N ₂ O	-1004		8 854458442569e-18	0,00	-17.053	0.9946	-0.002
0	-022		7 5880/7771583e+00	23.53	0.880	1,0000	0,002
H ₂ O	-56683		9 454075748430e_01	1.65	-0.024	1,0000	0,000
Траплад фаза	-50005		9,4540757404500-01	1,05	-0,024	1,0000	0,000
А пуноген							
Al ₂ [SO ₄] ₃ ·18H ₂ O	-1833930		5,447387434168e-03	20,66	-2,264	1,0000	0,000
Гипс CaSO ₄ ·2H ₂ O	-429598		5,716889297610e-02	56,01	-1,243	1,0000	0,000
Монтмориллони	т -12430700)	1,806282754079e-03	3,85	-2,743	1,0000	0,000
Бианкит	610501		9 666000012602- 07	0.00	6.062	1.0000	0.000
ZnSO ₄ ·6H ₂ O	-012591		8,000000213023e-07	0,00	-0,062	1,0000	0,000
Fe[SO ₄](OH)·5H ₂	-546549		1,321642026231e-02	19,48	-1,879	1,0000	0,000

Параметры газов

Таблица 12-4

Газ	Фугитивность	Log фугитивности	Парциальное давление	Log парциального давления	Log коэф. Фугитивности
NH ₃	1,0184e-59	-5,8992e+01	1,0184e-59	-5,8992e+01	0,0000e+00
CO ₂	2,8269e-04	-3,5487e+00	2,8269e-04	-3,5487e+00	0,0000e+00
CO	5,3929e-49	-4,8268e+01	5,3929e-49	-4,8268e+01	0,0000e+00
C_2H_6	1,0000e-70	-2,6178e+02	1,0000e-70	-2,6178e+02	-3,2681e-03
H_2	6,1600e-42	-4,1210e+01	6,1600e-42	-4,1210e+01	0,0000e+00
H ₂ S	1,0000e-70	-1,2948e+02	1,0000e-70	-1,2948e+02	0,0000e+00
CH ₄	1,0000e-70	-1,4550e+02	1,0000e-70	-1,4550e+02	0,0000e+00
N ₂	7,6330e-01	-1,1730e-01	7,6330e-01	-1,1730e-01	0,0000e+00
NO	2,5984e-16	-1,5585e+01	2,5997e-16	-1,5585e+01	-2,1019e-04
NO ₂	1,4456e-10	-9,8400e+00	1,4456e-10	-9,8400e+00	0,0000e+00
N ₂ O	2,4399e-19	-1,8613e+01	2,4531e-19	-1,8610e+01	-2,3388e-03
O ₂	2,1022e-01	-6,7732e-01	2,1022e-01	-6,7732e-01	0,0000e+00
C ₃ H ₈	1,0000e-70	-3,7661e+02	1,0000e-70	-3,7660e+02	-7,1244e-03
H ₂ O	2,6192e-02	-1,5818e+00	2,6192e-02	-1,5818e+00	0,0000e+00
S ₂	1,0000e-70	-2,0218e+02	1,0000e-70	-2,0218e+02	0,0000e+00
SO ₂	5,8907e-43	-4,2230e+01	5,8907e-43	-4,2230e+01	0,0000e+00

РЕЗУЛЬТАТЫ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ ГИПЕРГЕННОГО ПРЕОБРАЗОВАНИЯ РУДНЫХ И ТЕХНОГЕННЫХ МИНЕРАЛОВ ХВОСТОХРАНИЛИЩ ДАЛЬНЕГОРСКОГО РАЙОНА

Таблица 13

Результаты моделирования взаимодействия халькопирита (CuFeS2)с природными водами

Таблица 13-1

Резервуар 1					Tuoningu To T
Температура, °С	25,00	G, кал	-31494572	Eh, B	0,9772
Давление, бар	1,00	Н, кал	-37948640	pe	16,5510
Масса, кг	11,010	S, кал/К	10911,867	pH	4,0475
Объем мультисистемы, см ³	863757,000	U, кал	-37476476	Ионная сила	0,0216
Плотность мультисистемы, г/см ³	0,012747	Ср, кал	10218,60	TDS, mg/kgH ₂ O	862,3429130

Таблица 13-2

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	10024,10255	5,54900e+02	10003,4209	9,97937e-01	90,85761
Газ	853732,90631	3,44395e+01	992,3561	1,16237e-03	9,01323
Твердая фаза					
Познякит	0,00000	1,06829e-04	0,0502	0,00000e+00	0,00046
Роуволфит	0,00000	1,17948e-04	0,0576	0,00000e+00	0,00052
Фиброферрит	0,00000	5,44885e-02	14,1122	0,00000e+00	0,12818

Таблица 13-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или	Log моляльност	Коэф. активности	Log коэф. активности
Волный раство	n			BCC. /0	И		
CO ₂	-99073	9,9274e-06	9,921703847688e-05	4,3690e-01	-5,003	1,0042	0,002
CO3 ⁻²	-144708	4,5221e-14	4,519564257875e-13	2,7137e-09	-13,345	0,5900	-0,229
Cu ⁺	-10339	5,2971e-17	5,294063019846e-16	3,3661e-12	-16,276	0,8670	-0,062
Cu ⁺²	12240	5,3620e-03	5,358937925546e-02	3,4073e+02	-2,271	0,5662	-0,247
HCO ₃ -	-150227	5,8071e-08	5,803786066353e-07	3,5433e-03	-7,236	0,8828	-0,054
HNO ₃	-29598	3,1694e-16	3,167618702896e-15	1,9971e-11	-15,499	0,9971	-0,001
HSO ₄ -	-186859	3,0805e-05	3,078723567691e-04	2,9903e+00	-4,511	0,8810	-0,055
N_2	-133	5,2183e-04	5,215300294684e-03	1,4618e+01	-3,282	0,9974	-0,001
NO ₂ -	-23599	2,5135e-12	2,512045698389e-11	1,1563e-07	-11,600	0,8811	-0,055
NO ₃ -	-24076	1,0764e-10	1,075827429525e-09	6,6745e-06	-9,968	0,8796	-0,056
O ₂	-954	2,5330e-04	2,531601108462e-03	8,1054e+00	-3,596	0,9964	-0,002
SO4-2	-181339	5,3987e-03	5,395583939581e-02	5,1862e+02	-2,268	0,5870	-0,231
OH	-51157	1,2860e-10	1,285280021519e-09	2,1872e-06	-9,891	0,8900	-0,051
H^+	-5522	1,0420e-04	1,041375412654e-03	1,0502e-01	-3,982	0,8599	-0,066
H ₂ O	-56678	5,5510e+01	5,547829719536e+02	1,0000e+00	1,744	1,0000	0,000
Газ							
CO ₂	-99073		1,011269260126e-02	0,04	-1,995	1,0000	0,000
N ₂	-132		2,754720084711e+01	77,76	1,440	1,0000	0,000
NO	-543		8,935855000811e-15	0,00	-14,049	0,9995	-0,000
NO ₂	-1020		4,845130207700e-09	0,00	-8,315	1,0000	0,000
N ₂ O	-609		8,631441023030e-18	0,00	-17,064	0,9946	-0,002
O ₂	-954		6,882143284571e+00	22,19	0,838	1,0000	0,000
Твердая фаза							
Познякит Cu ₄ (OH) ₆ [SO ₄]·I	-495992		1,068292227043e-04	0,35	-3,971	1,0000	0,000
Роуволфит Сu ₄ (OH) ₆ [SO ₄]·2H ₂ O	-552680		1,179481414754e-04	0,41	-3,928	1,0000	0,000
Фиброферрит Fe[SO ₄](OH)·5H	-546549		5,448848820239e-02	99,24	-1,264	1,0000	0,000

Таблица 14

Результаты моделирования взаимодействия пирита (Fe1,02As0,03S1,95)с природными водами

251

Таблица 14-1

Резервуар	1
T COCDD (MD	_

i csepbyap i					
Температура, °С	25,00	G, кал	-31504444	Eh, B	1,0661
Давление, бар	1,00	Н, кал	-37958660	pe	18,0571
Масса, кг	11,010	S, кал/К	10912,531	pH	2,5410
Объем мультисистемы, см ³	862851,812	U, кал	-37486560	Ионная сила	0,0173
Плотность мультисистемы, г/см ³	0,012760	Ср, кал	10217,78	TDS, mg/kgH ₂ O	837,3671361

Таблица 14-2

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)				
Водный раствор	10024,17905	5,54889e+02	10001,6533	9,97753e-01	90,84175				
Газ	852827,61845	3,44029e+01	991,1876	1,16224e-03	9,00263				
Твердая фаза									
Фиброферрит	0,00000	6,61567e-02	17,1342	0,00000e+00	0,15562				

Таблица 14-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. активности	Log коэф. активности		
Водный раствор									
CO ₂	-99072	9,9489e-06	9,941707101510e-05	4,3785e-01	-5,002	1,0033	0,001		
CO3-2	-148818	4,2065e-17	4,203421309436e-16	2,5243e-12	-16,376	0,6160	-0,210		
Fe ⁺³	-28626	3,4959e-18	3,493375639000e-17	1,9524e-13	-17,456	0,3113	-0,507		
H ₂ AsO ₄	-185141	1,9472e-04	1,945783697243e-03	2,7443e+01	-3,711	0,8900	-0,051		
HCO ₃ ⁻	-152287	1,7797e-09	1,778428650354e-08	1,0859e-04	-8,750	0,8910	-0,050		
HNO ₃	-29601	3,1518e-16	3,149485710428e-15	1,9860e-11	-15,501	0,9977	-0,001		
HSO ₄ -	-184783	1,0144e-03	1,013621701774e-02	9,8465e+01	-2,994	0,8896	-0,051		
N ₂	-132	5,2219e-04	5,218133900378e-03	1,4628e+01	-3,282	0,9979	-0,001		
NO ₂ -	-25656	7,7319e-14	7,726289814190e-13	3,5571e-09	-13,112	0,8897	-0,051		
NO ₃ ⁻	-26135	3,3031e-12	3,300665764473e-11	2,0481e-07	-11,481	0,8884	-0,051		
O ₂	-957	2,5213e-04	2,519463274189e-03	8,0678e+00	-3,598	0,9972	-0,001		
SO4-2	-181318	5,3465e-03	5,342607104774e-02	5,1360e+02	-2,272	0,6134	-0,212		
OH-	-53212	3,9744e-12	3,971556693928e-11	6,7595e-08	-11,401	0,8968	-0,047		
H^+	-3467	3,2958e-03	3,293416066802e-02	3,3220e+00	-2,482	0,8726	-0,059		
H ₂ O	-56679	5,5510e+01	5,546970080190e+02	1,0000e+00	1,744	1,0000	0,000		
Газ									
CO ₂	-99072		1,011305516350e-02	0,04	-1,995	1,0000	0,000		
N ₂	-132		2,754719801408e+01	77,86	1,440	1,0000	0,000		
NO	-544		8,912117195339e-15	0,00	-14,050	0,9995	-0,000		
NO ₂	-1031		4,752380040347e-09	0,00	-8,323	1,0000	0,000		
N ₂ O	-610		8,613079502689e-18	0,00	-17,065	0,9946	-0,002		
O ₂	-957		6,845626579230e+00	22,10	0,835	1,0000	0,000		
Твердая фаза									
Фиброферрит Fe[SO ₄](OH)·5H	-546549		6,615665474591e-02	100,00	-1,179	1,0000	0,000		

Таблица 15

Результаты моделирования взаимодействия галенита (Pb0,91Fe0,05Cu0,02Sb0,02S1,00) с природными водами

Таблица 15-1

Резервуар 1					
Температура, °С	25,00	G, кал	-31483700	Eh, B	1,0762
Давление, бар	1,00	Н, кал	-37933920	pe	18,2292
Масса, кг	11,010	S, кал/К	10924,180	pН	2,3707
Объем мультисистемы, см ³	866597,562	U, кал	-37461588	Ионная сила	0,0072
Плотность мультисистемы, г/см ³	0,012705	Ср, кал	10226,27	TDS, mg/kgH ₂ O	566,5814936

Таблица 15-2

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	10029,82533	5,55135e+02	10005,0098	9,97526e-01	10029,82533

Продолжение таблицы 15-2

Газ	856566,43845	3,45538e+01	996,0136	1,16280e-03	856566,43845
Твердая фаза					
Англезит	1,30030	2,71190e-02	8,2242	6,32487e+00	1,30030
Фиброферрит	0,00000	2,89899e-03	0,7508	0,00000e+00	0,00000

Таблица 15-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

	Функция оТ			Концентрация в	Log	Коэф	Годкозф		
Состав фазы	¥ ункция g1, кал/моль	Моляльность	Мольное количество	мг/кг H ₂ O, или	моляльност	активности	активности		
	nuu monb			вес. %	И	untilibilitettili	untribilite		
Водный раствор									
CO ₂	-99075	9,9259e-06	9,924679680712e-05	4,3684e-01	-5,003	1,0014	0,001		
CO3 ⁻²	-149285	1,6559e-17	1,655658105065e-16	9,9367e-13	-16,781	0,7115	-0,148		
Cu ⁺²	10096	1,1597e-04	1,159592319930e-03	7,3696e+00	-3,936	0,7019	-0,154		
Fe ⁺³	-27935	7,7543e-18	7,753371243414e-17	4,3306e-13	-17,110	0,4503	-0,346		
HCO ₃ -	-152520	1,1622e-09	1,162049994409e-08	7,0914e-05	-8,935	0,9206	-0,036		
HNO ₃	-29589	3,2106e-16	3,210206998193e-15	2,0231e-11	-15,493	0,9991	-0,000		
HSO ₄ -	-185010	6,6882e-04	6,687376936612e-03	6,4923e+01	-3,175	0,9200	-0,036		
N ₂	-134	5,1941e-04	5,193434214178e-03	1,4550e+01	-3,284	0,9991	-0,000		
NO ₂ -	-25882	5,1084e-14	5,107730553034e-13	2,3501e-09	-13,292	0,9201	-0,036		
NO ₃ -	-26355	2,1995e-12	2,199268288493e-11	1,3638e-07	-11,658	0,9195	-0,036		
O ₂	-946	2,5616e-04	2,561279799968e-03	8,1968e+00	-3,591	0,9988	-0,001		
Pb ⁺²	-12580	1,3163e-05	1,316143701409e-04	2,7274e+00	-4,881	0,6999	-0,155		
SO4-2	-181777	2,1277e-03	2,127463842894e-02	2,0440e+02	-2,672	0,7103	-0,149		
HSbO ₂ *	-101125	1,8556e-03	1,855359930076e-02	2,8716e+02	-2,732	1,0027	0,001		
SbO ₂ ⁻	-97891	4,7743e-12	4,773677982230e-11	7,3404e-07	-11,321	0,9245	-0,034		
OH-	-53444	2,6098e-12	2,609470931516e-11	4,4386e-08	-11,583	0,9231	-0,035		
H^+	-3234	4,6660e-03	4,665425212012e-02	4,7030e+00	-2,331	0,9127	-0,040		
H ₂ O	-56678	5,5510e+01	5,550324585080e+02	1,0000e+00	1,744	1,0000	0,000		
Газ									
CO ₂	-99075		1,011323146202e-02	0,04	-1,995	1,0000	0,000		
N ₂	-134		2,754722271369e+01	77,48	1,440	1,0000	0,000		
NO	-540		9,009746568705e-15	0,00	-14,045	0,9995	-0,000		
NO ₂	-1013		4,916600283531e-09	0,00	-8,308	1,0000	0,000		
N ₂ O	-607		8,688412681269e-18	0,00	-17,061	0,9946	-0,002		
O ₂	-946		6,996425138718e+00	22,48	0,845	1,0000	0,000		
Твердая фаза									
Англезит PbSO	4 -194353		2,711898500443e-02	91,63	-1,567	1,0000	0,000		
Фиброферрит Fe[SO ₄](OH)·5H	-546549		2,898993669625e-03	8,37	-2,538	1,0000	0,000		

Таблица 16

Результаты моделирования взаимодействия касситерита (Sn0,98Al0,02O2,00) с природными водами

Таблица 16-1

Резервуар 1					1000 1 00 1
Температура, °С	25,00	G, кал	-31481422	Eh, B	0,8792
Давление, бар	1,00	Н, кал	-37930480	pe	14,8920
Масса, кг	11,010	S, кал/К	10932,460	pH	5,7099
Объем мультисистемы, см ³	870778,000	U, кал	-37458220	Ионная сила	0,0165
Плотность мультисистемы, г/см ³	0,012645	Ср, кал	10226,04	TDS, mg/kgH2O	876,6514644

Таблица 16-2

Параметры фазы									
Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)				
Водный раствор	10029,39921	5,55206e+02	10008,8213	9,97948e-01	90,90170				
Газ	860748,61415	3,47225e+01	1001,4117	1,16342e-03	9,09498				
Твердая фаза									
Алуноген	0,00000	5,47897e-04	0,3651	0,00000e+00	0,00332				
Таблица 16-3

Характеристики зависимых компонентов равновесного состояния мультисистемь	.						
	Xa	ракте	ристики зависимых	компонентов	равновесного	состояния м	ультисистемы

Состав фазы	Функция gT,	Моляльность	Мольное количество	Концентрация в	Log	Коэф.	Log коэф.		
состав фазы	кал/моль	WIGHNEIBHOUTB	мольное коли тестьо	мг/кг H2O	моляльности	активности	активности		
Водный раство	р								
Al ⁺³	-134049	6,4786e-14	6,478336897825e-13	1,7480e-09	-13,189	0,3175	-0,498		
CO ₂	-99080	9,8105e-06	9,810008206019e-05	4,3176e-01	-5,008	1,0032	0,001		
CO3-2	-140179	8,9951e-11	8,994735108954e-10	5,3979e-06	-10,046	0,6200	-0,208		
HCO3 ⁻	-147969	2,5982e-06	2,598105607547e-05	1,5854e-01	-5,585	0,8923	-0,050		
HNO ₃	-29577	3,2834e-16	3,283288674268e-15	2,0690e-11	-15,484	0,9978	-0,001		
HSO ₄ -	-189663	2,6837e-07	2,683615878041e-06	2,6051e-02	-6,571	0,8909	-0,050		
N ₂	-137	5,1744e-04	5,174189186064e-03	1,4495e+01	-3,286	0,9980	-0,001		
NO ₂ ⁻	-21320	1,1655e-10	1,165452602452e-09	5,3620e-06	-9,933	0,8910	-0,050		
NO ₃ ⁻	-21789	5,0505e-09	5,050259200813e-08	3,1316e-04	-8,297	0,8898	-0,051		
O ₂	-935	2,6140e-04	2,613918324741e-03	8,3646e+00	-3,583	0,9973	-0,001		
SO4-2	-181873	2,0818e-03	2,081685699963e-02	1,9998e+02	-2,682	0,6176	-0,209		
Sn ⁺²	-10095	4,8217e-03	4,821499579429e-02	5,7239e+02	-2,317	0,5980	-0,223		
OH-	-48891	5,8393e-09	5,838994679933e-08	9,9310e-05	-8,234	0,8979	-0,047		
H^+	-7790	2,2268e-06	2,226717657763e-05	2,2445e-03	-5,652	0,8745	-0,058		
H ₂ O	-56678	5,5510e+01	5,550744629664e+02	1,0000e+00	1,744	1,0000	0,000		
Газ									
CO ₂	-99079		1,008840798295e-02	0,04	-1,996	1,0000	0,000		
N ₂	-137		2,754724193285e+01	77,06	1,440	1,0000	0,000		
NO	-536		9,117734199933e-15	0,00	-14,040	0,9995	-0,000		
NO ₂	-1004		5,021645368817e-09	0,00	-8,299	1,0000	0,000		
N ₂ O	-605		8,771165503214e-18	0,00	-17,057	0,9946	-0,002		
O ₂	-935		7,165139080434e+00	22,90	0,855	1,0000	0,000		
Твердая фаза			•						
Алуноген Al ₂ [SO ₄] ₃ ·18 H ₂ C	-1833930)	5,478974432130e-04	100,00	-3,261	1,0000	0,000		

Таблица 17

Результаты моделирования взаимодействия пирротина (FeS)с природными водами

Таблица 17-1

Таблица 17-2

Резервуар 1					i wonindw i / i
Температура, °С	25,00	G, кал	-31499832	Eh, B	1,0606
Давление, бар	1,00	Н, кал	-37955932	pe	17,9645
Масса, кг	11,010	S, кал/К	10904,771	pН	2,6335
Объем мультисистемы, см ³	862922,375	U, кал	-37484004	Ионная сила	0,0036
Плотность мультисистемы, г/см ³	0,012759	Ср, кал	10215,62	TDS, mg/kgH ₂ O	129,5856650

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)				
Водный раствор	10019,27756	5,54518e+02	9990,5225	9,97130e-01	90,74046				
Газ	852903,12621	3,44060e+01	991,2850	1,16225e-03	9,00350				
Твердая фаза									
Фиброферрит	0,00000	1,08842e-01	28,1895	0,00000e+00	0,25604				

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. активности	Log коэф. активности		
Водный раствор									
CO ₂	-99072	9,9770e-06	9,965694658388e-05	4,3908e-01	-5,001	1,0007	0,000		
CO3 ⁻²	-148565	5,1118e-17	5,106021226528e-16	3,0676e-12	-16,291	0,7768	-0,110		
Fe ⁺³	-27976	5,8512e-18	5,844629271985e-17	3,2677e-13	-17,233	0,5575	-0,254		
HCO ₃ -	-152158	2,0946e-09	2,092261869695e-08	1,2781e-04	-8,679	0,9399	-0,027		
HNO ₃	-29601	3,1486e-16	3,145032696832e-15	1,9840e-11	-15,502	0,9995	-0,000		
HSO ₄ -	-185687	2,0899e-04	2,087558703512e-03	2,0287e+01	-3,680	0,9396	-0,027		
N ₂	-132	5,2139e-04	5,208013016967e-03	1,4606e+01	-3,283	0,9996	-0,000		
NO ₂ ⁻	-25530	9,0666e-14	9,056322235645e-13	4,1711e-09	-13,043	0,9396	-0,027		
NO ₃ ⁻	-26008	3,8696e-12	3,865180504842e-11	2,3993e-07	-11,412	0,9394	-0,027		
O ₂	-956	2,5178e-04	2,514976511512e-03	8,0567e+00	-3,599	0,9994	-0,000		
SO4 ⁻²	-182096	1,1378e-03	1,136484015496e-02	1,0930e+02	-2,944	0,7761	-0,110		

Таблица 17-3

Продолжение таблицы 17-3

-53086	4,6895e-12	4,684234985186e-11	7,9757e-08	-11,329	0,9412	-0,026			
-3593	2,4845e-03	2,481726002238e-02	2,5043e+00	-2,605	0,9358	-0,029			
-56678	5,5510e+01	5,5447226666663e+02	1,0000e+00	1,744	1,0000	0,000			
-99072		1,011281214960e-02	0,04	-1,995	1,0000	0,000			
-132		2,754720813493e+01	77,85	1,440	1,0000	0,000			
-544		8,914095265468e-15	0,00	-14,050	0,9995	-0,000			
-1022		4,823675359827e-09	0,00	-8,317	1,0000	0,000			
-610		8,614611366742e-18	0,00	-17,065	0,9946	-0,002			
-956		6,848662672802e+00	22,11	0,836	1,0000	0,000			
Твердая фаза									
-546549		1,088420940043e-01	100,00	-0,963	1,0000	0,000			
	-53086 -3593 -56678 -99072 -132 -544 -1022 -610 -956 -546549	-53086 4,6895e-12 -3593 2,4845e-03 -56678 5,5510e+01 -99072 -132 -544 -1022 -610 -956 -546549	-53086 4,6895e-12 4,684234985186e-11 -3593 2,4845e-03 2,481726002238e-02 -56678 5,5510e+01 5,544722666663e+02 -99072 1,011281214960e-02 -132 2,754720813493e+01 -544 8,914095265468e-15 -1022 4,823675359827e-09 -610 8,614611366742e-18 -956 6,848662672802e+00	-53086 4,6895e-12 4,684234985186e-11 7,9757e-08 -3593 2,4845e-03 2,481726002238e-02 2,5043e+00 -56678 5,5510e+01 5,544722666663e+02 1,0000e+00 -99072 1,011281214960e-02 0,04 -132 2,754720813493e+01 77,85 -544 8,914095265468e-15 0,00 -1022 4,823675359827e-09 0,00 -610 8,614611366742e-18 0,00 -956 6,848662672802e+00 22,11	-53086 4,6895e-12 4,684234985186e-11 7,9757e-08 -11,329 -3593 2,4845e-03 2,481726002238e-02 2,5043e+00 -2,605 -56678 5,5510e+01 5,544722666663e+02 1,0000e+00 1,744 -99072 1,011281214960e-02 0,04 -1,995 -132 2,754720813493e+01 77,85 1,440 -544 8,914095265468e-15 0,00 -14,050 -1022 4,823675359827e-09 0,00 -8,317 -610 8,614611366742e-18 0,00 -17,065 -956 6,848662672802e+00 22,11 0,836	-53086 4,6895e-12 4,684234985186e-11 7,9757e-08 -11,329 0,9412 -3593 2,4845e-03 2,481726002238e-02 2,5043e+00 -2,605 0,9358 -56678 5,5510e+01 5,544722666663e+02 1,0000e+00 1,744 1,0000 -99072 1,011281214960e-02 0,04 -1,995 1,0000 -132 2,754720813493e+01 77,85 1,440 1,0000 -5444 8,914095265468e-15 0,00 -14,050 0,9995 -1022 4,823675359827e-09 0,00 -8,317 1,0000 -610 8,614611366742e-18 0,00 -17,065 0,9946 -956 6,848662672802e+00 22,11 0,836 1,0000			

Таблица 18

Результаты моделирования взаимодействия сфалерита (Zn0,78Fe0,22Mn0,01S1,00) с природными водами

Таблица 18-1

					r aomina ro r
Резервуар 1					
Температура, °С	25,00	G, кал	-31500046	Eh, B	0,8912
Давление, бар	1,00	Н, кал	-37954664	pe	15,0952
Масса, кг	11,010	S, кал/К	10914,273	pH	5,5033
Объем мультисистемы, см ³	864234,312	U, кал	-37482764	Ионная сила	0,0004
Плотность мультисистемы, г/см ³	0,012740	Ср, кал	10224,01	TDS, mg/kgH ₂ O	15,7798148

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)			
Водный раствор	10019,11697	5,54486e+02	9989,4346	9,97037e-01	90,73058			
Газ	854215,18192	3,44589e+01	992,9785	1,16245e-03	9,01888			
Твердая фаза								
Бианкит	0,00000	8,05164e-02	21,7028	0,00000e+00	0,19712			
Фиброферрит	0,00000	2,27098e-02	5,8817	0,00000e+00	0,05342			

Таблица 18-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. активности	Log коэф. активности			
Водный раство	Водный раствор									
CO ₂	-99074	9,9541e-06	9,942908898479e-05	4,3808e-01	-5,002	1,0001	0,000			
CO3-2	-140737	2,3848e-11	2,382117204233e-10	1,4311e-06	-10,623	0,9117	-0,040			
HCO ₃ -	-148245	1,4897e-06	1,488069156132e-05	9,0900e-02	-5,827	0,9773	-0,010			
HNO ₃	-29596	3,1695e-16	3,165909746584e-15	1,9972e-11	-15,499	0,9999	-0,000			
HSO ₄ -	-190945	2,8085e-08	2,805294957225e-07	2,7262e-03	-7,552	0,9773	-0,010			
Mn ⁺²	-59993	1,0334e-04	1,032261608915e-03	5,6774e+00	-3,986	0,9110	-0,040			
N ₂	-133	5,2054e-04	5,199559541923e-03	1,4582e+01	-3,284	0,9999	-0,000			
NO ₂ ⁻	-21612	6,4856e-11	6,478310438022e-10	2,9837e-06	-10,188	0,9773	-0,010			
NO ₃ ⁻	-22089	2,7748e-09	2,771670251484e-08	1,7205e-04	-8,557	0,9772	-0,010			
O ₂	-953	2,5314e-04	2,528529847461e-03	8,1001e+00	-3,597	0,9999	-0,000			
SO4-2	-183417	1,0419e-04	1,040701052139e-03	1,0009e+01	-3,982	0,9116	-0,040			
OH-	-49171	3,3456e-09	3,341807371152e-08	5,6899e-05	-8,476	0,9775	-0,010			
H^+	-7508	3,2138e-06	3,210236625257e-05	3,2394e-03	-5,493	0,9768	-0,010			
H ₂ O	-56678	5,5510e+01	5,544763248949e+02	1,0000e+00	1,744	1,0000	0,000			
Газ										
CO ₂	-99074		1,009817993656e-02	0,04	-1,996	1,0000	0,000			
N ₂	-133		2,754721657422e+01	77,71	1,440	1,0000	0,000			
NO	-543		8,948479147100e-15	0,00	-14,048	0,9995	-0,000			
NO ₂	-1019		4,857425525288e-09	0,00	-8,314	1,0000	0,000			
N ₂ O	-609		8,641197571805e-18	0,00	-17,063	0,9946	-0,002			
O ₂	-953		6,901596995486e+00	22,24	0,839	1,0000	0,000			
Твердая фаза										
Бианкит Zn[SO ₄] ·6H ₂ O	-612591		8,051640400437e-02	78,68	-1,094	1,0000	0,000			
Фиброферрит Fe[SO4](OH)·5H ₂ O	-546549		2,270975307339e-02	21,32	-1,644	1,0000	0,000			

Таблица 18-2

Таблица 19

Результаты моделирования взаимодействия плюмбоярозита (Pb_{0,12}Fe_{0,76}Zn_{0,05}K_{0,05}Al_{0,02})[SO₄]₄(OH)₁₂) с природными водами

Таблица 19-1

Резервуар 1					
Температура, °С	25,00	G, кал	-31490920	Eh, B	0,9749
Давление, бар	1,00	Н, кал	-37941408	pe	16,5123
Масса, кг	11,010	S, кал/К	10933,808	pH	4,0894
Объем мультисистемы, см ³	870338,688	U, кал	-37469104	Ионная сила	0,0108
Плотность мультисистемы, г/см ³	0,012651	Ср, кал	10227,67	TDS, mg/kgH ₂ O	623,1514464

Параметры фазы

Таблица 19-2

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)	
Водный раствор	10031,52513	5,55215e+02	10006,7393	9,97529e-01	90,88326	
Газ	860307,12613	3,47047e+01	1000,8422	1,16335e-03	9,08985	
Твердая фаза						
Алуноген	0,00000	1,17929e-04	0,0786	0,00000e+00	0,00071	
Англезит	0,06352	1,32483e-03	0,4018	6,32487e+00	0,00365	
Бианкит	0,00000	5,89644e-04	0,1589	0,00000e+00	0,00144	
Фиброферрит	0,00000	8,96261e-03	2,3213	0,00000e+00	0,02108	

Таблица 19-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. активности	Log коэф. активности
Водный раство	р						
Al ⁺³	-134597	2,1190e-14	2,118989467423e-13	5,7174e-10	-13,674	0,3850	-0,415
CO ₂	-99077	9,8787e-06	9,878690242448e-05	4,3476e-01	-5,005	1,0021	0,001
CO3 ⁻²	-144598	4,8077e-14	4,807699808602e-13	2,8851e-09	-13,318	0,6680	-0,175
HCO ₃ -	-150177	6,1507e-08	6,150718269865e-07	3,7530e-03	-7,211	0,9073	-0,042
HNO ₃	-29578	3,2738e-16	3,273784237035e-15	2,0629e-11	-15,485	0,9986	-0,001
HSO ₄ ⁻	-187086	2,0408e-05	2,040774302204e-04	1,9810e+00	-4,690	0,9064	-0,043
K ⁺	-70509	7,0589e-03	7,058856869991e-02	2,7599e+02	-2,151	0,8972	-0,047
KOH*	-121609	1,0767e-07	1,076730921041e-06	6,0411e-03	-6,968	1,0018	0,001
N ₂	-137	5,1731e-04	5,173098752967e-03	1,4492e+01	-3,286	0,9987	-0,001
NO ₂ -	-23531	2,7417e-12	2,741719345919e-11	1,2613e-07	-11,562	0,9065	-0,043
NO ₃ ⁻	-23999	1,1909e-10	1,190941874177e-09	7,3844e-06	-9,924	0,9057	-0,043
O ₂	-936	2,6083e-04	2,608312959336e-03	8,3463e+00	-3,584	0,9982	-0,001
Pb ⁺²	-12845	9,0315e-06	9,031488329103e-05	1,8713e+00	-5,044	0,6517	-0,186
SO ₄ -2	-181508	3,5737e-03	3,573669386848e-02	3,4330e+02	-2,447	0,6663	-0,176
OH-	-51100	1,3837e-10	1,383658798188e-09	2,3532e-06	-9,859	0,9110	-0,040
H^+	-5579	9,0889e-05	9,088843752466e-04	9,1610e-02	-4,041	0,8955	-0,048
H ₂ O	-56678	5,5510e+01	5,550995958195e+02	1,0000e+00	1,744	1,0000	0,000
Газ							
CO ₂	-99077		1,011308769171e-02	0,04	-1,995	1,0000	0,000
N ₂	-137		2,754724304854e+01	77,10	1,440	1,0000	0,000
NO	-537		9,106380560559e-15	0,00	-14,041	0,9995	-0,000
NO ₂	-1012		4,947089131432e-09	0,00	-8,306	1,0000	0,000
N ₂ O	-605		8,762490994946e-18	0,00	-17,057	0,9946	-0,002
O ₂	-936		7,147303724863e+00	22,85	0,854	1,0000	0,000
Твердая фаза							
Алуноген Al ₂ [SO ₄] ₃ ·18 H ₂ C	-1833930		1,179288864264e-04	2,65	-3,928	1,0000	0,000
Англезит PbSO ₄	-194353		1,324833885981e-03	13,57	-2,878	1,0000	0,000
Бианкит Zn[SO ₄] ·6H ₂ O	-612591		5,896444487481e-04	5,37	-3,229	1,0000	0,000
Фиброферрит Fe[SO ₄](OH)·5H	₂ O -546549		8,962606560650e-03	78,41	-2,048	1,0000	0,000

Таблица 20

Результаты моделирования взаимодействия апатита ((Ca_{3,71}Si_{0,62}Fe_{0,33}Al_{0,28}K_{0,11}Ce_{0,02}Nd_{0,02})(P_{2,62}O_{11,82})F_{1,59}) с природными водами

Таблица 20-1

Резервуар 1					
Температура, °С	25,00	G, кал	-31499356	Eh, B	0,8697
Давление, бар	1,00	Н, кал	-37949492	pe	14,7303
Масса, кг	11,010	S, кал/К	10934,129	pH	5,8716
Объем мультисистемы, см ³	870353,375	U, кал	-37477272	Ионная сила	0,0167
Плотность мультисистемы, г/см ³	0,012652	Ср, кал	10224,82	TDS, mg/kgH ₂ O	1159,5537606

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)						
Водный раствор	10030,98019	5,55231e+02	10010,6426	9,97973e-01	90,91077						
Газ	860322.41275	3.47053e+01	1000.8615	1.16336e-03	9.08924						

Таблица 20-3

Таблица 20-2

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или	Log моляльност	Коэф. активности	Log коэф. активности
Водный раство	0			BCC. 70	¥1		
Al ⁺³	-120343	7,2442e-04	7,243114269758e-03	1,9546e+01	-3,140	0,3161	-0,500
CO ₂	-99080	9,8168e-06	9,815402493126e-05	4,3204e-01	-5,008	1,0032	0,001
CO3-2	-139738	1,8944e-10	1,894111855833e-09	1,1368e-05	-9,723	0,6190	-0,208
Ce ⁺³	-168501	2,7826e-05	2,782161014382e-04	3,8988e+00	-4,556	0,3141	-0,503
CeH ₂ PO ₄ ⁺²	-441707	2,3918e-05	2,391491897779e-04	5,6711e+00	-4,621	0,6000	-0,222
F	-70658	4,1137e-03	4,113054243446e-02	7,8153e+01	-2,386	0,8977	-0,047
Fe ⁺²	-29097	8,4039e-06	8,402654068284e-05	4,6933e-01	-5,076	0,5999	-0,222
Fe ⁺³	-8996	8,4537e-04	8,452498094818e-03	4,7212e+01	-3,073	0,3154	-0,501
H ₂ PO ₄ ⁻	-273206	6,3304e-03	6,329467252988e-02	6,1397e+02	-2,199	0,8924	-0,049
H ₃ PO ₄ *	-281221	1,1151e-06	1,114980989198e-05	1,0928e-01	-5,953	1,0000	0,000
HCO3 ⁻	-147749	3,7679e-06	3,767336237345e-05	2,2991e-01	-5,424	0,8920	-0,050
HNO ₃	-29578	3,2758e-16	3,275310144659e-15	2,0642e-11	-15,485	0,9978	-0,001
HPO ₄ -2	-265196	4,2305e-04	4,229876802366e-03	4,0604e+01	-3,374	0,6184	-0,209
HSiO ₃ ⁻	-251670	1,5118e-07	1,511591903044e-06	1,1655e-02	-6,821	0,8949	-0,048
K ⁺	-70592	6,2798e-03	6,278912504990e-02	2,4553e+02	-2,202	0,8766	-0,057
KOH*	-119263	5,6392e-06	5,638409996541e-05	3,1639e-01	-5,249	1,0028	0,001
N_2	-137	5,1765e-04	5,175722557157e-03	1,4501e+01	-3,286	0,9980	-0,001
NO ₂ -	-21100	1,6891e-10	1,688850264805e-09	7,7708e-06	-9,772	0,8907	-0,050
NO ₃ ⁻	-21568	7,3396e-09	7,338538117816e-08	4,5509e-04	-8,134	0,8895	-0,051
Nd ⁺³	-167133	5,1744e-05	5,173652912161e-04	7,4636e+00	-4,286	0,3141	-0,503
O ₂	-936	2,6080e-04	2,607590425241e-03	8,3452e+00	-3,584	0,9972	-0,001
PO4-3	-257186	2,7975e-10	2,797097596283e-09	2,6568e-05	-9,553	0,3311	-0,480
SiO ₂ *	-202999	1,6039e-03	1,603681139516e-02	9,6370e+01	-2,795	1,0056	0,002
OH-	-48669	8,4925e-09	8,491241699684e-08	1,4443e-04	-8,071	0,8976	-0,047
H^+	-8014	1,5268e-06	1,526617628991e-05	1,5390e-03	-5,816	0,8741	-0,058
H ₂ O	-56679	5,5510e+01	5,550186296655e+02	1,0000e+00	1,744	1,0000	0,000
Газ							
CO ₂	-99079		1,007666078806e-02	0,04	-1,997	1,0000	0,000
N ₂	-137		2,754724038777e+01	77,10	1,440	1,0000	0,000
NO	-537		9,106796407376e-15	0,00	-14,041	0,9995	-0,000
NO ₂	-1005		5,012286696082e-09	0,00	-8,300	1,0000	0,000
N ₂ O	-605		8,762812969712e-18	0,00	-17,057	0,9946	-0,002
O ₂	-936		7,147959472452e+00	22,85	0,854	1,0000	0,000

Таблица 21

Результаты моделирования взаимодействия монацита ((Ce_{0,48}La_{0,20}Nd_{0,14}Pr_{0,04}Ca_{0,05}Fe_{0,08}Th_{0,01}K_{0,01})(P_{0,95}Si_{0,07})O₄) с природными водами

Таблица 21-1

Резервуар 1					
Температура, °С	25,00	G, кал	-31490880	Eh, B	0,8063
Давление, бар	1,00	Н, кал	-37941432	pe	13,6570
Масса, кг	11,010	S, кал/К	10929,064	pН	6,9444

Продолжение таблицы 21-1

Объем мультисистемы, см ³	869836,875	U, кал	-37469180	Ионная сила	0,0223
Плотность мультисистемы, г/см ³	0,012658	Ср, кал	10225,21	TDS, mg/kgH	₂ O 1033,5248940

Таблица 21-2

Параметры	фазы
-----------	------

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	10029,40930	5,55154e+02	10010,0566	9,98070e-01	90,91434
Газ	859807,38695	3,46845e+01	1000,1920	1,16327e-03	9,08404
Ярозит	0,05196	3,54865e-04	0,1777	3,42004e+00	0,00161

Таблица 21-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

~ · ·	Функция gT.			Концентрация в	Log	Коэф	Log коэф.
Состав фазы	кал/моль	Моляльность	Мольное количество	мг/кг H ₂ O, или	моляльност	активности	активности
				вес. %	И		
Водный раство	p	0.4402.04		4.1.7.1.5 0.1	<i>z</i>	1 00 12	0.000
CO ₂	-99103	9,4403e-06	9,439523810031e-05	4,1546e-01	-5,025	1,0043	0,002
CO ₃ -2	-136833	2,6941e-08	2,693871127817e-07	1,6167e-03	-7,570	0,5865	-0,232
Ce ⁺³	-166258	1,4198e-03	1,419701421629e-02	1,9894e+02	-2,848	0,2710	-0,567
$CeH_2PO_4^{+2}$	-440280	2,8367e-04	2,836500683354e-03	6,7259e+01	-3,547	0,5627	-0,250
Fe ⁺²	-28700	1,7519e-05	1,751800792089e-04	9,7841e-01	-4,756	0,5626	-0,250
Fe ⁺³	-10069	1,5993e-04	1,599138023030e-03	8,9314e+00	-3,796	0,2725	-0,565
H_2PO_4	-274022	1,6177e-03	1,617608083271e-02	1,5690e+02	-2,791	0,8822	-0,054
H_3PO_4*	-283584	2,0668e-08	2,066636625744e-07	2,0254e-03	-7,685	1,0000	0,000
HCO ₃ -	-146308	4,3413e-05	4,340987824919e-04	2,6490e+00	-4,362	0,8817	-0,055
HNO ₃	-29579	3,2710e-16	3,270715376098e-15	2,0611e-11	-15,485	0,9970	-0,001
HPO ₄ ⁻²	-264548	1,3344e-03	1,334296430535e-02	1,2808e+02	-2,875	0,5858	-0,232
HSO ₄ -	-191264	1,8219e-08	1,821725472207e-07	1,7685e-03	-7,739	0,8798	-0,056
HSiO ₃ -	-251309	2,8111e-07	2,810911639828e-06	2,1671e-02	-6,551	0,8855	-0,053
La ⁺³	-169194	5,7415e-04	5,740995875420e-03	7,9752e+01	-3,241	0,2713	-0,567
LaH ₂ PO ₄ ⁺²	-443216	1.3564e-04	1.356302822470e-03	3.1997e+01	-3.868	0.5635	-0.249
LaO ₂	-244657	1.6922e-17	1.692101605398e-16	2.8921e-12	-16.772	0.8787	-0.056
N ₂	-136	5.1852e-04	5.184819509504e-03	1.4526e+01	-3.285	0.9973	-0.001
NO ₂ ⁻	-19637	2.0194e-09	2.019259631467e-08	9.2904e-05	-8.695	0.8800	-0.056
NO ₂	-20106	8.7703e-08	8.769653638165e-07	5.4380e-03	-7.057	0.8784	-0.056
Nd ⁺³	-165880	4.9685e-04	4.968109035644e-03	7.1666e+01	-3.304	0.2711	-0.567
02	-937	2.6074e-04	2.607174246582e-03	8.3433e+00	-3.584	0.9963	-0.002
PO ₄ -3	-255075	1,1255e-08	1.125388176005e-07	1.0689e-03	-7.949	0.2908	-0.536
Pr ⁺³	-168623	1 4196e-04	1 419459686699e-03	2 0003e+01	-3 848	0.2711	-0.567
SO -2	-181791	2 5317e-03	2 531451164425e-02	2,00030+01 2,4320e+02	-2 597	0.5834	-0.234
SiQ ₄ *	-204104	2,33170 03	2,5514511044250 02	1.4910e+01	-3 605	1,0075	0,003
$CeSO_2^+$	-348049	1 3420e-10	1 341887950772e-09	3 1695e-05	-9.872	0.8717	-0.060
Th ⁺⁴	_1759/7	3 5/189e-05	3 548649216748e-04	8 23/9e±00	-4.450	0,0980	-1.009
OH-	47205	1,0151e,07	1 01/076780306e 06	1 72630 03	6 004	0,0900	0.051
U1 Ц+	0/60	1,01510-07	1,0149707895000-00	1,72050-05	6 875	0.8581	0.066
11	-9409	5 55100+01	5 5505602561700+02	1,00000+00	-0,875	1,0000	-0,000
	-30078	3,33100+01	3,3303002301790+02	1,00000+00	1,/44	1,0000	0,000
T as	-99103		9 683726611094-03	0.04	-2.014	1.0000	0.000
No.	-137		2 754723087979e+01	77.15	1 440	1,0000	0,000
NO NO	-137		9.093808692544e-15	0.00	-14 041	0.9995	-0.000
NO ₂	-1006		5,000989762667e-09	0.00	-8 301	1,0000	0,000
N ₂ O	-605		8.752934828702e-18	0.00	-17.058	0.9946	-0.002
02	-937		7.127585851569e+00	22.80	0.853	1.0000	0.000
Твердая фаза		I	.,	,00	-,500	-,	2,000
Ярозит	500100		0.540.540.01.5540	100.00	0.450	1 0000	0.000
KFe ₃ [SO ₄] ₂ (OH) ₆	-790100		3,548649216749e-04	100,00	-3,450	1,0000	0,000

Таблица 22

Результаты моделирования взаимодействия фрейбергита (Cu_{4,12}Ag_{4,85}Zn_{0,20}Fe_{3,08}Sb_{3,61}S_{13,13}) с природными водами

Таблица 22-1

Резервуар 1					1 uotiniqu 22 1
Температура, °С	25,00	G, кал	-31491734	Eh, B	0,9511
Давление, бар	1,00	Н, кал	-37943144	pe	16,1089
Масса, кг	11,010	S, кал/К	10921,354	pН	4,4904
Объем мультисистемы, см ³	865349,938	U, кал	-37470860	Ионная сила	0,0178
Плотность мультисистемы, г/см ³	0,012723	Ср, кал	10223,07	TDS, mg/kgH ₂ O	1057,2756081

Параметры фазы

Таблица 22-2

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	10028,23819	5,55122e+02	10008,5215	9,98034e-01	90,90611
Газ	855321,67477	3,45035e+01	994,4070	1,16261e-03	9,03207
Познякит	0,00000	2,43296e-06	0,0011	0,00000e+00	0,00001
Роуволфит	0,00000	3,45864e-03	1,6889	0,00000e+00	0,01534
Бианкит	0,00000	1,20179e-03	0,3239	0,00000e+00	0,00294
Фиброферрит	0,00000	1,85076e-02	4,7934	0,00000e+00	0,04354

Таблица 22-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы Функция gT, кал/моль		gT,	Моляли ности		Концентрация в	Log	Коэф.	Log коэф.
		њ	моляльность	мольное количество	мі/кі 1120, или вес %	и	активности	активности
Волный раство	n				Bee. 70	п		
Ag ⁺	P 14889		2.9151e-03	2.914343216125e-02	3.1444e+02	-2.535	0.8748	-0.058
CO2	-99078	3	9.8506e-06	9.848076164723e-05	4.3352e-01	-5.007	1.0034	0.001
CO3 ⁻²	-14350	1	3.3452e-13	3.344375289648e-12	2.0074e-08	-12.476	0.6118	-0.213
Cu ⁺	-10653	3	3.0826e-17	3.081824290666e-16	1.9589e-12	-16.511	0.8766	-0.057
Cu ⁺²	11323		1.0915e-03	1.091260024693e-02	6.9363e+01	-2.962	0.5915	-0.228
HCO ₃	-14962	7	1,5875e-07	1,587079637980e-06	9.6864e-03	-6,799	0,8897	-0,051
HNO ₃	-29593	3	3,1939e-16	3,193108097285e-15	2,0126e-11	-15,496	0,9976	-0,001
HSO ₄ ⁻	-18743	0	1,1667e-05	1,166385231838e-04	1,1325e+00	-4,933	0,8882	-0,051
N ₂	-133		5,2089e-04	5,207597950444e-03	1,4592e+01	-3,283	0,9979	-0,001
NO ₂	-22992	2	6,9436e-12	6,941801055195e-11	3,1944e-07	-11,158	0,8883	-0,051
NO ₃ -	-23471	l	2,9673e-10	2,966535833623e-09	1,8399e-05	-9,528	0,8870	-0,052
O ₂	-950		2,5490e-04	2,548368328414e-03	8,1566e+00	-3,594	0,9971	-0,001
SO ₄ -2	-18129	9	5,5625e-03	5,561049757819e-02	5,3435e+02	-2,255	0,6092	-0,215
OH.	-50556	5	3,5229e-10	3,521966242606e-09	5,9915e-06	-9,453	0,8957	-0,048
H^+	-6127		3,7069e-05	3,705946675468e-04	3,7363e-02	-4,431	0,8707	-0,060
H ₂ O	-56679)	5,5510e+01	5,549578008268e+02	1,0000e+00	1,744	1,0000	0,000
Газ								
CO ₂	-99074	1		1,011242217453e-02	0,04	-1,995	1,0000	0,000
N ₂	-133			2,754720854849e+01	77,60	1,440	1,0000	0,000
NO	-542			8,977362921024e-15	0,00	-14,047	0,9995	-0,000
NO ₂	-1022			4,837394630575e-09	0,00	-8,315	1,0000	0,000
N ₂ O	-608			8,663479145198e-18	0,00	-17,062	0,9946	-0,002
O ₂	-950			6,946226533722e+00	22,35	0,842	1,0000	0,000
Твердая фаза								
Познякит		495992		2 432960459012e-06	0.02	-5 614	1.0000	0.000
Cu ₄ (OH) ₆ [SO ₄]·I	H ₂ O	+)3))2		2,4527004370120 00	0,02	5,014	1,0000	0,000
Роуволфит Cu4(OH)6[SO4]·2	2H ₂ O -:	552680		3,458639362430e-03	24,81	-2,461	1,0000	0,000
Бианкит Zn[SO ₄] ·6H ₂ O	-(612591		1,201790588348e-03	4,76	-2,920	1,0000	0,000
Фиброферрит Fe[SO ₄](OH)·5H	-:	546549		1,850757998803e-02	70,41	-1,733	1,0000	0,000

Таблица 23

Результаты моделирования взаимодействия мелантерита (Fe0,88Zn0,09Al0,03[SO4]·7H2O)с природными водами

Таблица 23-1

Резервуар 1					
Температура, °С	25,00	G, кал	-31497372	Eh, B	0,9935
Давление, бар	1,00	Н, кал	-37943120	pe	16,8283
Масса, кг	11,010	S, кал/К	10929,042	pH	3,7729
Объем мультисистемы, см ³	869516,000	U, кал	-37470776	Ионная сила	0,0056
Плотность мультисистемы, г/см ³	0,012662	Ср, кал	10229,08	TDS, mg/kgH ₂ O	175,9770729

Таблица 23-2

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	10030,64570	5,55152e+02	10002,6211	9,97206e-01	90,85282
Газ	859485,33923	3,46715e+01	999,7814	1,16323e-03	9,08092
Твердая фаза					
Бианкит	0,00000	2,29902e-03	0,6197	0,00000e+00	0,00563

Таблица 23-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

ларактерис	Ларактеристики зависимых компонентов равновесного состояния мультисистемы							
Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. активности	Log коэф. активности	
Водный раство	р	•		•	•	•		
Al ⁺³	-133773	6,6928e-14	6,693010735460e-13	1,8058e-09	-13,174	0,4894	-0,310	
CO ₂	-99079	9,8537e-06	9,854050634753e-05	4,3366e-01	-5,006	1,0011	0,000	
CO3-2	-145461	1,0180e-14	1,017994217829e-13	6,1087e-10	-13,992	0,7358	-0,133	
Fe ⁺²	-32197	3,6952e-08	3,695369132872e-07	2,0637e-03	-7,432	0,7281	-0,138	
Fe ⁺³	-9240	3,6123e-04	3,612377872544e-03	2,0173e+01	-3,442	0,4890	-0,311	
HCO3 ⁻	-150608	2,9030e-08	2,903138148436e-07	1,7714e-03	-7,537	0,9279	-0,033	
HNO ₃	-29580	3,2588e-16	3,258868123188e-15	2,0534e-11	-15,487	0,9993	-0,000	
HSO4 ⁻	-187207	1,6271e-05	1,627116250406e-04	1,5794e+00	-4,789	0,9274	-0,033	
N ₂	-137	5,1740e-04	5,174176181117e-03	1,4494e+01	-3,286	0,9993	-0,000	
NO ₂ -	-23964	1,2906e-12	1,290655636387e-11	5,9375e-08	-11,889	0,9274	-0,033	
NO ₃ -	-24433	5,5934e-11	5,593579025389e-10	3,4682e-06	-10,252	0,9270	-0,033	
O ₂	-938	2,5958e-04	2,595894714373e-03	8,3063e+00	-3,586	0,9991	-0,000	
SO4-2	-182057	1,2821e-03	1,282165717645e-02	1,2317e+02	-2,892	0,7348	-0,134	
OH-	-51531	6,5444e-11	6,544618905619e-10	1,1130e-06	-10,184	0,9299	-0,032	
H^+	-5147	1,8311e-04	1,831179562705e-03	1,8457e-01	-3,737	0,9216	-0,035	
H ₂ O	-56678	5,5510e+01	5,551191525722e+02	1,0000e+00	1,744	1,0000	0,000	
Газ		•			•	•		
CO ₂	-99077		1,011365919856e-02	0,04	-1,995	1,0000	0,000	
N ₂	-136		2,754724197142e+01	77,19	1,440	1,0000	0,000	
NO	-537		9,085236526906e-15	0,00	-14,042	0,9995	-0,000	
NO ₂	-1009		4,969762782956e-09	0,00	-8,304	1,0000	0,000	
N ₂ O	-605		8,746323361386e-18	0,00	-17,058	0,9946	-0,002	
O ₂	-938		7,114153470664e+00	22,77	0,852	1,0000	0,000	
Твердая фаза								
Бианкит Zn[SO ₄] ·6H ₂ O	-612591		2,299020041926e-03	8,49	-2,638	1,0000	0,000	

Таблица 24

Результаты моделирования взаимодействия розенита (Fe0,79Mg0,11Mn0,06Zn0,04[SO4] 4H2O) с природными водами

Таблица 24-1

Резервуар 1					
Температура, °С	25,00	G, кал	-31492230	Eh, B	0,9647
Давление, бар	1,00	Н, кал	-37944592	pe	16,3403
Масса, кг	11,010	S, кал/К	10930,459	pH	4,2609
Объем мультисистемы, см ³	869509,812	U, кал	-37472172	Ионная сила	0,0261
Плотность мультисистемы, г/см ³	0,012662	Ср, кал	10227,45	TDS, mg/kgH ₂ O	722,4721122

Таблица 24-2

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	10032,16785	5,55339e+02	10010,2266	9,97813e-01	90,91942
Газ	859477,61661	3,46712e+01	999,7715	1,16323e-03	9,08058

Таблица 24-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. активности	Log коэф. активности
Водный раство	р						
CO_2	-99079	9,8228e-06	9,825222295491e-05	4,3230e-01	-5,008	1,0051	0,002
CO3 ⁻²	-144130	1,2458e-13	1,246132264593e-12	7,4761e-09	-12,905	0,5686	-0,245
Fe ⁺²	-30671	6,5368e-07	6,538405530371e-06	3,6506e-02	-6,185	0,5415	-0,266
Fe ⁺³	-8376	3,0394e-03	3,040156163024e-02	1,6974e+02	-2,517	0,2498	-0,602
HCO3 ⁻	-149945	9,4175e-08	9,419800343163e-07	5,7463e-03	-7,026	0,8760	-0,058
HNO ₃	-29580	3,2669e-16	3,267751602760e-15	2,0586e-11	-15,486	0,9965	-0,002
HSO ₄ ⁻	-187178	1,8142e-05	1,814623088152e-04	1,7610e+00	-4,741	0,8738	-0,059
Mg^{+2}	-113469	4,2330e-04	4,234039878129e-03	1,0288e+01	-3,373	0,5431	-0,265
Mn ⁺²	-59826	2,3089e-04	2,309476258054e-03	1,2685e+01	-3,637	0,5399	-0,268
N ₂	-136	5,1866e-04	5,187891147355e-03	1,4529e+01	-3,285	0,9969	-0,001
NO ₂ ⁻	-23298	4,2115e-12	4,212556617353e-11	1,9375e-07	-11,376	0,8740	-0,058
NO ₃ ⁻	-23768	1,8283e-10	1,828768998115e-09	1,1336e-05	-9,738	0,8721	-0,059
O ₂	-939	2,6012e-04	2,601878849126e-03	8,3236e+00	-3,585	0,9957	-0,002
SO4-2	-181362	5,3911e-03	5,392446435743e-02	5,1789e+02	-2,268	0,5651	-0,248

Продолжение таблицы 24-3

Zn ⁺²	-40765	1,5393e-04	1,539650754041e-03	1,0065e+01	-3,813	0,5417	-0,266
OH-	-50866	2,1152e-10	2,115739364552e-09	3,5974e-06	-9,675	0,8847	-0,053
H^+	-5812	6,4708e-05	6,472414935683e-04	6,5222e-02	-4,189	0,8486	-0,071
H ₂ O	-56678	5,5510e+01	5,552379008757e+02	1,0000e+00	1,744	1,0000	0,000
Газ							
CO ₂	-99077		1,011329581458e-02	0,04	-1,995	1,0000	0,000
N ₂	-136		2,754722825583e+01	77,19	1,440	1,0000	0,000
NO	-537		9,085042474355e-15	0,00	-14,042	0,9995	-0,000
NO ₂	-1013		4,939639274323e-09	0,00	-8,306	1,0000	0,000
N ₂ O	-605		8,746173726384e-18	0,00	-17,058	0,9946	-0,002
O ₂	-938		7,113856020619e+00	22,77	0,852	1,0000	0,000

Таблица 25

Результаты моделирования взаимодействия фиброферрита (Fe0,97Mn0,02Al0,01[SO4]OH·5H2O) с природными водами

Таблица 25-1

Резервуар 1					·
Температура, °С	25,00	G, кал	-31493190	Eh, B	0,8132
Давление, бар	1,00	Н, кал	-37945760	pe	13,7741
Масса, кг	11,010	S, кал/К	10931,341	pН	6,8272
Объем мультисистемы, см ³	869710,438	U, кал	-37473308	Ионная сила	0,0247
Плотность мультисистемы, г/см ³	0.012660	Ср. кал	10228.38	TDS, mg/kgH2O	673,3477976

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	10032,80232	5,55365e+02	10010,3564	9,97763e-01	90,91647
Газ	859677,62588	3,46793e+01	1000,0256	1,16326e-03	9,08247

Таблица 25-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. активности	Log коэф. активности
Водный раство	р						
Al ⁺³	-134757	2,4078e-14	2,408585351505e-13	6,4967e-10	-13,618	0,2586	-0,587
CO_2	-99094	9,5784e-06	9,581336624251e-05	4,2154e-01	-5,019	1,0048	0,002
CO3-2	-137146	1,6204e-08	1,620939373914e-07	9,7241e-04	-7,790	0,5750	-0,240
Fe ⁺²	-27133	2,5281e-04	2,528929530741e-03	1,4119e+01	-3,597	0,5490	-0,260
Fe ⁺³	-8341	3,1209e-03	3,121834525530e-02	1,7429e+02	-2,506	0,2578	-0,589
HCO ₃ -	-146459	3,3736e-05	3,374621124098e-04	2,0585e+00	-4,472	0,8780	-0,057
HNO ₃	-29580	3,2699e-16	3,270898813005e-15	2,0604e-11	-15,485	0,9967	-0,001
HSO ₄ ⁻	-190715	4,6256e-08	4,626988032606e-07	4,4901e-03	-7,335	0,8759	-0,058
Mn ⁺²	-60529	6,9560e-05	6,958202094801e-04	3,8215e+00	-4,158	0,5475	-0,262
N ₂	-137	5,1831e-04	5,184717047259e-03	1,4520e+01	-3,285	0,9970	-0,001
NO ₂ ⁻	-19783	1,5845e-09	1,584991394967e-08	7,2896e-05	-8,800	0,8761	-0,057
NO ₃ ⁻	-20307	6,2717e-08	6,273616074264e-07	3,8887e-03	-7,203	0,8743	-0,058
O ₂	-938	2,6071e-04	2,607930348688e-03	8,3425e+00	-3,584	0,9959	-0,002
SO4-2	-181401	4,9868e-03	4,988333716114e-02	4,7905e+02	-2,302	0,5716	-0,243
OH-	-47413	7,1731e-08	7,175302316435e-07	1,2199e-03	-7,144	0,8862	-0,052
H^+	-9313	1,7483e-07	1,748816062793e-06	1,7622e-04	-6,757	0,8521	-0,070
H ₂ O	-56678	5,5510e+01	5,552723997829e+02	1,0000e+00	1,744	1,0000	0,000
Газ							
CO ₂	-99097		9,779052446209e-03	0,04	-2,010	1,0000	0,000
N ₂	-136		2,754723110922e+01	77,17	1,440	1,0000	0,000
NO	-537		9,090407391342e-15	0,00	-14,041	0,9995	-0,000
NO ₂	-1006		4,998607675926e-09	0,00	-8,301	1,0000	0,000
N ₂ O	-605		8,750320664585e-18	0,00	-17,058	0,9946	-0,002
O ₂	-938		7,122255754380e+00	22,79	0,853	1,0000	0,000

673,3477976

Таблица 25-2

Таблица 26

Результаты моделирования взаимодействия илезита (Мп_{0,64}Мg_{0,15}Zn_{0,15}Fe_{0,03}Al_{0,02}[SO₄]·4H₂O) с природными водами Таблица 26-1

Резервуар 1

i cocpojup i					
Температура, °С	25,00	G, кал	-31494604	Eh, B	0,9968
Давление, бар	1,00	Н, кал	-37946792	pe	16,8833
Масса, кг	11,010	S, кал/К	10932,073	pH	3,7180
Объем мультисистемы, см ³	869523,062	U, кал	-37474336	Ионная сила	0,0192
Плотность мультисистемы, г/см ³	0,012662	Ср, кал	10229,19	TDS, mg/kgH ₂ O	690,7392062

Таблица 26-2

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)				
Водный раствор	10033,14572	5,55369e+02	10010,4102	9,97734e-01	90,91944				
Газ	859489,89884	3,46717e+01	999,7873	1,16323e-03	9,08056				

Таблица 26-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. активности	Log коэф. активности
Водный раство	op						
Al ⁺³	-121611	9,1316e-05	9,134317673365e-04	2,4638e+00	-4,039	0,2952	-0,530
CO ₂	-99077	9,8685e-06	9,871456896863e-05	4,3431e-01	-5,006	1,0037	0,002
CO3 ⁻²	-145611	9,6343e-15	9,637153024733e-14	5,7815e-10	-14,016	0,6033	-0,219
Fe ⁺²	-33148	9,2863e-09	9,289054893518e-08	5,1861e-04	-8,032	0,5820	-0,235
Fe ⁺³	-10115	1,3696e-04	1,370047854103e-03	7,6490e+00	-3,863	0,2944	-0,531
HCO ₃ -	-150684	2,6734e-08	2,674149277171e-07	1,6312e-03	-7,573	0,8870	-0,052
HNO ₃	-29580	3,2641e-16	3,265086846389e-15	2,0568e-11	-15,486	0,9975	-0,001
HSO ₄ -	-186479	5,8237e-05	5,825459879374e-04	5,6532e+00	-4,235	0,8854	-0,053
Mg^{+2}	-113141	6,8487e-04	6,850742927027e-03	1,6646e+01	-3,164	0,5833	-0,234
Mn ⁺²	-58279	2,9221e-03	2,922983485910e-02	1,6053e+02	-2,534	0,5808	-0,236
N ₂	-136	5,1836e-04	5,185111459267e-03	1,4521e+01	-3,285	0,9977	-0,001
NO ₂ -	-24039	1,1907e-12	1,191051828383e-11	5,4779e-08	-11,924	0,8855	-0,053
NO ₃ ⁻	-24508	5,1663e-11	5,167796315356e-10	3,2033e-06	-10,287	0,8841	-0,053
O ₂	-939	2,6002e-04	2,600937601441e-03	8,3202e+00	-3,585	0,9968	-0,001
SO4-2	-181405	4,7157e-03	4,717102307168e-02	4,5301e+02	-2,326	0,6006	-0,221
Zn ⁺²	-39837	6,8487e-04	6,850741971094e-03	4,4784e+01	-3,164	0,5822	-0,235
OH	-51606	5,9993e-11	6,001091599372e-10	1,0203e-06	-10,222	0,8935	-0,049
H^+	-5072	2,2109e-04	2,211596510538e-03	2,2285e-01	-3,655	0,8666	-0,062
H ₂ O	-56678	5,5510e+01	5,552656398674e+02	1,0000e+00	1,744	1,0000	0,000
Газ							
CO_2	-99077		1,011350803481e-02	0,04	-1,995	1,0000	0,000
N ₂	-136		2,754723103616e+01	77,19	1,440	1,0000	0,000
NO	-537		9,085358756848e-15	0,00	-14,042	0,9995	-0,000
NO ₂	-1006		4,991334882967e-09	0,00	-8,302	1,0000	0,000
N ₂ O	-605		8,746416378016e-18	0,00	-17,058	0,9946	-0,002
O ₂	-938		7,114348491205e+00	22,77	0,852	1,0000	0,000

Таблица 27

Результаты моделирования взаимодействия бианкита (Zn[SO4] 6H2O) с природными водами

Таблица 27-1

Резервуар 1					
Температура, °С	25,00	G, кал	-31493554	Eh, B	0,8787
Давление, бар	1,00	Н, кал	-37945980	pe	14,8835
Масса, кг	11,010	S, кал/К	10932,296	pН	5,7177
Объем мультисистемы, см ³	869505,812	U, кал	-37473484	Ионная сила	0,0148
Плотность мультисистемы, г/см ³	0,012662	Ср, кал	10230,61	TDS, mg/kgH ₂ O	598,9218426

Таблица 27-2

Параметры фазы

Наименование фазы	Объем, см ³	Мольное количество	Масса, г	Плотность, г/см ³	Содержание (вес, %)
Водный раствор	10033,74355	5,55389e+02	10010,2344	9,97657e-01	90,91949
Газ	859472,04942	3,46710e+01	999,7640	1,16323e-03	9,08051

Таблица 27-3

Характеристики зависимых компонентов равновесного состояния мультисистемы

Aupartephetinka subhenmbix komionentob publicheenoto everomina myndrienetembi										
Состав фазы	Функция gT, кал/моль	Моляльность	Мольное количество	Концентрация в мг/кг H ₂ O, или вес. %	Log моляльност и	Коэф. активности	Log коэф. активности			
Водный раство	р									
CO ₂	-99081	9,8107e-06	9,814369393470e-05	4,3177e-01	-5,008	1,0029	0,001			
CO3-2	-140156	9,1592e-11	9,162601309189e-10	5,4964e-06	-10,038	0,6323	-0,199			
HCO3 ⁻	-147964	2,6089e-06	2,609866822911e-05	1,5919e-01	-5,584	0,8962	-0,048			
HNO ₃	-29580	3,2621e-16	3,263344881655e-15	2,0556e-11	-15,486	0,9980	-0,001			
HSO ₄ ⁻	-189344	4,5761e-07	4,577823879495e-06	4,4421e-02	-6,340	0,8949	-0,048			
N ₂	-135	5,1905e-04	5,192433712091e-03	1,4540e+01	-3,285	0,9982	-0,001			
NO ₂ -	-21311	1,1774e-10	1,177846515637e-09	5,4167e-06	-9,929	0,8950	-0,048			
NO ₃ -	-21788	5,0410e-09	5,042871444229e-08	3,1257e-04	-8,297	0,8939	-0,049			
O ₂	-941	2,5889e-04	2,589844809674e-03	8,2841e+00	-3,587	0,9975	-0,001			
SO4-2	-181519	3,7081e-03	3,709493867699e-02	3,5621e+02	-2,431	0,6301	-0,201			
Zn ⁺²	-38804	3,7086e-03	3,709951650087e-02	2,4250e+02	-2,431	0,6151	-0,211			
OH	-48886	5,8681e-09	5,870308048452e-08	9,9801e-05	-8,232	0,9012	-0,045			
H^+	-7804	2,1625e-06	2,163298754160e-05	2,1797e-03	-5,665	0,8802	-0,055			
H ₂ O	-56678	5,5510e+01	5,553069215346e+02	1,0000e+00	1,744	1,0000	0,000			
Газ										
CO ₂	-99078		1,008824673233e-02	0,04	-1,996	1,0000	0,000			
N ₂	-136		2,754722368839e+01	77,19	1,440	1,0000	0,000			
NO	-537		9,084914204324e-15	0,00	-14,042	0,9995	-0,000			
NO ₂	-1010		4,958278386765e-09	0,00	-8,305	1,0000	0,000			
N ₂ O	-605		8,746079546074e-18	0,00	-17,058	0,9946	-0,002			
O ₂	-938		7,113661057501e+00	22,77	0,852	1,0000	0,000			

ПРИЛОЖЕНИЕ 4

Результаты рентгеноструктурного анализа минералов Дальнегорского района

Таблица 4-1

Na	2-		Height	Int. I	FWHM	C:	Dhaaraa
INO.	theta(deg)	d (A)	(cps)	(cps deg)	(deg)	Size	Phase name
1	15.93(5)	5.560(17)	31(5)	15(2)	0.26(8)	319(92)	Butlerite, (0,0,1)
2	17.355(19)	5.105(6)	79(8)	19.2(19)	0.21(2)	391(44)	Jarosite, (0,1,2)
3	17.712(6)	5.0033(18)	330(17)	70(3)	0.186(6)	451(15)	Butlerite, (1,0,-1)
4	18.71(3)	4.739(6)	60(7)	9.4(14)	0.146(19)	575(76)	Butlerite, (1,1,0)
5	19.97(3)	4.442(7)	67(7)	18.7(18)	0.20(3)	413(67)	Butlerite, (0,1,1)
6	24.685(7)	3.6036(11)	172(12)	32.2(14)	0.141(11)	602(48)	Butlerite, (1,0,1)
7	27.505(14)	3.2401(16)	142(11)	30.5(13)	0.157(17)	543(57)	Butlerite, (1,1,1)
8	28.107(7)	3.1722(8)	353(17)	63.3(18)	0.152(6)	564(21)	Butlerite, (1,2,0)
9	28.520(17)	3.1272(18)	108(9)	33(2)	0.25(2)	342(28)	Jarosite, (0,2,1)
10	28.961(8)	3.0805(8)	258(15)	81.2(18)	0.267(7)	321(8)	Butlerite, (2,0,0)
11	35.886(17)	2.5003(12)	118(10)	21.5(13)	0.154(15)	567(56)	Butlerite, (2,0,-2)
12	37.46(2)	2.3990(14)	66(7)	10.9(11)	0.155(19)	564(69)	Butlerite, (2,2,-1)
13	39.50(3)	2.2795(14)	86(8)	23.0(15)	0.237(19)	372(30)	Butlerite, (1,3,0)
14	45.056(14)	2.0105(6)	37(6)	7.9(10)	0.18(5)	505(138)	Butlerite, (2,2,1)
15	45.64(4)	1.9859(15)	59(7)	17.8(15)	0.25(3)	357(48)	Butlerite, (3,0,-2)
16	49.38(3)	1.8442(10)	45(6)	20.4(14)	0.28(5)	324(61)	Butlerite, (0,0,3)
17	53.13(3)	1.7224(9)	18(4)	17(3)	0.90(11)	103(12)	Butlerite, (3,2,-2)
18	55.03(6)	1.6672(17)	26(5)	10.9(12)	0.35(5)	266(41)	Butlerite, (1,3,2)
19	55.955(7)	1.6420(2)	40(6)	5.0(5)	0.097(12)	969(119)	Butlerite, (1,4,1)
20	56.84(2)	1.6184(5)	41(6)	9.6(9)	0.16(3)	600(103)	Butlerite, (3,1,-3)

No.	2-	d (A)	Height(cps)	Int. I(cps	FWHM(de	Size	Phase name
	theta(deg)	- ()	8(-F)	deg)	g)	~	
1	14.25(3)	6.211(12)	49(6)	16.3(14)	0.21(4)	397(72)	Butlerite, (1,0,0)
2	15.90(2)	5.569(7)	69(8)	14(2)	0.180(19)	464(49)	Butlerite, (0,0,1)
3	17.722(7)	5.001(2)	701(24)	188(3)	0.188(9)	447(21)	Butlerite, (1,0,-1)
4	18.701(13)	4.741(3)	99(9)	21.4(12)	0.192(10)	439(23)	Butlerite, (1,1,0)
5	19.995(12)	4.437(3)	124(10)	28.9(13)	0.207(9)	406(18)	Butlerite, (0,1,1)
6	24.689(14)	3.603(2)	244(14)	60.3(17)	0.178(11)	477(29)	Butlerite, (1,0,1)
7	27.494(7)	3.2414(8)	221(14)	53.9(17)	0.206(8)	414(16)	Butlerite, (1,1,1)
8	28.124(5)	3.1703(6)	707(24)	143(3)	0.160(5)	534(15)	Butlerite, (1,2,0)
9	28.986(8)	3.0780(8)	337(17)	114(3)	0.267(7)	320(8)	Butlerite, (2,0,0)
10	30.711(10)	2.9088(9)	46(6)	6.6(7)	0.119(16)	724(97)	Butlerite, (2,1,-1)
11	31.348(16)	2.8512(14)	103(9)	22.3(9)	0.175(12)	493(33)	Butlerite, (2,1,0)
12	34.79(2)	2.5768(17)	55(7)	33(2)	0.42(3)	208(16)	Butlerite, (0,1,2)
13	35.895(9)	2.4997(6)	240(14)	49.6(12)	0.152(9)	575(34)	Butlerite, (2,0,-2)
14	37.46(2)	2.3986(15)	102(9)	23.4(14)	0.19(2)	473(50)	Butlerite, (2,2,-1)
15	39.504(19)	2.2793(10)	127(10)	37.2(15)	0.247(15)	357(21)	Butlerite, (1,3,0)
16	43.71(9)	2.069(4)	18(4)	8.9(17)	0.47(7)	189(30)	Butlerite, (3,1,-1)
17	44.61(3)	2.0295(14)	26(5)	3.9(6)	0.14(4)	627(169)	Butlerite, (1,3,1)
18	45.09(2)	2.0091(10)	61(7)	12.9(7)	0.20(2)	454(49)	Butlerite, (2,2,1)
19	45.65(2)	1.9858(9)	71(8)	15.9(9)	0.209(18)	430(36)	Butlerite, (3,0,-2)
20	47.271(18)	1.9213(7)	20(4)	9.5(13)	0.43(5)	211(26)	Butlerite, (2,3,0)
21	48.664(6)	1.8695(2)	44(6)	7.4(8)	0.14(2)	647(94)	Butlerite, (3,2,-1)
22	49.395(12)	1.8435(4)	83(8)	32.1(12)	0.261(15)	350(21)	Butlerite, (0,0,3)
23	52.27(3)	1.7488(9)	66(7)	16.7(16)	0.20(4)	468(90)	Butlerite, (0,4,1)
24	52.953(15)	1.7278(5)	57(7)	24.8(18)	0.35(4)	263(31)	Butlerite, (1,4,-1)
25	55.951(18)	1.6421(5)	52(7)	21.1(13)	0.23(4)	405(65)	Butlerite, (1,4,1)
26	58.16(4)	1.5847(10)	45(6)	14.4(12)	0.30(3)	318(31)	Butlerite, (4,1,-1)

No.	2-theta(deg)	d (A)	Height(cps)	Int. I(cps deg)	FWHM(deg)	Size	Phase name
1	23.007(7)	3.8624(12)	407(18)	101.7(14)	0.167(6)	507(19)	Calcite, (0,1,2)
2	29.3659(17)	3.03894(17)	4531(61)	1016(3)	0.1696(12)	506(4)	Calcite, (1,0,4)
3	31.412(10)	2.8455(9)	123(10)	25.0(9)	0.132(16)	654(77)	Calcite, (0,0,6)
4	35.913(6)	2.4985(4)	544(21)	134.7(15)	0.186(5)	469(12)	Calcite, (1,1,0)
5	39.374(4)	2.2865(2)	861(27)	203.6(17)	0.175(4)	504(11)	Calcite, (1,1,3)
6	43.114(4)	2.09640(19)	722(25)	167.4(15)	0.170(4)	525(13)	Calcite, (2,0,2)
7	47.096(8)	1.9280(3)	252(14)	65(4)	0.189(12)	480(31)	Calcite, (0,2,4)
8	47.485(4)	1.91313(16)	807(26)	207(5)	0.187(5)	485(13)	Calcite, (0,1,8)
9	48.460(4)	1.87689(15)	827(26)	216.0(19)	0.192(4)	473(10)	Calcite, (1,1,6)
10	56.543(10)	1.6263(3)	136(11)	37.1(14)	0.207(13)	456(28)	Calcite, (2,1,1)
11	57.376(7)	1.60463(18)	318(16)	90(3)	0.217(8)	437(16)	Calcite, (1,2,2)
12	58.123(18)	1.5858(4)	46(6)	12(2)	0.17(3)	548(106)	Calcite, (1,0,10)
13	60.644(6)	1.52574(14)	206(13)	54(3)	0.183(10)	526(28)	Calcite, (2,1,4)
14	60.940(17)	1.5190(4)	84(8)	29(4)	0.24(4)	402(63)	Calcite, (2,0,8)
15	61.359(13)	1.5097(3)	93(9)	31(3)	0.22(2)	446(52)	Calcite, (1,1,9)
16	63.040(15)	1.4734(3)	79(8)	27.4(15)	0.22(2)	434(42)	Calcite, (1,2,5)
17	64.639(7)	1.44075(15)	214(13)	63(3)	0.208(9)	471(21)	Calcite, (3,0,0)

Профиль измерения

Таблица 4-3

No.	2-theta(deg)	d (A)	Height(cps)	Int. I(cps deg)	FWHM(deg)	Size	Phase name
1	11.604(7)	7.620(4)	304(16)	65.2(19)	0.152(8)	547(29)	Gypsum, (0,2,0)
2	23.07(3)	3.852(6)	65(7)	12.7(16)	0.16(3)	530(89)	Calcite, (0,1,2)
3	23.384(10)	3.8011(16)	201(13)	52(2)	0.13(2)	671(128)	Gypsum, (0,4,0)
4	26.631(6)	3.3445(7)	2312(44)	437(5)	0.147(4)	581(16)	Quartz, (1,0,1)
5	27.96(3)	3.188(3)	39(6)	25(4)	0.35(12)	244(84)	Gypsum,(1,1,1)
6	29.107(9)	3.0654(9)	392(18)	78(3)	0.183(9)	469(22)	Gypsum, (1,1,-3)
7	29.421(8)	3.0334(8)	858(27)	173(4)	0.184(7)	467(17)	Calcite, (1,0,4), Phosphate, (0,4,0)
8	31.098(12)	2.8735(11)	180(12)	32(3)	0.158(19)	545(65)	Gypsum, (2,2,-1)
9	32.043(10)	2.7909(8)	88(9)	14.1(11)	0.103(14)	838(113)	Gypsum, (1,1,-2)
10	33.328(15)	2.6862(12)	144(11)	44.2(19)	0.288(12)	301(12)	Gypsum, (1,5,0)
11	34.667(12)	2.5854(8)	172(12)	61(5)	0.251(17)	346(24)	Gypsum, (1,5,-1)
12	35.979(15)	2.4941(10)	96(9)	19.3(10)	0.163(16)	535(52)	Calcite, (1,1,0), Gypsum, (2,0,- 2)
13	36.529(13)	2.4578(9)	165(12)	33.4(13)	0.170(11)	513(33)	Quartz, (1,1,0), Gypsum, (0,2,2)
14	37.70(7)	2.384(4)	23(4)	23(2)	0.79(10)	110(13)	Gypsum, (2,4,-1)
15	39.459(11)	2.2818(6)	241(14)	47.6(16)	0.162(12)	544(40)	Quartz, (1,0,2), Calcite, (1,1,3), Gypsum, (2,4,0)
16	40.292(14)	2.2365(7)	69(8)	10.9(7)	0.142(17)	622(74)	Quartz, (1,1,1)
17	40.60(2)	2.2204(12)	68(8)	20.0(11)	0.25(2)	352(29)	Gypsum, (1,5,1)
18	42.053(9)	2.1468(4)	76(8)	14.0(10)	0.133(18)	670(90)	Gypsum, (0,4,2)
19	42.455(7)	2.1274(3)	119(10)	24.3(14)	0.140(11)	635(48)	Quartz, syn, (2,0,0)
20	43.197(12)	2.0926(5)	203(13)	59(2)	0.18(2)	492(66)	Calcite, (2,0,2), Gypsum, (2,4,- 2)
21	45.80(2)	1.9794(8)	64(7)	14.6(12)	0.16(3)	564(98)	Quartz, (2,0,1)
22	47.516(11)	1.9120(4)	175(12)	41(4)	0.17(2)	524(60)	Calcite, (0,1,8)
23	47.85(2)	1.8993(9)	91(9)	27(4)	0.21(4)	426(81)	Gypsum, (0,8,0)
24	48.387(14)	1.8795(5)	108(9)	50.0(16)	0.393(17)	232(10)	Calcite, (1,1,6), Gypsum, (2,4,1)
25	50.150(6)	1.8175(2)	253(15)	63.2(14)	0.169(8)	543(27)	Quartz, (1,1,2), Gypsum, (0,6,2)
26	50.736(15)	1.7979(5)	50(6)	12.4(12)	0.18(3)	500(73)	Quartz, (0,0,3), Gypsum, (2,2,-3)
27	51.465(14)	1.7741(5)	52(7)	23.4(13)	0.34(3)	270(20)	Gypsum, (2,6,-2)
28	54.43(2)	1.6844(7)	22(4)	2.9(6)	0.12(3)	762(166)	Gypsum, (0,2,3)
29	54.851(10)	1.6724(3)	72(8)	10.7(18)	0.138(14)	676(70)	Quartz, (2,0,2)
30	55.33(5)	1.6589(13)	28(5)	9.4(16)	0.32(8)	293(77)	Quartz, (1,0,3), Gypsum, (2,4,-3)
31	56.25(4)	1.6339(10)	43(6)	21.5(16)	0.47(4)	202(18)	Gypsum, (2,6,1)
32	56.735(19)	1.6212(5)	45(6)	11.4(17)	0.24(5)	395(76)	Calcite, (2,1,1), Gypsum, (2,8,- 1)
33	57.41(3)	1.6038(8)	40(6)	10.0(14)	0.19(5)	500(127)	Calcite, (1,2,2), Gypsum, (1,9,- 1)
34	59.941(13)	1.5419(3)	199(13)	48(5)	0.15(2)	630(82)	Quartz, (2,1,1)

No.	2-theta(deg)	d (A)	Height(cps)	Int. I(cps deg)	FWHM(deg)	Size	Phase name
1	16.117(10)	5.495(3)	162(12)	60(3)	0.18(2)	455(53)	Melanterite, (1,0,-2)
2	18.036(4)	4.9142(12)	1090(30)	333(3)	0.242(4)	347(6)	Melanterite, (1,1,1)
3	19.42(2)	4.566(5)	98(9)	26.8(14)	0.201(17)	419(36)	Melanterite, (1,0,2)
4	21.975(8)	4.0414(14)	183(12)	46.3(13)	0.142(17)	594(70)	Melanterite, (2,1,1)
5	23.498(5)	3.7829(8)	757(25)	175(4)	0.186(4)	456(10)	Melanterite, (3,1,-1)
6	23.801(11)	3.7354(17)	222(14)	55(3)	0.197(16)	430(35)	Melanterite, (1,1,2)
7	26.12(2)	3.409(3)	96(9)	18.2(13)	0.178(15)	479(40)	Melanterite, (4,0,0)
8	27.339(9)	3.2595(11)	327(17)	74(2)	0.161(11)	531(35)	Melanterite, (0,2,0)
9	27.754(11)	3.2116(13)	183(12)	39.3(16)	0.158(12)	540(42)	Melanterite, (1,1,-3)
10	28.541(12)	3.1249(13)	145(11)	35.5(14)	0.214(11)	400(21)	Melanterite, (2,1,-3)
11	29.105(4)	3.0656(4)	100(9)	27.5(16)	0.254(17)	338(23)	Melanterite, (1,2,-1)
12	29.658(19)	3.0096(19)	97(9)	19.1(13)	0.164(19)	523(60)	Melanterite, (4,1,0)
13	30.43(2)	2.9354(19)	79(8)	19.7(11)	0.15(3)	571(122)	Melanterite, (4,1,-2)
14	31.955(11)	2.7983(10)	123(10)	22.5(9)	0.171(11)	504(31)	Melanterite, (1,2,-2)
15	32.199(10)	2.7777(8)	86(8)	20(3)	0.21(4)	408(73)	Melanterite, (3,1,2)
16	32.425(14)	2.7589(11)	135(11)	30(7)	0.21(6)	420(122)	Melanterite, (1,0,-4)
17	32.741(10)	2.7330(8)	240(14)	43(7)	0.17(2)	515(63)	Melanterite, (5,0,-2)
18	33.827(9)	2.6477(7)	148(11)	56.1(18)	0.319(12)	272(10)	Melanterite, (3,2,-1)
19	34.140(7)	2.6241(5)	171(12)	28.6(13)	0.136(10)	637(47)	Melanterite, (4,1,-3)
20	35.399(15)	2.5336(10)	36(5)	9.9(17)	0.25(6)	349(79)	Melanterite, (3,2,-2)
21	36.09(3)	2.486(2)	81(8)	26(3)	0.29(3)	305(27)	Melanterite, (1,0,4)
22	36.86(2)	2.4364(15)	107(9)	17.0(17)	0.150(19)	584(76)	Melanterite, (3,1,-4)
23	37.46(3)	2.3989(18)	66(7)	10.0(14)	0.14(3)	623(117)	Melanterite, (0,2,3)
24	38.856(14)	2.3158(8)	125(10)	29.4(11)	0.160(18)	549(63)	Melanterite, (4,2,-2)
25	39.52(6)	2.278(3)	26(5)	6.9(14)	0.25(5)	357(71)	Melanterite, (2,0,4)
26	41.30(4)	2.1844(19)	44(6)	8.1(13)	0.17(3)	517(102)	Melanterite, (5,0,2)
27	41.998(19)	2.1495(9)	42(6)	6.3(11)	0.11(2)	806(182)	Melanterite, (2,1,4)
28	43.43(2)	2.0820(11)	76(8)	19.4(16)	0.17(4)	512(117)	Melanterite, (1,1,-5)
29	44.88(4)	2.0178(15)	96(9)	24(2)	0.24(3)	379(42)	Melanterite, (0,1,5)
30	46.137(17)	1.9659(7)	140(11)	29(2)	0.15(3)	609(104)	Melanterite, (3,3,-1)
31	48.204(8)	1.8863(3)	72(8)	17.7(12)	0.14(3)	642(134)	Melanterite, (3,3,1)
32	48.748(13)	1.8665(5)	110(10)	35.9(16)	0.19(2)	477(58)	Melanterite, (4,0,4)
33	49.46(3)	1.8413(10)	40(6)	5.0(14)	0.12(3)	777(196)	Melanterite, (5,1,3)
34	50.617(18)	1.8019(6)	39(6)	14(2)	0.21(5)	446(112)	Melanterite, (3,3,-3)
35	51.98(4)	1.7579(12)	54(7)	11.6(16)	0.20(4)	458(84)	Melanterite, (8,0,-2),
36	53.57(2)	1.7093(6)	38(6)	7.6(9)	0.16(3)	598(116)	Melanterite, (6,2,-4),
37	54.13(2)	1.6930(7)	45(6)	10.8(9)	0.19(3)	492(84)	Melanterite, (3,1,5)

No.	2-theta(deg)	d (A)	Height(cps)	Int. I(cps deg)	FWHM(deg)	Size	Phase name
1	15.893(14)	5.572(5)	74(8)	14(5)	0.11(4)	750(266)	Melanterite, (0,1,1)
2	16.156(12)	5.482(4)	163(12)	41(6)	0.14(2)	580(84)	Melanterite, (1,0,-2)
3	16.654(6)	5.319(2)	58(7)	18(3)	0.17(4)	484(115)	Melanterite, (0,0,2)
4	18.058(5)	4.9083(13)	1346(33)	383(4)	0.227(5)	370(8)	Melanterite, (1,1,1)
5	19.472(13)	4.555(3)	118(10)	33.5(18)	0.18(2)	475(53)	Melanterite, (1,0,2)
6	22.035(6)	4.0306(10)	169(12)	44.7(19)	0.179(19)	472(49)	Melanterite, (2,1,1)
7	23.531(7)	3.7776(11)	990(29)	178(5)	0.138(6)	616(27)	Melanterite, (3,1,-1)
8	23.852(12)	3.7275(19)	284(15)	56(3)	0.150(14)	564(51)	Melanterite, (1,1,2)
9	26.12(5)	3.408(6)	68(8)	71(9)	0.98(11)	87(10)	Melanterite, (4,0,0)
10	27.421(4)	3.2499(5)	235(14)	73(5)	0.291(14)	293(15)	Melanterite, (0,2,0)
11	27.845(5)	3.2014(6)	152(11)	58(4)	0.36(3)	238(19)	Melanterite, (1,1,-3)
12	28.558(16)	3.1230(17)	160(12)	32(3)	0.189(13)	452(30)	Melanterite, (2,1,-3)
13	29.121(13)	3.0640(13)	59(7)	40(4)	0.63(6)	135(14)	Melanterite, (1,2,-1)
14	29.71(3)	3.004(3)	95(9)	33(10)	0.33(7)	264(55)	Melanterite, (4,1,0)
15	30.43(2)	2.935(2)	76(8)	9.2(16)	0.11(3)	756(202)	Melanterite, (4,1,-2)
16	30.70(6)	2.910(5)	32(5)	4.5(13)	0.13(6)	657(315)	Melanterite, (3,1,-3)
17	31.961(9)	2.7978(8)	84(8)	11.7(10)	0.103(13)	836(102)	Melanterite, (1,2,-2)
18	32.27(2)	2.7715(18)	82(8)	25(5)	0.20(4)	432(78)	Melanterite, (3,1,2)
19	32.536(14)	2.7497(12)	76(8)	13(4)	0.12(3)	714(186)	Melanterite, (1,0,-4)
20	32.778(9)	2.7300(8)	172(12)	40(4)	0.16(2)	540(70)	Melanterite, (5,0,-2)
21	33.86(2)	2.6449(18)	75(8)	18.1(10)	0.207(19)	419(38)	Melanterite, (1,2,2)
22	34.187(8)	2.6206(6)	57(7)	10.4(9)	0.16(3)	538(84)	Melanterite, (4,1,-3)
23	34.775(4)	2.5776(3)	143(11)	36.5(15)	0.221(12)	393(21)	Melanterite, (4,0,2)
24	36.130(7)	2.4840(5)	69(8)	21.8(14)	0.28(2)	313(25)	Melanterite, (1,0,4)
25	36.904(13)	2.4337(8)	186(12)	50.7(16)	0.223(11)	393(20)	Melanterite, (3,1,-4)
26	37.83(2)	2.3764(13)	106(9)	56.8(16)	0.450(19)	195(8)	Melanterite, (0,2,3)
27	39.287(14)	2.2913(8)	44(6)	11(3)	0.23(8)	387(138)	Melanterite, (2,0,4)
28	42.78(7)	2.112(3)	34(5)	28(3)	0.76(6)	117(9)	Melanterite, (1,3,-1)
29	46.03(2)	1.9703(9)	102(9)	55.3(18)	0.51(2)	177(7)	Melanterite, (1,2,4)
30	46.59(3)	1.9478(12)	75(8)	27.8(17)	0.35(3)	259(21)	Melanterite, (4,2,-4)
31	47.38(7)	1.917(3)	46(6)	38(10)	0.8(2)	116(34)	Melanterite, (1,1,5)
32	48.53(4)	1.8743(13)	49(6)	16(2)	0.31(4)	296(38)	Melanterite, (4,0,4)
33	50.05(3)	1.8210(10)	46(6)	14.3(8)	0.27(3)	336(31)	Melanterite, (3,0,-6)
34	50.693(17)	1.7993(6)	95(9)	24.6(11)	0.233(15)	395(26)	Melanterite, (3,3,-3)
35	51.95(2)	1.7588(7)	70(8)	16.4(11)	0.21(2)	437(42)	Melanterite, (8,0,-2)

No.	2-theta(deg)	d (A)	Height(cps)	Int. I(cps deg)	FWHM(deg)	Size	Phase name
1	16.137(5)	5.4879(17)	196(13)	69(2)	0.178(12)	471(32)	Melanterite, (1,0,-2)
2	18.059(5)	4.9081(13)	1067(30)	294(3)	0.219(5)	383(8)	Melanterite, (1,1,1)
3	19.45(3)	4.559(7)	81(8)	30(4)	0.35(4)	240(28)	Melanterite, (2,1,-1)
4	22.03(2)	4.032(4)	96(9)	24(8)	0.16(6)	544(204)	Melanterite, (2,1,1)
5	23.533(6)	3.7773(9)	447(19)	87(3)	0.152(5)	559(18)	Melanterite, (3,1,-1)
6	23.843(13)	3.729(2)	122(10)	28(2)	0.180(18)	472(47)	Melanterite, (1,1,2)
7	26.128(8)	3.4077(11)	307(16)	71.2(19)	0.191(7)	445(17)	Melanterite, (4,0,0)
8	27.085(15)	3.2895(18)	137(11)	33(3)	0.202(19)	423(41)	Melanterite, (3,1,1)
9	27.550(12)	3.2350(14)	246(14)	95(4)	0.318(15)	269(13)	Melanterite, (0,2,0)
10	28.46(2)	3.133(3)	66(7)	15.6(12)	0.22(2)	386(41)	Melanterite, (2,1,-3)
11	28.936(16)	3.0831(16)	37(6)	12.1(15)	0.30(4)	282(38)	Melanterite, (4,1,-1)
12	29.876(15)	2.9882(15)	188(13)	47(10)	0.235(17)	365(27)	Melanterite, (1,2,1)
13	30.66(2)	2.913(2)	52(7)	13.7(12)	0.25(3)	351(36)	Melanterite, (3,1,-3)
14	32.271(15)	2.7717(13)	91(9)	25.8(18)	0.21(2)	420(42)	Melanterite, (0,2,2)
15	32.75(2)	2.7325(16)	86(8)	38(2)	0.28(3)	310(31)	Melanterite, (2,2,1)
16	34.748(16)	2.5796(11)	215(13)	62(2)	0.232(13)	375(22)	Melanterite, (5,1,-1)
17	36.25(2)	2.4764(14)	61(7)	15.9(15)	0.20(2)	436(52)	Melanterite, (3,2,1)
18	36.852(11)	2.4370(7)	190(13)	55.7(16)	0.248(10)	353(15)	Melanterite, (4,0,-4)
19	37.800(18)	2.3780(11)	139(11)	79.3(17)	0.489(15)	179(6)	Melanterite, (4,2,-1)
20	39.27(3)	2.2925(15)	65(7)	14(3)	0.21(5)	427(113)	Melanterite, (1,2,3)
21	39.657(17)	2.2708(9)	182(12)	46(3)	0.237(17)	373(27)	Melanterite, (6,0,0)
22	41.33(3)	2.1825(14)	47(6)	8.1(7)	0.16(3)	547(86)	Melanterite, (6,1,-2)
23	42.16(4)	2.1418(18)	34(5)	10.4(9)	0.29(4)	306(39)	Melanterite, (2,2,3)
24	42.65(4)	2.1181(18)	47(6)	25.3(16)	0.51(3)	175(11)	Melanterite, (1,3,-1)
25	46.047(8)	1.9695(3)	103(9)	49(3)	0.43(2)	208(10)	Melanterite, (1,2,4)
26	46.63(2)	1.9461(10)	64(7)	17.8(16)	0.25(4)	358(56)	Melanterite, (4,2,-4)
27	47.967(8)	1.8950(3)	102(9)	58.1(14)	0.295(18)	307(19)	Melanterite, (6,2,-2)
28	48.511(14)	1.8751(5)	46(6)	9.7(16)	0.20(4)	465(95)	Melanterite, (2,3,2)
29	49.97(5)	1.8237(17)	29(5)	8.3(11)	0.27(4)	341(56)	Melanterite, (1,0,-6)
30	50.69(2)	1.7995(7)	96(9)	23.4(11)	0.23(2)	399(34)	Melanterite, (3,2,-5)
31	51.95(3)	1.7587(8)	59(7)	20.3(10)	0.302(18)	305(18)	Melanterite, (4,3,1)
32	52.99(3)	1.7267(8)	59(7)	28.2(11)	0.37(2)	248(16)	Melanterite, (4,3,-3)
33	55.44(2)	1.6559(7)	27(5)	16.8(14)	0.59(8)	160(22)	Melanterite, (7,2,-3)
34	56.22(2)	1.6349(5)	100(9)	23.2(17)	0.218(18)	432(37)	Melanterite, (1,3,4)

ПРИЛОЖЕНИЕ 5

Макро- и микрокомпонентный состав дождевых и снеговых вод Дальнегорского района

Таблица 5.1

No				Содержание, мг/дм ³							
пробы	Виды воды	рН	\mathbf{K}^+	Na ⁺	Ca ⁺	Mg^+	Cl-	SO ₄ ²⁻	HCO ₃ -	лизация, г/дм ³	
1	Дождевая вода	5,1	1,17	1,28	5,88	0,97	1,12	4,23	20,74	0,04	
2	Снеговая вода	5,8	0,54	1,51	2,48	0,54	2,13	4,35	7,32	0,02	

Макрокомпонентный состав вод

Таблица 5.2

Микрокомпонентный состав вод

Показатель	Дождевая вода	Снеговая вода
pН	5,1	5,8
Fe	0,056	0,050
Ni	0,0039	0,0017
Со	0,0023	0,0029
Cu	0,0052	0,0080
Zn	0,039	0,0032
Pb	0,0066	0,0054
Cd	0,00082	0,00089
Ga	0,0002	<110
As	0,00063	<0,0005
Se	0,00018	0,00002
Ag	0,000007	0,000008
Mn	0,015	0,0027
Si	8,96	8,50
Al	0,23	0,096
Cr	0,0034	0,0048
Sr	0,073	0,043
Ba	0,015	0,010
Li	0,027	0,032
Hg	0,00038	0,00020
В	0,04	0,02
Be	0,00003	0,000004
Sc	0,000007	<ПО
V	0,00086	0,00093
Rb	0,011	0,00032
Y	0,00005	0,00002
Cs	0,00006	0,00009
Th	0,00002	0,0000012
U	0,00002	0,000004

ПРИЛОЖЕНИЕ 6

Принятые сокращения в тексте

- КОФ Краснореченская обогатительная фабрика
- ЦОФ Центральная обогатительная фабрика
- РЗЭ Редкоземельные элементы
- Г. п. Горная порода
- Т/Ж Соотношение твердой и жидкой фаз
- ПДК Предельно допустимая концентрация
- ОБУВ Ориентировочный безопасный уровень воздействия
- TDS Минерализация, мг/кг H₂O

Принятые сокращения минералов

- ар апатит
- ar арсенопирит
- ang англезит
- bt биотит
- vr вермикулит
- gn галенит
- g гипс
- fsp калиевый полевой шпат
- сs касситерит
- q кварц
- ms марказит
- mz монацит
- ру пирит
- руг пирротин
- pbja плюмбоярозит
- spl сфалерит
- frb фрейбергит
- chp халькопирит
- cl хлорит
- As мышьяк
- FeSO₄ сульфат железа