

Рис. 1. Зависимости вероятности ошибки идентификации перепада от \mathbf{k}_{ε} для разных значений амплитуд перепадов (а) и вероятности ошибки от отношения шума к сигналу (NSR) для предложенного и байесовского методов (б)

Список литературы:

- [1] Brock F. V. Meteorological Measurement Systems / F. V. Brock, J. R. Scott // Oxford University Press, 2001. 304 p.
- [2] Хуссейн Х.М. Проектирование и внедрение систем для климатического и технологического мониторинга / Х. М. Хуссейн, Р. В. Кунц, Л. И. Сучкова, А. Г. Якунин // Известия АГУ. 2013. №. 1/1/2013. С. 210–214.
- [3] Xiuyao S. Conditional anomaly detection / S. Xiuyao, W. Mingxi, C. Jermaine, S. Ranka // IEEE Transactions on Knowledge and Data Engineering. 2007. Vol. 19. No.5. pp. 631–644.
- [4] Chatzigiannakis V. Hierarchical anomaly detection in distributed large-scale sensor networks / V. Chatzigiannakis, S. Papavassiliou, M. Grammatikou, B. Maglaris // Proceedings International Symposium on Computers and Communications. 2006. pp. 761–766.
- [5] Матвеев В. И. // ЖЭТФ. 2003. Т. 124. № 5(11). С. 1023.
- [6] Ессеев М. К., Матвеев В. И // Физический вестник Поморского университета. Архангельск: Изд-во Поморского ун-та. 2006. № 4. С.35.
- [7] Scott A.J. A Cluster Analysis Method for Grouping Means in the Analysis of Variance / A. J. Scott, M. Knott // Biometrics. 1974. Vol. 30. No.3. pp. 507–512.
- [8] Fryzlewicz P. Wild binary segmentation for multiple change-point detection / P. Fryzlewicz // Annals of Statistics. 2014. Vol. 42. No. 6. pp. 2243–2281.
- [9] Исхаков С.Ю. Методическое обеспечение процесса выявления инцидентов в работе комплексных сетей систем безопасности / С.Ю. Исхаков 2015.
- [10] Ruggieri E. A Bayesian approach to detecting change points in climatic records / E. Ruggieri // International Journal of Climatology, 2013. Vol. 33. No.2. pp. 520–528.

ПРИНЦИПЫ ПОСТРОЕНИЯ ИНТЕЛЛЕКТУАЛЬНОЙ СИСТЕМЫ ОЦЕНКИ БЕЗОПАСНОСТИ ТЕХНОГЕННЫХ ОБЪЕКТОВ НА ОСНОВЕ ГИБРИДНЫХ ПАТТЕРНОВ ПОВЕДЕНИЯ

Стариков Егор Сергеевич, Сучкова Лариса Иннокентьевна Алтайский государственный технический университет им. И.И.Ползунова Сучкова Лариса Иннокентьевна, д.т.н.

yegor.inc@live.ru

В связи с ростом промышленного производства и использования природных ресурсов предъявляются дополнительные требования к уровню безопасности техногенных систем. Часть промышленных потенциально-опасных объектов не соответствует современным требованиям промышленной безопасности и устойчивости при возникновении чрезвычайных ситуаций, так как создана по устаревшим технологиям. Как правило, проектирование и строительство промышленных объектов производится в непосредственной близости от потребителей, по этой причине в крупных городах появляется все больше потенциально-опасных объектов [1,2]. В этой связи особую актуальность приобретает вопрос оценки безопасности природных и техногенных потенциально-опасных объектов, а Федеральный закон «О промышленной безопасности опасных производственных объектов» устанавливает требования о необходимости анализа риска опасных производственных объектов.

Для оперативного контроля безопасности техногенных объектов предлагается использовать интеллектуальную систему, основанную на гибридных паттернах поведения и сочетающую в себе

представления и алгоритмы, характерные для различных методов оценки безопасности и анализа техногенных объектов.

В основе гибридного подхода лежит использование закономерностей в группе временных рядов, описанных с применением матричных и/или лингвистических нечетких паттернов [3,4]. Основой временных рядов служат данные измерений, вычисленные или полученные с датчиков. Матричные паттерны интегрируют связанную измерительную информацию, они удобны для идентификации и прогнозирования состояния техногенного объекта. Лингвистические паттерны служат для поиска закономерностей в данных путем экспертного описания согласно правилам темпоральной грамматики, оперирующей с термами лингвистических переменных. Общая задача интеллектуальной системы оценки безопасности заключается в идентификации и прогнозировании состояния объекта, включая в первую очередь нештатные ситуации и их предвестники.

Рассмотрим архитектуру и принципы построения разработанной интеллектуальной системы оценки безопасности техногенных объектов более подробно.

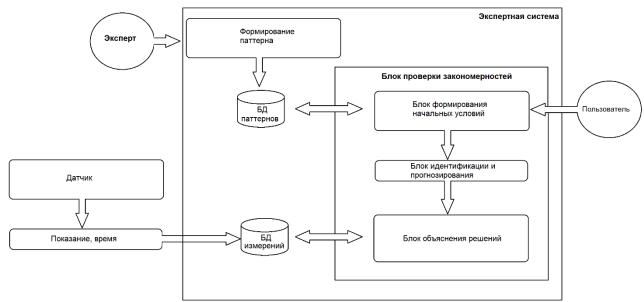


Рис.1. Обобщенная структура интеллектуальной системы

В основе интеллектуальной системы оценки безопасности техногенного объекта лежит разработанная экспертная система, обобщенная структура которой приведена на рис. 1.

Основные принципы построения интеллектуальной системы:

- 1) Первичными данными являются результаты измерений, имеющие темпоральный аспект и хранящиеся в БД измерений.
 - 2) Матричные нечеткие паттерны, используемые для принятия решений, хранятся в БД паттернов.
- 3) БД матричных паттернов пополняется путем проверки на архивных данных лингвистических гибридных паттернов, представляющих собой описанные на формальном языке экспертные знания и предположения о динамике контролируемых параметров процессов.
- 4) Проверка достоверности лингвистического паттерна выполняется посредством блока проведения экспериментов.
- 5) Блок проведения экспериментов состоит из трех частей: блока формирования начальных условий, блока идентификации и прогнозирования и блока объяснения решений. Для проверки предположений используется блок формирования начальных условий, где определяются временные границы выборки данных и выполняется подбор паттерна, который будет применяться. На этапе идентификации и прогнозирования происходит формирование групп временных рядов по правилам паттерна, которые в дальнейшем преобразуются для сопоставления с проверочной матрицей. В результате анализа сравнения определяется состояние объекта наблюдения и строится прогноз. В блоке объяснения решений отображаются результаты идентификации и прогнозирования.

Предложенные принципы построения интеллектуальной системы оценки безопасности позволяют использовать экспертный опыт при описании шаблонов поведения и применить их для принятия решений при оперативном контроле состояний техногенных объектов. Данные принципы обеспечивают независимость данных паттерна от программного обеспечения самой системы оперативного контроля, удобство выявления

новых закономерностей в данных измерений и автоматизацию формирования матричных нечетких паттернов принятия решений.

Список литературы:

[1] Сенюшкин Н. С., Ахтямов Р. Г., Доценко В. А., Харитонов В. Ф. // Оценка состояния потенциально опасных объектов. Молодой ученый. — 2011. - N11. T.1. - C. 59-61.

[2] Ветошкин А. Г., Таранцева К. Р. // Техногенный риск и безопасность. – Пенза: Изд-во Пенз. гос. ун-та, 2001. С. 171. [3] Сучкова Л. И. // Применение гибридно-лингвистических паттернов в системе мониторинга. – Ползуновский вестник 2014, № 2.

[4] Сучкова Л. И., Чумаков И. А., Якунин А. Г. // Идентификация воздействий в приборах охраны упреждающего типа [Текст]: монография / Л.И. Сучкова, — Deutschland, Saarbrücken, Palmarium Academic Publishing. — 2013. -181 с.

ИНЖЕНЕРНЫЙ ВЫЧИСЛИТЕЛЬНЫЙ ПОРТАЛ ДЛЯ РЕШЕНИЯ ЗАДАЧ ТЕХНОГЕННОЙ БЕЗОПАСНОСТИ

Сотников Игорь Юрьевич, Завозкин Сергей Юрьевич Кемеровский государственный университет Гудов Александр Михайлович, д. т. н. mxtfonlife@mail.ru

Техногенная среда, созданная человеком, несет в себе множество потенциальных и реальных угроз для окружающей среды и для самих людей. Для формирования системных представлений необходимо изучение роли и последствий воздействия техногенных факторов на среду обитания и человека. Примером техногенных объектов, оказывающих значительное негативное влияние на окружающую среду, являются предприятия угольной промышленности связано с увеличением водопотребления, как для добычи, так и для последующего обогащения угля. Соответственно увеличивается количество сточных вод на предприятиях угольной промышленности, которые являются серьезным источником загрязнения водных ресурсов. Многие из входящих в состав сточных вод компоненты способны накапливаться в водоемах, аккумулироваться водными организмами, вызывая необратимые последствия в водной среде. В частности, внедрение на шахтах высокомеханизированных комплексов со сложной сетью гидросистем привело к большому расходу нефтепродуктов при ведении горных работ, часть из которых попадает в шахтную воду и дополнительно загрязняет ее. Поэтому важную роль играет развитие методов очистки сточных вод. В частности, на данный момент одним из наиболее эффективных с точки зрения затрат, является метод очистки сточных вод в отработанных горных выработках затопленных угольных шахт.

В связи с этим важными задачами являются: оценка текущего уровня техногенной безопасности объекта, прогнозирование возникновения угроз и оценка эффективности способов их устранения. Для решения представленных задач, как правило, используется специализированное программное и аппаратное обеспечение. Зачастую, приходится иметь дело сразу с целым рядом программ, разными способами взаимодействия с ними, форматами входных и выходных данных. Не всегда такое программное обеспечение является открытым и общедоступным. Коммерческие продукты обладают высокой стоимостью лицензии на его использование. Кроме того, проведение вычислительных экспериментов требовательно к аппаратным вычислительным возможностям, вследствие чего появляется необходимость использования высокопроизводительных вычислительных ресурсов и технологий.

Снижение затрат на проведения вычислительных экспериментов может быть достигнуто за счет использования модели облачных вычислений, при которой оплата производится только за аренду программного обеспечения и используемые вычислительные ресурсы. В соответствии с данной моделью в Кемеровском государственной университете разработан Инженерный вычислительный портал, предоставляющий набор сервисов для решения наукоемких задач, в том числе связанных с техногенной безопасностью.

В основу портала положена сервис-ориентированная архитектура (СОА), используемая для построения распределенных систем, которые предоставляют свои функциональные возможности в виде сервисов для других систем или других сервисов. СОА упрощает интеграцию новых компонентов для расширения возможностей портала. В качестве реализации СОА используется технология Web-сервисов, базирующаяся на таких стандартах как WSDL – используется для описания Web-сервиса, SOAP – представляет формат сообщения для взаимодействия с Web-сервисом, и BPEL – используется для описания бизнес-процессов