УДК 537.862

ИССЛЕДОВАНИЕ ГЕНЕРАЦИИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ В КОАКСИАЛЬНОМ ВИРКАТОРЕ С РАСХОДЯЩИМСЯ ПУЧКОМ

А.Г. Жерлицын, Т.В. Коваль, Г.Г. Канаев, Т.М. Нгуен

Томский политехнический университет E-mail: tvkoval@mail.ru

Представлены результаты экспериментальных и теоретических исследований коаксиального виркатора микроволнового излучения с симметричным радиально расходящимся пучком. Проведено исследование влияния геометрии системы и параметров пучка на формирование виртуального катода и характеристики излучения. Теоретические исследования проведены с применением численного моделирования методом крупных частиц. Получены зависимости тока, частотных характеристик, мощности излучения от геометрии и параметров пучка. Экспериментально получена мощность излучения до 300 МВт на частоте 3 ГГц с узкой диаграммой направленности.

Ключевые слова:

Собственная частота, структура поля, коаксиальный виркатор, диаграмма направленности.

Key words:

Eigenfrequency, field structure, coaxial vircator, antenna pattern.

Введение

Приборы с виртуальным катодом (ВК) являются генераторами мощных импульсов электромагнитного излучения (0,1... 10 ГВт) в сантиметровом диапазоне длин волн. В этих генераторах формирование виртуального катода и излучение происходит в одном и том же сверхразмерном резонансном объеме. Поэтому при конструировании генератора выбор моды, с которой будет осуществляться взаимодействие осциллирующих ВК и электронов пучка, является важным условием. Релятивистский коаксиальный виркатор представляет интерес, прежде всего, с точки зрения малых весо-габаритных характеристик, простоты конструкции, отсутствия внешнего фокусирующего магнитного поля, а также генерации в одномодовом режиме. Для возбуждения Е₀₁ моды разработан коаксиальный виркатор со сходящимся аксиально-симметричным пучком [1, 2]. Однако в некоторых экспериментах наблюдалось излучение на волне Н₁₁, которая в этих виркаторах является основной. Волна Н₁₁ является низшим типом колебаний в цилиндрическом пространстве дрейфа, и возбуждение неустойчивости на этой волне может быть обусловлено формированием несимметричного электронного пучка, связанным с неоднородностью эмиссии электронов с цилиндрического катода.

На возможность генерации электромагнитного излучения в коаксиальных виркаторах с расходящимся пучком было указано в работах [3, 4]. В этом виркаторе аксиально-симметричный пучок взаимодействует с низшим типом волны – с ТЕМ модой, которая трансформируется в моду E_{01} в цилиндрической области выходного окна. Ток в диодном промежутке ограничен пространственным зарядом и зависит от радиусов катода R_c и анода R_A , длины катода h, приложенного напряжения U. Анализ тока одномерного диода I_d и положения ВК при различных ускоряющих напряжениях в зависимости от кривизны системы и конфигурации диода проведен в работе [5]. При низких ускоряющих напряжениях (<500 кВ) I_d определяется выражением:

$$I_d = 14,68 \cdot 10^{-6} \frac{h U^{3/2}}{R_A f^2 (R_A / R_C)},$$
 (*)

где функция $f=b-(2/5)b^2+(11/120)b^3+..., b=lg(R_c/R_a)$. При b<<1 формула (*) переходит в известный закон Чайлда–Ленгмюра для плоского диода. Ток измеряется в амперах, напряжение в вольтах. Параметр кривизны электродов (катода и анода) для экспериментальной системы $R_c/R_a=0,82$.

Условия формирования ВК существенно влияют на ток виркатора, уровень мощности и частоту излучения. Поэтому представляет интерес определить факторы, влияющие на формирование ВК и уровень мощности излучения.

В данной работе приведены результаты экспериментальных и теоретических исследований возбуждения электромагнитных колебаний в коаксиальном виркаторе с расходящимся пучком. Численное исследование электродинамических характеристик проводилось с применением пакетов прикладных программ CST Microwave Studio и COMSOL, формирование BK и возбуждение электромагнитных колебаний — с применением 2D PIC кодов. Эксперименты осуществлялись на экспериментальной установке Физико-технического института ТПУ.

Экспериментальная установка

Экспериментальная установка состоит из сильноточного электронного ускорителя прямого действия с двойной формирующей линией и коаксиального виркатора. Ускоритель формирует на нагрузке, которой является коаксиальный виркатор, импульс напряжения 450 кВ и длительностью ~120 нс. Схема эксперимента представлена на рис. 1.

Катод выполнен в виде диска диаметром 11 см и находится под потенциалом земли. Конструкция

Рис. 1. Схема экспериментальной установки. 1) отражатель; 2) вакуумная камера; 3) выходное окно; 4) катод; 5) анод-сетка

катода позволяет изменять ширину его эмитирующей поверхности от 0,8 см до 4 см. Цилиндрический анод диаметром 13,4 см выполнен из металлической сетки с геометрической прозрачностью ~0,7 и находится под высоким положительным потенциалом. Оптимальный зазор оценивался по максимальной мощности пучка. СВЧ излучение регистрировалось в дальней зоне приемником излучения, состоящим из пирамидальной антенны, с эффективной площадью 78,3 см² и коэффициентом направленного действия 9,93 в диапазоне частот 2,7...3,7 ГГц, волноводного аттенюатора поляризационного типа, измерителя мощности и ча-

Рис. 2. Осциллограммы импульсов напряжения (а), тока в виркаторе (б) и импульса СВЧ излучения (в)

стоты излучения. Для измерения диаграммы направленности излучения приемник перемещался в пространстве. Импульс СВЧ излучения детектировался полупроводниковым детектором и регистрировался на скоростном осциллографе. Типичные осциллограммы импульсов напряжения и тока в триоде, СВЧ излучения показаны на рис. 2. На рис. 3 представлены зависимости частоты и мощности излучения на приемной антенне от времени в течение процесса генерации.

Рис. 3. Зависимость частоты (а) и мощности излучения виркатора (б) от времени

Электродинамические характеристики виркатора

В условиях азимутальной симметрии электронного пучка наибольшая эффективность резонансного взаимодействия в виркаторе должна осуществляться с радиальной компонентой аксиально-симметричной моды. Азимутальная несимметричность электронного пучка в результате неоднородной эмиссии электронов с поверхности цилиндрического катода, а также некоторая разъюстировка системы могут обусловить взаимодействие пучка также и с несимметричными модами. Поэтому представляет интерес исследовать структуру поля и собственные частоты электродинамической системы коаксиального виркатора. Геометрические параметры экспериментальной системы: радиус и длина волновода *R*=17,5 см и H=5,2 см; длина анода l=32 см; $R_{A}=6,7$ см; R_{c} =5,5 см; радиус выходного окна 22 см и длина рупорной антенны 20 см.

В коаксиальной области виркатора могут возбуждаться волны типа ТМ, ТЕ и ТЕМ. Низший тип колебаний имеет волна ТЕМ, так как критическая частота равна нулю. Первым высшим типом волны в коаксиальной линии при любом диаметре и конфигурации внутреннего проводника является волна H₁₁. Так как волны ТЕМ и Е₀₁ имеют близкие конфигурации полей, то генерацию волны E₀₁ в виркаторе можно осуществить при возбуждении ТЕМ волны в неодносвязной области и ее последующей трансформацией в E₀₁ в цилиндрической области. Значения критических частот нескольких первых высших типов волн для коаксиальной и цилиндрической линий приведены в таблице.

	Волна	H ₁₁	H ₂₁	H ₃₁	E ₀₁	H ₀₁	E ₁₁	H ₄₁	H ₁₂		E ₀₂
	Коаксиал	0,41	0,78	1,13	1,37	1,43	1,43	1,44	1,51		2,77
	Цилиндр	0,50	0,82	1,14	0,66	1,05	1,05	1,45	1,45		1,50
	Выходное окно	0,40	0,66	0,91	0,52	0,83	0,83	1,15	1,16		1,20

Таблица. Критические частоты, f_{кр}, ГГц

Исследование передачи энергии в электродинамической системе виркатора проведено с помощью численного решения трехмерной электродинамической задачи с применением CST Microwave Studio и COMSOL. На рис. 4 показан коэффициент прохождения (отношение потока энергии прошедшей через выходное окно к энергии на входе) волн ТЕМ, Н₁₁, и Е₀₁ от частоты. Численные результаты показывают, что коэффициент передачи энергии зависит от геометрии системы и от частоты передаваемых волн. При передаче энергии по электродинамической системе в областях, где меняется однородность структуры системы, происходит отражение и преобразование волн в другие типы волн, т. е. при переходе от коаксиальной конфигурации к цилиндрической. При этом наибольший коэффициент прохождения в диапазоне частот 2,9...3,07 ГГц у волны ТЕМ (рис. 4).

Рис. 4. Частотная зависимость коэффициента прохождения волн: ТЕМ (···), H₁₁ (---) и Е₀₁(----)

Рис. 5. Распределение компоненты E_x электромагнитной волны в продольном сечении виркатора

На рис. 5 показано распределение электрической составляющей электромагнитной волны в продольном сечении при распространении волны ТЕМ от отражателя к выходному окну на частоте 3,05 ГГц. Как видно из рис. 5, для эффективного взаимодействия с полем волны катод должен располагаться в максимуме напряженности электрического поля волны и его ширина h должна быть не больше длины стоячей волны 5 см в электродинамической системе виркатора.

Результаты и их обсуждение

Экспериментально и численно проведено исследование влияния размеров пучка, его местоположения относительно отражателя на ток виркатора, формирование ВК и характеристики излучения. Численные расчеты проведены с помощью метода крупных частиц. На рис. 6, а представлены экспериментальные и расчетные зависимости тока виркатора от ширины катода h. При h < 2 см экспериментальный и расчетный токи виркатора выше тока одномерного диода (*), что обусловлено недномерным движением электронов вдоль силовых линий ускоряющего поля и расширением площади пучка на аноде. Ток одномерного диода линейно зависит от *h*, так при h=2 см $I_d=37,4$ кА. В коаксиальном диоде и виркаторе, как показали численные расчеты, зависимость токов от ширины катода не является линейной. Собственное магнитное поле ограничивает ток в диодном промежутке и при *h*>4 см ток виркатора практически не зависит от ширины катода. Экспериментальный ток отличается от расчетного (рис. 6, *a*) при узком катоде, что возможно связано с дополнительной эмиссией с боковой поверхности катода.

На рис. 6, б показаны экспериментальная и расчетная зависимости относительной мощности излучения виркатора от ширины катода h. С увеличением *h* благодаря собственному магнитному полю пучка уменьшается площадь пучка на аноде, и более значительная часть электронов, отражаясь от ВК, возвращается в диодный промежуток. Повышение мощности излучения связано с увеличением глубины модуляции электронов по фазе и увеличением числа электронов резонансно взаимодействующих с полем волны. При дальнейшем увеличении ширины катода (h>3 см) собственное магнитное поле начинает существенно влиять на траектории электронов: краевые электроны имеют большую поперечную скорость, а ограничение тока происходит за счет центральных электронов. Все это обуславливает значительный разброс электронов по амплитудам колебаний, увеличение спектра частот и уменьшение мощности излучения. На рис. 7 показан расчетный спектр частот излучения виркатора.

Были проведены исследования влияния местоположение пучка относительно отражателя на параметры пучка и излучения. На рис. 8 показана зависимость относительной мощности излучения от растояния между центром пучка и отражателем *L*. Как следует из эксперимента и численных расчетов, мощность излучения носит периодический

Рис. 6. Зависимость тока (а) и относительной мощности излучения (б) виркатора от ширины катода: ∇ – эксперимент, * – расчет

характер от L. Это связано с тем, что в виркаторе при возбуждении неустойчивости на TEM моде симметричным электронным пучком формируется стоячая волна, и наибольшая мощность излучения соответствует местоположению пучка в максимуме электрического поля волны.

Рис. 7. Спектр частот излучения виркатора при h=2,4 см

стояния L: V – эксперимент, * – расчет

Теоретически показано и экспериментально было установлено, что частота излучения увеличивается (до ~10 %) при формировании пучка вблизи края анода. Это обусловлено тем, что частота излу-

чения связана с плотностью заряда в области ВК. При малом расстоянии между пучком и краем анода из-за краевых эффектов меняются траектории электронов, увеличивается число электронов, возвращающихся в область ВК-катод и увеличивается плотность заряда в области ВК.

Возможная азимутальная несимметричность электронного пучка в результате неоднородности эмиссии с поверхности цилиндрического катода приводит к одновременному возбуждению волн ТЕМ и H₁₁. Теоретически было проведено исследование диаграмм направленности при прохождении через электродинамическую систему виркатора двух волн ТЕМ и H₁₁ при разных амплитудах этих волн на входе в систему.

На рис. 9 представлены теоретические и экспериментальные диаграммы направленности СВЧ излучения виркатора. На рис. 10, а показана расчетная диаграмма направленности для излучения одновременно двух волн ТЕМ и Н₁₁ при соотношении амплитуд 0,9 и 0,1, а на рис. 9, δ – при соотношении амплитуд 0,8 и 0,2. Из сравнения расчетных и экспериментальных диаграмм направленности можно сказать, что в эксперименте присутствует некоторая асимметрия пучка по азимуту, обуславливающая возбуждение волны Н₁₁ наряду с волной ТЕМ. При этом доля волны Н₁₁ в экспериментах не превышает 20 %. Боковые лепестки на диаграмме направленности могут быть связаны с дополнительным рассеянием волны на окне вывода энергии. Максимальная мощность излучения, полученная в эксперименте, достигала 260...300 МВт на частоте 3 ГГц при длительности импульса 60 нс на половинном уровне мощности.

Заключение

Экспериментально и теоретически проведены исследования микроволнового излучения коаксиального виркатора с симметричным радиально расходящимся пучком. Показано, что мощность излучения имеет периодический характер в зависимости от местоположения пучка относительно отражателя и максимальна при ширине пучка 2,4 см в диапазоне частот 2,9...3 ГГц. Теоретически

Рис. 9. Теоретические (а, б) и экспериментальные (в, г) диаграммы направленности излучения

показано, что в виркаторе наибольший коэффициент передачи энергии имеет волна ТЕМ, которая трансформируется в волну E_{01} . Анализ расчетных и экспериментальных диаграмм направленности показывает, что излучение происходит преимущественно на волне E_{01} . Одновременное излучение на волнах E_{01} и H_{11} обусловлено неоднородной

СПИСОК ЛИТЕРАТУРЫ

- Жерлицын А.Г. Генерация СВЧ излучения в триоде с виртуальным катодом коаксиального типа // Письма в ЖТФ. – 1990. – Т. 16. – Вып. 22. – С. 78–80.
- Jiang W.M., Woolvrton K., Dickens J., Kristiansen M. High Power Microwave Generation by a Coaxial Virtual Cathode Oscillator // IEEE transaction on plasma science. – 1999. – V. 27. – № 5. – P. 1538–1542.
- 3. Григорьев В.П. Электромагнитное излучение в коаксиальном триоде с виртуальным катодом // Журнал технической физики. – 1994. – Т. 64. – № 7. – С. 122–129.

эмиссией электронов с поверхности катода. Экспериментально получена мощность излучения отражательного триода до 300 МВт при длительности импульса 60 нс (на половинном уровне мощности) с частотой 3 ГГц.

Работа выполнена в рамках государственного задания «Наука» Минобрнауки РФ.

- Антошкин М.Ю., Григорьев В.П., Коваль Т.В. Численная модель для исследования возбуждения аксиально-несимметричных волн в коаксиальных виркаторах // Радиотехника и электроника. – 1995. – № 8. – С. 1300–1305.
- Григорьев В.П., Коваль Т.В., Мельников Г.В., Рахматуллин Р.Р. Коаксиальный отражательный триод с радиально-расходящимся пучком // Известия Томского политехнического университета. – 2009. – Т. 314. – № 4. – С. 123–127.

Поступила 20.03.2012 г.