ГИДРОДИНАМИЧЕСКИЕ УСЛОВИЯ ДВИЖЕНИЯ ФЛЮИДОВ В ГОРИЗОНТАЛЬНОМ СТВОЛЕ СКВАЖИНЫ

А.Р. Аюпов, С.Р. Гильмутдинов Научный руководитель Е.А. Ячменёва

паучный руковооитель Е.А. ячменева Казанский (Приволжский) федеральный университет, г. Казань, Россия

Разработка нефтяных, газовых и битумных месторождений все больше отходит от вертикального бурения скважин. Растет число наклонно направленных и горизонтальных скважин. В связи с этим, в научном мире возрос интерес к изучению структуры и гидродинамики потока в горизонтальных участках скважин.

Данная работа посвящена исследованию движения флюидов в горизонтальном стволе скважины.

Основные работы отечественных ученых посвящены изучению неизотермического потока [4], многофазных потоков [1], особенностям проведения и интерпретации геофизических исследований в горизонтальных скважинах [2].

Для проведения экспериментов был спроектирован и сконструирован стенд горизонтального участка скважины с интервалом перфорации (Рисунок 1). Стенд представляет собой прозрачную поликарбонатную трубу с внешним диаметром 80 мм и внутренним диаметром 76 мм, что соответствует внутреннему диаметру НКТ 3'. Длина горизонтального участка 2 метра. Длина интервала перфораций 30 см, количество перфорационных отверстий — 10 штук, диаметром 12 мм, что соответствует пулевому перфоратору ПБ-2. Движение внедряемому агенту придается при помощи компрессора, нагнетающего воздух в рабочие ёмкости.

Рис. 1. Стенд горизонтального участка скважины

Основное затруднение, возникающее при проведении геофизических работ и интерпретации данных каротажа, связано с отсутствием однозначного представления о структуре многофазного потока, так как динамика течения флюидов в горизонтальных скважинах существенно отличается от динамики потоков в вертикальных скважинах [3].

В данной работе мы представляем результаты опыта, проведенного на стенде горизонтального ствола скважины, сконструированного в целях визуализации и изучения многообразия процессов, происходящих в горизонтальных скважинах. В «скважину», заполненную жидкостью, внедрялся флюид с изменённой температурой. Рассматривались случаи поступления в ствол «скважины» холодного и горячего потоков. В обоих случаях разница температур между жидкостью в стволе и внедряемым флюидом составила 10°С. В результате было установлено, что непосредственно напротив интервала перфорации и на некотором удалении от него происходит смешивание фаз с образованием турбулентного потока, который впоследствии переходит в ламинарный. При этом переходе фиксируется эффект термогравитационного расслоения флюида (Рисунок 2).

Рис. 2. Эффект термогравитационного расслоения флюида: а – внедрение горячего флюида; б – внедрение холодного флюида

Представленный в данной работе эксперимент полностью доказывает, что структура и динамика потока в горизонтальном стволе скважины отличны от вертикальных скважин. Полученные результаты подтверждаются работами исследователей [4].

Литература

- 1. Вакулин А.А., Хамов Е.А. Экспериментальный стенд для изучения многофазных потоков при различных температурах // Вестник Тюменского государственного университета. Тюмень, 2010. №4. С. 75 79.
- 2. Валиуллин Р.А., Яруллин Р.К. Особенности геофизических исследований действующих горизонтальных скважин // Вестник академии наук РБ. Уфа, 2004. Т.19. №1. С. 21 28.
- 3. Яруллин Р.К. Гидродинамический стенд для изучения особенностей потоков в горизонтальных скважинах // HTB "Каротажник". Тверь: АИС, 2004. Вып. 14 (127). С. 118 123.
- 4. Яруллин А.Р. Экспериментальное исследование многофазных потоков на модели горизонтальной скважины: Автореферат диссертации на соискание ученой степени кандидата технических наук. – Уфа, ФГБОУ ВПО БашГУ, 2013.

ГЕОЛОГО-ГЕОФИЗИЧЕСКОЕ КАРТИРОВАНИЕ ГЕОЛОГИЧЕСКИХ ФАКТОРОВ ВЫБРОСООПАСНОСТИ УГОЛЬНЫХ ПЛАСТОВ КАРАГАНДИНСКОГО БАССЕЙНА А.Ж. Байкенжина

Научный руководитель профессор В.И. Исаев ТОО «Азимут Геология», г. Караганда, Казахстан Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Анализ проблемы. Карагандинский угольный бассейн является одним из наиболее опасных по внезапным выбросам угля и газа в странах СНГ. Одними из важнейших факторов в возникновении внезапного выброса угля и газа являются изменение строения пласта и структуры угля в пласте. Мощность угольного пласта и его пачечное строение являются теми элементами морфологии, которые относительно надежно устанавливаются по разведочным скважинам. Анализируя сведения о выбросах угля и газа, происшедших в шахтах Карагандинского бассейна, можно отметить, что в 91% случаев выбросам были подвержены такие угольные пласты, мощность которых составляет 3,5 м и выше. Такие выбросоопасные пласты как κ_{10} , κ_{12} и μ_{12} , в местах выбросов имеют среднюю мощность от 5,2 до 8,3 м.

Различные слои в угольном пласте могут значительно отличаться по физико-механическим свойствам. Эта неоднородность может еще более усилиться под действием тектонических движений вдоль угольных пластов, создающих различную степень препарации для отдельных прослоев, которая оказывает существенное влияние на устойчивость угольных пластов [2].

Отмечается также приуроченность выбросов угля и газа к таким тектонически препарированным участкам, как раздувы и пережимы мощности угольных пластов, возникшие в результате перераспределения угольного вещества в процессе тектонических подвижек. В подобных условиях произошли выбросы на шахте «Казахстанская» 4.03.1977 и 25.11.89 г. на пластах T_1 и T_2 соответственно. В первом случае на глубине 469 м от поверхности в месте выброса наблюдался раздув пласта T_1 , а также частичный размыв с нарушением его структуры. Во втором случае выработка по пласту T_2 проводилась в зоне геологических нарушений. После пересечения сброса с амплитудой T_2 , м наблюдалось постепенное уменьшение мощности пласта T_3 , м до T_4 , м на протяжении T_4 м от сброса. Выброс угля и газа произошел на глубине T_4 м в зоне раздува пласта (8 м) за счет резкого увеличения мощности перемятой нижней пачки пласта [1]. Основной из причин этого выброса угля и газа является выход забоя штрека из зоны утонения пласта и внезапный вход в зону его раздува.

С помощью ниже приведенной формулы, можно прогнозировать, что более мощный или вскрытый на большую высоту угольный пласт при прочих равных условиях менее устойчив в отношении восприятия веса горных пород (прочность которых, как правило, значительно выше) и, следовательно, более опасен по выбросам, чем маломощный пласт.

$$\sigma_1 = k \gamma e^{rac{2f\lambda}{m}x}$$
 ,

где σ_1 — несущая способность угольного пласта в области предельно напряженного состояния, МПа; k — сопротивление угля сдвигу, МПа; f — коэффициент трения по почве и кровле; m — мощность пласта, m; γ , λ — константы, зависящие от угла внутреннего трения угля ρ , град; x — расстояние от кромки забоя (текущая координата), m.

Многие исследователи Карагандинского, Кузнецкого, Донецкого бассейнов отмечают локальность выбросоопасности и её тесную связь с тектонической нарушенностью угольных пластов. Это дизъюнктивные нарушения типа «сброс» и «взброс» или зоны мелких тектонических нарушений. Так как внезапные выбросы располагаются вблизи тектонических нарушений, образуя линейно вытянутые зоны (например, на шахтах Саранского и Промышленного участков), то важность тектонического фактора почти не вызывает сомнений.