УДК 621.791.92

ВЛИЯНИЕ РЕЖИМОВ СТАРЕНИЯ НА ЭВОЛЮЦИЮ СТРУКТУРНО-ФАЗОВОГО СОСТАВА И СВОЙСТВА КОМПОЗИЦИОННЫХ ПОКРЫТИЙ

С.Ф. Гнюсов, Д.А. Маков*

Томский политехнический университет *ООО «Сибирский механический завод», г. Северск E-mail: gnusov@rambler.ru

Изучено влияние термической обработки на структурно-фазовый состав и свойства аустенитных композиционных покрытий, наносимых с помощью электронно-лучевой наплавки. Установлен рациональный режим старения, обеспечивающий сохранение аустенитной структуры матрицы и равномерное мультимодальное распределение карбидной фазы по размерам в объеме упрочненного слоя. Сформировать подобное структурно-фазовое состояние композиционного покрытия возможно в условиях совмещения процесса вакуумной электронно-лучевой наплавки и термической обработки.

Ключевые слова:

Композиционное покрытие, аустенитная сталь, электронно-лучевая наплавка, температурный режим, структура.

Key words:

Composition coating, austenitic steel, electron beam facing, temperature mode, structure.

Введение

Современный уровень развития промышленности требует создания однородных многофункциональных (высокая износостойкость, контактная выносливость, малые пластические деформации по всей толщине упрочненного слоя, коррозионная стойкость и т. д.) покрытий. В качестве метода формирования упрочненного слоя особый интерес представляет электронно-лучевая технология наплавки в вакууме [1]. Она обеспечивает возможность подачи композиционного наплавочного материала в ванну расплава; рафинирование наплавляемого металла благодаря вакуумной среде, в которой производится наплавка; возможность плавной и точной регулировки мощности электронного луча, следовательно, минимальное проплавление основы и неизменный химический состав; регулирование необходимых размеров наплавочной ванны; небольшие размеры ванны расплава, а следовательно, концентрированный ввод энергии до 10⁵ Вт/см². Значительный перегрев ванны в зоне действия электронного луча способствуют растворению твердых частиц в сварочной ванне, а минимальное время ее существования за счет быстрого теплоотвода и большой скорости охлаждения расплавленного металла (до 10⁴ K/c) формируют пересыщенный твердый раствор легирующих элементов в матрице. Последнее особенно важно, поскольку для получения при старении активного дисперсионного твердения добиваются при обычных операциях нагрева под закалку возможно более полного перевода в твердый раствор углерода и карбидообразующих элементов.

В условиях термоциклирования, обусловленного многопроходной электронно-лучевой наплавкой, возможно выделение дисперсных карбидных фаз из пересыщенного твердого раствора матрицы. В данных условиях в качестве связующей фазы предпочтительно использовать аустенитные стали либо сталь, в которой при данных скоростях нагрева, охлаждения и малого объема ванны расплава возможно сохранить некоторое количество остаточного аустенита и растворить большое количество упрочняющей фазы в твердом растворе.

В ряде работ отмечается, что получение в процессе наплавки в объеме упрочненного слоя однородной дисперсноупрочненной структуры с мультимодальным (бимодальным) распределением частиц упрочняющей фазы по размерам, позволяет увеличить их износостойкость в 1,5...2 раза [2, 3]. Так в работе [4] в зависимости от термического цикла многопроходной наплавки в упрочненном слое на основе стали Р6М5 в карбидной подсистеме формируется мультимодальное распределение упрочняющих частиц по размерам. Объемная доля вторичного карбида М₆С и остаточного аустенита матрицы может регулироваться в широких пределах в зависимости от термического цикла наплавки. Максимальному количеству остаточного аустенита (~25...30 % от общего объема матрицы) соответствует максимальное количество вторичного карбида (~7,5 об. %). С ростом количества остаточного аустенита в покрытиях их износостойкость повышается за счет $\gamma \rightarrow \alpha'$ -мартенситного превращения и наличия дисперсных вторичных карбидов в объеме зерен матрицы.

Для чисто аустенитной матрицы на основе никелевой или марганцовистой стали нет подробных данных о формировании наиболее рациональных структур покрытия, поскольку не проведены исследования по влиянию режимов термической обработки на их структуру и свойства. Поэтому необходимо более детальное исследование данных процессов и выяснение их влияния на структурнофазовый состав и свойства покрытия, что позволит в дальнейшем формировать подобные структуры непосредственно в условиях термоциклирования, обусловленного многопроходной электронно-лучевой наплавкой.

Целью данной работы является изучение влияния термической обработки на структурно-фазовый состав и свойства аустенитных композиционных покрытий, наносимых с помощью электронно-лучевой наплавки.

Материалы и методики проведения исследований

Для электронно-лучевой наплавки (ЭЛН) в вакууме (остаточное давление не хуже 10⁻² Па) использовались композиционные порошки на основе марганцовистого и никелевого аустенита (вес. %): № 526 20 Mn, 0,9 C, 4 Mo, 4 V, 15 WC, Fe-остальное; № 527 – 20 Ni, 4 Mo, 4 V, 15 WC, Fe-остальное. Композиционные порошки готовили путем смешивания порошков исходных компонентов, спекания, последующего дробления полученных спеков и рассевом их на фракции по методике [1]. Для наплавки использовалась фракция дисперсностью 50...350 мкм. Наплавку проводили на плоские образцы размером 30×200 мм и толщиной 30 мм, изготовленные из стали 30. Число проходов электронного луча было равно 4. Мощность электронного луча была равна 4050...4300 Вт, диаметр электронного луча, длина развертки и скорость движения подложки составили

0

0

2

1

1 мм, 20 мм и 2,8 мм/с соответственно. После каждого прохода основной металл с наплавленным покрытием охлаждался до 20 °С.

Термическую обработку (старение) наплавленных образцов проводили при температуре $T_c = 500 \pm 10, 600 \pm 10$ и 700±10 °C в течение 1, 2, 3, 5 и 10 ч с последующим охлаждением на спокойном воздухе.

Структуру наплавленных покрытий (на продольных и поперечных микрошлифах) исследовали с помощью оптического микроскопа *Olympus GX 51* снабженного анализатором *SIAMS 700*.

В настоящей работе способ приготовления микрошлифов традиционный – механического шлифования и полирования на алмазных пастах различной дисперсности. Химическое травление производилось в 4 % спиртовом растворе HNO₃ и смеси кислот HNO₃ (1 об. часть) и HCl (3 об. части). Определение количественных характеристик микроструктуры (количества, размеров, формы, распределения различных фаз) проводили линейным и точечным методами.

6 **Рис. 1.** Микроструктура покрытий после наплавки (а, б) и распределение частиц карбидов по размерам (в, г); (а, в – марганцовистый; б, г – никелевый аустенит)

3 *d*, мкм

n

0

2

4

6 *d*, мкм

Исследование фазового состава образцов непосредственно после наплавки и после старения проводили методом рентгеноструктурного анализа на дифрактометре ДРОН-7 с фильтрованным Со_{ка}-излучением в режиме сканирования в интервале углов 2 Θ от ~15 до 150°, с шагом 0,1°. При проведении качественного фазового анализа использовались хорошо известные картотеки.

Микротвердость H_{\Box} покрытий и основного металла (подложки), непосредственно прилегающей к наплавке (2 мм), измеряли на приборе ПМТ-3 (ГОСТ 9450-76) с шагом по глубине 100 мкм при нагрузке 0,981 Н. Измерения производили в виде двух параллельных дорожек со смещением уколов индентора между дорожками 50 мкм. Расстояние между дорожками было 200 мкм. Это позволило построить график изменения микротвердости по толщине с шагом 50 мкм.

Результаты и обсуждение

На рис. 1 представлена микроструктура покрытий непосредственно после наплавки и распределения частиц карбидов по размерам. На основе анализа микроструктуры и данных рентгеноструктурного исследования матрица в покрытиях представлена γ -фазой (аустенит), а упрочняющие частицы карбидами M₆C и VC. В марганцовистом аустените данные карбиды в основном расположены по границам зерен в виде сетки и частично внутри зерен в виде отдельных мелких включений размером меньше 0,5 мкм (*a*), а в никелевом аустените они представлены в виде крупных угловатых, сетчатых и отдельных мелких частиц (*б*). В покрытиях на основе никелевого аустенита границы зерен не просматриваются.

Проведенная количественная оценка микроструктуры позволила оценить средний размер и объемную долю частиц упрочняющей фазы: в образце № 526 это 1,05 мкм и 18,4 %, а в образце № 527 – 1,8 мкм и 22,2 %. Согласно данным гистограммам (рис. 1, δ , ϵ) размеры карбидных частиц можно разделить на три диапазона: d_1 =0,3...2 мкм, d_2 =2...4 мкм и d_3 =4...7 мкм (мультимодальное распределение частиц упрочнителя по размерам). Средний размер зерна в наплавке на основе марганцовистого аустенита равен 8,5 мкм, а в образцах

Рис. 2. Микроструктура покрытий после старения при 600 °С в течение 3 ч (а, б) и распределение частиц карбидов по размерам (в, г); (а, в − марганцовистый; б, г − никелевый аустенит)

на никелевой основе величина среднего размера между карбидными выделениями равна 4,3 мкм.

Выделение дисперсных карбидных частиц в процессе старения образцов начинает заметно проявляться при температуре 600 °С (рис. 2, *a*, *б*). При этом мультимодальное распределение частиц упрочнителя не только сохраняется, но и более явно проявляется (рис. 2, θ , c).

Анализ рентгеновских данных свидетельствует, что уже после трех часов старения в покрытиях

Рис. 3. Изменение средних размеров частиц упрочнителя указанных диапазонов (d₁, d₂ и d₃) в зависимости от температуры и времени старения композиционных покрытий № 526 (а, в, д) и № 527 (б, г, е); а, б – 500 °C, в, г – 600 °C, д, е – 700 °C

на основе марганцовистого аустенита матрица претерпевает частичное $\gamma \rightarrow \alpha$ -превращение, что свяано с обеднением γ -твердого раствора марганцем, который входит в состав карбида M_6C . В никелевом аустените старение не вызывает $\gamma \rightarrow \alpha$ -превращения, поскольку никель не входит в состав сложных дисперсных карбидов M_6C .

При старении на размер карбидных выделений могут влиять два процесса: коагуляция дисперсных частиц, что будет приводить к увеличению их среднего размера; выпадению новых дисперсных частиц. Для выяснения того, какой процесс, при какой температуре и времени старения является преобладающим, были построены зависимости средних размеров частиц упрочнителя в указанных диапазонах (d_1 , d_2 и d_3) от температуры и времени старения (рис. 3).

Анализ полученных данных свидетельствует, что средний размер частиц упрочнителя первого максимума d_{lcp} практически не меняется как от температуры, так и от времени старения и составляет ~1 мкм. Для второго и третьего диапазонов распределения частиц их средние размеры плавно увеличиваются, особенно после 10 ч старения. Отдельно необходимо отметить, что для композиционных покрытий на основе марганцовистого аустенита (рис. 3, *a*, *в*, *d*) наблюдается интенсивное увеличение d_{2cp} и d_{3cp} после первого часа старения, далее для всех покрытий эти размеры остаются практически неизменными вплоть до 5 ч старения включительно.

Безусловно, дисперсность структуры оказывает влияния на свойства материала, но помимо размеров твердых частиц также необходимо учитывать и их объемную долю. Более того, правильнее рассматривать не только общую объемную долю твердой фазы, но и вклад в неё частиц каждого из рассматриваемых диапазонов.

На рис. 4 представлены изменения содержания объемной доли твердой фазы в образцах на основе марганцовистого аустенита в зависимости от различных режимов старения. Анализ данных зависимостей свидетельствует о том, что при температуре старения 500 °C объемная доля упрочняющих частиц увеличивается только на ~2 % в течение первых двух часов выдержки, и далее она остается неизменной (рис. 4, кривая 1). Этот вклад в основном обусловлен увеличением доли мелких частиц первого диапазона. Далее с увеличением времени выдержки происходит процесс коагуляции частиц упрочняющей фазы.

При температуре старения 600 °С процесс выделения дисперсных частиц первого диапазона идет более активно, и после времени выдержки два часа общая объемная доля упрочняющей фазы увеличивается на ~4 % (рис. 4, кривая 2). С течением времени этот процесс несколько затормаживается. После десяти часов выдержки общая объемная доля карбидной фазы подрастает с 18 до 26 %. Для температуры старения 700 °С активное увеличение частиц упрочнителя (~10 %) наблюдается вплоть до времени выдержки 3 ч, и к десяти часам общая объемная доля подрастает с 18 до 33 % (рис. 4, кривая 3). Однако процесс коагуляции уже начинается с первых часов старения.

Рис. 4. Изменение объемной доли частиц упрочняющей фазы в покрытиях на основе марганцовистого аустенита от температуры и времени старения. Температура старения: 1) 500; 2) 600; 3) 700 °С

Таким образом, для всех кривых распределения достаточно явно выделяются два этапа старения. Это этап резкого увеличения количества твердых частиц (начальный этап старения 1...2 ч) и второй этап менее интенсивного увеличения их содержания (3...10 ч старения). Следовательно, на начальном этапе старения для температур 500 и 600 °C, когда концентрация легирующих элементов в твердом растворе высока, выпадение дисперсных частиц (d_1) происходит интенсивно. По мере обеднения у-твердого раствора карбидообразующими элементами количество вновь образующейся твердой фазы уменьшается. Преобладающим становится процесс коагуляции (увеличение объемной доли частиц карбида М₆С второго диапазона (d₂)). В связующей фазе покрытий на основе марганцовистого аустенита наблюдается частичное $\gamma \rightarrow \alpha$ -превращение, что связано с обеднением у-твердого раствора марганцем, который входит в состав карбида М₆С. При температуре старения 700 °С процессы выпадения и коагуляции карбидной фазы происходят одновременно.

Данные структурные превращения в процессе термической обработки приводят к изменению характера распределения средней величины микротвердости покрытий от времени старения (рис. 5). Непосредственно после наплавки величина микротвердости в покрытии № 526 составляет 4,43±0,58 ГПа, а в покрытии № 527 3,71±0,61 ГПа. В процессе старения покрытия на основе марганцовистого аустенита при 500 °С микротвердость практически не изменяется от времени (рис. 5, *a*, кривая 1). При 600 и 700 °С

Рис. 5. Изменение средней величины микротвердости покрытий на основе марганцовистого (а) и никелевого (б) аустенита от времени старения и температуры: 1) 500; 2) 600; 3) 700 °С

уже после первого часа старения твердость образцов увеличивается на 35 и 50 % соответственно, что связано с интенсивным выделением дисперсных карбидов типа M_6C (рис. 4, *б*, *в*). Далее с увеличением времени выдержки микротвердость практически не меняется (рис. 5, *a*, кривые 2 и 3).

В покрытиях на основе никелевого аустенита зависимость микротвердости от времени старения для всех рассматриваемых температур имеет более сложную зависимость (рис. 5, δ). В интервале времен старения до 3...5 ч микротвердость образцов для всех температур изменяется по кривым с максимумом, а далее плавно уменьшается по закону близкому к линейному. Параболический характер зависимости микротвердости от времени на первом этапе старения связан с конкурирующими процессами выпадения новых дисперсных частиц карбидов и их коагуляции.

Сравнивая общую величину упрочнения двух исследуемых покрытий (рис. 5), можно сказать следующее. В случае марганцовистого аустенита эффект упрочнения в процессе старения более значителен, чем у покрытий на основе никелевого аустенита, что связано, по-видимому, с низкой энергией дефекта упаковки марганцовистого аустенита, образованием дефектов упаковки при деформации, развитием процессов деформационного двойникования и мартенситного превращения [5]. В [6] исследовали структуру, механизмы выделения карбидов и механические свойства сталей на основе марганцовистого (сталь 45Г20М2Ф2) и никелевого (сталь 45Н26М2Ф2) аустенита. Авторами установлено, что для всех исследуемых сталей характерно гомогенное матричное выделение карбидов ванадия. Однако в марганцовистом аустените выделяются самые мелкие карбиды (3...6 нм) с плотностью распределения (2...10)·10¹⁶ см⁻³. В никелевом аустените в единице объема данных карбидов на порядок меньше, а их средний размер в 1,5...2 раза больше. Это обуславливает самый высокий уровень упрочнения марганцовистого аустенита ($\sigma_{0,2}$ =1290 МПа) после старения при 650 °C в течение 10 ч по сравнению с никелевым аустенитом ($\sigma_{0,2}$ =765 МПа).

Анализ всего комплекса полученных данных по микроскопии, изменению средних размеров частиц упрочнителя указанных диапазонов (d_1 , d_2 и d_3), объемной доли частиц упрочняющей фазы в зависимости от температуры и времени старения композиционных покрытий, их микротвердости, а также литературных данных свидетельствует о том, что наиболее рациональная структура с мультимодальным распределением частиц упрочняющей фазы по размерам формируется при температуре старения 600 °С в течение 1...2 ч. Более того, согласно [6, 7] в этом температурно-временном интервале старения выделяются нанодисперсные карбиды (3...10 нм) на основе ванадия.

Следовательно по результатам исследования микроструктуры и микротвердости для образцов на основе марганцовистого и никелевого аустенита оптимальным режимом старения является температура 590...610 °C в течение 1...2 ч. Сформировать подобную структуру можно в результате совмещения процесса электронно-лучевой наплавки и старения. Для этого согласно [8, 9] на поверхности наплавляемого изделия создают зону расплава электронным лучом, наплавляемое изделие перемещают, а наплавляемый порошковый материал подают в зону расплава, сообщая ему направление подачи, перпендикулярное относительно перемещения наплавляемого изделия. Поверхность изделия, на которую наплавляется покрытие, предварительно очищают оплавлением электронным лучом без подачи наплавляемого материала. Покрытие формируют в результате нескольких проходов, причем, последний проход делают расфокусированным электронным лучом без подачи наплавляемого материала, обеспечивая температуру нагрева покрытия 650...700 °С.

Выводы

- На основе изучения влияния термической обработки на структурно-фазовый состав и свойства композиционных покрытий на основе Niи Mn-аустенита, наносимых с помощью электронно-лучевой наплавки, установлен рациональный режим старения (590...610 °C, время выдержки 1...2 ч), обеспечивающий сохранение аустенитной структуры матрицы и равномерное мультимодальное распределение карбидной фазы по размерам в объеме упрочненного слоя.
- Показано, что с увеличением времени старения марганцовистый аустенит претерпевает частичное γ→α-превращение, что связано с обедне-

СПИСОК ЛИТЕРАТУРЫ

- Панин В.Е., Белюк С.И., Дураков В.Г., Прибытков Г.А., Ремпе Н.Г. Электронно-лучевая наплавка в вакууме: оборудование, технология, свойства покрытий // Сварочное производство. – 2000. – № 2. – С. 34–38.
- Гнюсов С.Ф., Дураков В.Г., Маков Д.А. Формирование износостойких аустенитных покрытий с регулируемым карбидным упрочнением // Физика и химия обработки материалов. – 2004. – № 6. – С. 54–60.
- Guilemany J.M., Dosta S., Miguel J.R. The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders // Surface & Coatings Technology. – 2006. – V. 201. – P. 1180–1190.
- Гнюсов С.Ф., Игнатов А.А., Дураков В.Г. Влияние термоциклирования при электронно-лучевой наплавке на структурнофазовое состояние и износостойкость покрытий на основе стали P6M5 // Упрочняющие технологии и покрытия. – 2011. – № 5. – С. 15–20.

нием γ -твердого раствора марганцем, который входит в состав карбида M_6C . На кривых изменения объемной доли частиц упрочняющей фазы в покрытиях от температуры и времени старения выделяется этап резкого увеличения количества дисперсных частиц карбида M_6C и этап их предпочтительной коагуляции (3...10 ч старения).

3. Установлено, что наибольший прирост микротвердости на 35 и 50 % характерен для композиционных покрытий на основе марганцовистого аустенита после старения в течение одного часа при 600 и 700 °С соответственно. Показано, что сформировать подобное структурнофазовое состояние композиционного покрытия возможно в условиях совмещения процесса вакуумной электронно-лучевой наплавки и термической обработки.

Работа выполнена при финансовой поддержке государственного задания Министерства образования и науки РФ на проведение научно-исследовательских работ ТПУ № 8.3664.2011.

- Кульков С.Н., Гнюсов С.Ф. Карбидостали на основе карбидов титана и вольфрама. – Томск: Изд-во НТЛ, 2006. – 240 с.
- Косицина И.И., Сагарадзе В.В. Аустенитные стали разных систем легирования с карбидным упрочнением // Металлы. – 2001. – № 6. – С. 65–74.
- Уваров А.И., Васечкина Т.П. Структура и физико-механические свойства аустенитных стареющих сталей на железомарганцевой основе // Физика металлов и металловедение. – 2001. – Т. 92. – № 4. – С. 71–84.
- Способ электронно-лучевой наплавки покрытий с мультимодальной структурой: пат. 2309827 Рос. Федерация; заяв. 26.06.06; опубл. 10.11.07, Бюл. № 31. – 4 с.
- 9. Композиционный материал для износостойкой наплавки электронным лучом: пат. 2322335 Рос. Федерация; заяв. 26.06.06; опубл. 20.04.08, Бюл. № 12. – 5 с.

Поступила 26.03.2012 г.