САМОРОДНОЕ ЗОЛОТО МЕСТОРОЖДЕНИЯ РОГОВИК (СЕВЕРО-ВОСТОК РОССИИ)

А.С. Макшаков, Р.Г. Кравцова Институт геохимии им. А.П. Виноградова СО РАН, г. Иркутск, Россия

Золото-серебряное месторождение Роговик находится на периферии центральной части Охотско-Чукотского вулканогенного пояса в северном замыкании Омсукчанского прогиба, в зоне сочленения крупных глубинных разломов, один из которых (Долинный) контролирует Догдо-Эрикитский ртутоносный пояс (Северо-Восток России) [1, 6, 8]. В результате проведенных нами исследований было установлено, что месторождение залегает среди интенсивно аргиллизированных вулканогенно-осадочных пород нижнемеловой омсукчанской свиты, сложенной преимущественно витрокластическими и пепловыми туфами риолитового состава и горизонтом полимиктовых туфогенных брекчий. Кроме золото-серебряных (Au-Ag), на месторождении широко проявлены руды преимущественно серебряного состава, отнесенные нами к более поздним серебро-полиметаллическим (Ag-Pb). На участках совмещения этих двух типов минерализации сформировалось наиболее богатое золото-серебро-полиметаллическое (Au-Ag-Pb) оруденение. Основной геохимический состав руд: Au-Ag – Au, Ag, Hg, As, Sb; Ag-Pb – Ag, Hg, As, Sb, Se, Pb, Zn, Cu, B; Au-Ag-Pb – Au, Ag, Hg, As, Sb, Se, Te, Pb, Zn, Cu, Bi, B, Ge. Концентрации Au в Au-Ag, Ag-Pb и Au-Ag-Pb рудах достигают 6.04 г/т, 0.19 г/т и 260 г/т, соответственно. В виде самородной формы золото встречается только в Au-Ag и Au-Ag-Pb рудах. В Ag-Pb рудах Au отмечается только в виде редкой примеси в пирите. Более подробные сведения о вещественном составе пород и руд месторождения и условиях их формирования даны в работах [2–5, 7].

Изучение состава самородного золота осуществлялось под микроскопом и с помощью микроанализатора JXA-8200 (JEOL Ltd., Япония). При проведении микроанализа были использованы волновой и энергодисперсионный спектрометры (г. Иркутск, ИГХ СО РАН, аналитик Л.А. Павлова). С целью исключения возможного захвата элементов из окружающих фаз при количественных определениях элементов-примесей анализировались зерна размером 5 мкм и более. Минимальный диаметр зонда составил 1 мкм.

В собственно Au-Ag рудах золотины образуют выделения изометричной, реже неправильной формы в кварцевых и кварц-полевошпатовых жилах и прожилках, где полевой шпат представлен адуляром. Часто золотины выполняют трещинки, выделяются в виде интерстиций, отмечаются в срастании с рудными минералами, в основном, с пиритом. Типично низкопробное самородное золото, состав которого однороден и близок к электруму (639...673 ‰). Преобладают золотины размером от тонкодисперсных (1...10 мкм) до мелких (10...70 мкм). Более крупные золотины (70...130 мкм) встречаются редко. В качестве постоянной примеси установлена только Hg, содержание которой в золотинах относительно низкое и не превышает 1.37 мас. % (табл. 1).

Таблица 1 Состав (мас. %) самородного золота. Аи-Ад руды

n		Au Ag		Hg	Сумма	
1	Зерно 1	66.15	32.57	0.98	99.70	
2		67.07	32.09	1.12	100.28	
3		65.06	32.78	1.17	99.01	
4	Зерно 2	63.90	33.86	0.83	98.59	
5	Зерно 3	65.86	33.26	1.00	100.12	
6	Зерно 4	65.86	32.47	1.11	99.44	
7		66.89	31.79	1.06	99.74	
8		64.65	33.54	1.17	99.36	
9	Зерно 5	67.30	31.77	0.95	100.02	
10	Зерно 6	65.31	33.63	1.37	100.31	
11		65.18	32.34	1.32	98.84	
12		73.63	24.62	0.62	98.87	
13		66.43	31.38	1.14	98.95	
14	Зерно 7	67.05	33.57	0.48	101.10	
15		68.86	29.99	0.82	99.67	
16		64.01	33.85	1.08	98.94	

Примечание: Sb, As, Cu, Pb, Zn, Ni, Fe, Sn, Bi, Se, Ge, Te, S, Zr, Si, Na, Ca, K, Mn – не обнаружены. Здесь и в табл. 2: n – точки определения.

В Au-Ag-Pb рудах золотины образуют выделения разнообразной и самой причудливой формы. Приурочены они к кварцевым и кварц-полевошпатовым прожилкам, где полевой шпат, наряду с адуляром, представлен ортоклазом. В прожилках отмечаются альбит и хлорит. Золотины имеют крайне неоднородное строение, встречаются в сложных по составу агрегатах, где часто ассоциирует с Au- и Se-содержащим пиритом, селенидами серебра (науманнитом), реже с высокоселенистым самородным серебром. Размеры золотин варьируют от тонкодисперсных (менее 10 мкм) до крупных (до 320 мкм). Состав золотин крайне изменчив и

СЕКЦИЯ 3. МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ. МЕТОДИКА ПОИСКОВ И РАЗВЕДКИ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ. ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ В ГЕОЛОГИИ

представлен практически всем рядом интерметаллидов: кюстелит — электрум — самородное золото (133...716 ‰). Преобладает электрум. В пределах зерен электрума установлены участки, соответствующие по составу крайне высокопробному самородному золоту (до 952 ‰). Из примесей отмечаются высокие содержания Hg (до 18.89 мас. %), появляются другие элементы-примеси, такие как Fe, Se, реже Cu, Zn (табл. 2, рис.).

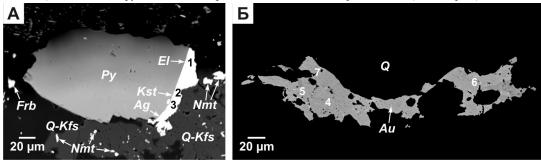


Рисунок. Au-Ag-Pb руды. A – срастание электрума пониженной пробности (El), кюстелита (Kst) и самородного серебра (Ag) с пиритом (Py) в кварц-КПШ агрегате (Q-Kfs), насыщенном мелкими и тонкодисперсными включениями науманнита (Nmt) и фрейбергита (Frb); Б – ксеноморфное выделение низкопробного самородного золота (Au) с участками высокопробного в кварце (Q). Изображения даны в обратно-рассеянных электронах.

1–7 на фото – точки определения содержаний элементов, указанных в табл. 2

Таблица 2 Состав (мас. %) самородного золота. Аи-Ад-РЬ руды

n		Au	Ag	Hg	Fe	Se	Си	Zn	Сумма
1		25.14	62.63	12.60	< 0.08	< 0.08	< 0.08	< 0.08	100.37
2	Зерно 8	19.11	59.76	18.03	2.23	<	<	<	99.12
3		13.31	71.99	14.06	< 0.08	<	<	<	99.36
4		60.66	29.39	10.43	<	<	0.41	<	100.89
5	200770	95.17	1.27	1.93	0.14	<	< 0.08	<	98.51
6	Зерно 9	85.35	11.61	2.58	< 0.08	<	<	<	99.54
7		91.89	6.99	0.90	<	<	<	<	99.78
8		70.03	28.29	0.16	<	1.40	<	<	99.88
9	Зерно 10	71.61	27.67	< 0.08	<	1.09	<	<	100.37
10		71.00	27.33	2.28	<	< 0.08	<	<	100.61
11		31.80	55.47	11.92	<	<	0.09	<	99.31
12	Зерно 11	32.86	50.50	16.88	0.65	<	< 0.08	<	100.89
13		28.82	52.50	18.89	0.12	<	<	<	100.32
14	2anua 12	59.82	29.74	10.87	< 0.08	<	<	<	100.43
15	-Зерно 12 	59.22	29.58	10.62	<	<	<	<	99.42
16	Зерно 13	16.25	65.65	17.03	0.23	<	<	0.11	99.27

Примечание: Sb, As, Pb, Ni, Co, Mo, W, Sn, Bi, Ge, Te, S, Zr, Si, Na, Ca, K, Mn – не обнаружены.

Таким образом, элементный состав примесей, уровень их концентраций, наряду с уровнем содержаний Hg в самородном золоте, в целом, достаточно отчетливо отражают геохимические отличия разной по типу минерализации, характеризующей месторождение Роговик. Для Au-Ag руд типично низкопробное самородное золото, по составу близкое к электруму и имеющее, в основном, однородный состав. Кроме Hg, содержание которой низкое, других примесей в нем не обнаружено. Для комплексных Au-Ag-Pb руд типичны золотины, имеющие крайне неоднородный состав, от кюстелита до низкопробного самородного золота. Увеличивается количество элементов-примесей (Hg, Fe, Se, Cu, Zn). Уровень концентраций Hg непостоянен и колеблется от «не обнаружено» до 18.89 мас. %. То, что самородное золото на месторождении широко представлено амальгамами, не типично не только для минерализации Омсукчанского прогиба, но и для Охотско-Чукотского вулканогенного пояса в пелом.

Выявленные особенности в составе золотин, большое разнообразие форм и размеров их выделения, появление неоднородных зерен электрума, с участками, крайне обогащенными золотом, говорят о сложных физико-химических условиях формирования рудной минерализации. Можно предположить, что это является результатом длительного полихронного характера их развития, обусловленного процессами, связанными с формированием серебряных руд, более поздних по отношению к Au-Ag оруденению. Появление высокортутистого самородного золота, вплоть до образования амальгам, можно объяснить приуроченностью месторождения Роговик к участку сочленения крупных разломов, один из которых (Долинный) контролирует Догдо-Эрикитский ртутоносный

пояс, с юго-восточный флангом которого связана выявленная ртутная специфика месторождения.

Находка высокортутистого золота в рудах месторождения Роговик говорит об уникальности этого объекта и возможной перспективе выявления на территории Омсукчанского прогиба нового нетрадиционного типа минерального сырья и новых рудных объектов, в том числе крупных и уникальных.

Литература

- 1. Геодинамика, магматизм и металлогения Востока России / Отв. ред.: А.И. Ханчук. Чл. ред. колл.: С.М. Родионов, Н.А. Горячев, В.К. Попов, В.В. Голозубов, В.В. Наумова / Владивосток: Дальнаука, 2006. – 981 с.
- 2. Журавкова Т.В., Пальянова Г.А., Кравцова Р.Г. Физико-химические условия образования сульфоселенидов серебра на месторождении Роговик (северо-восток России) // Геология рудных месторождений. 2015. Т. 57. № 4. С. 351 369.
- 3. Кравцова Р.Г., Макшаков А.С. Оценка уровня эрозионного среза золото-серебряных зон эпитермального месторождения Роговик по геохимическим данным (Северо-Восток России) // Геология рудных месторождений. 2016. № 6. С. 544 558.
- 4. Кравцова Р.Г., Макшаков А.С., Павлова Л.А. Минералогия, состав, закономерности распределения и особенности формирования рудной минерализации золото-серебряного месторождения Роговик (Северо-Восток России) // Геология и геофизика. 2015. Т. 56. № 10. С. 1739 1759.
- 5. Кравцова Р.Г., Макшаков А.С., Тарасова Ю.И., Куликова З.И. Минералого-геохимические особенности вмещающих пород и руд золото-серебряного месторождения «Роговик» (Северо-Восток России) // Известия Сибирского отделения Секции наук о Земле РАЕН Геология, поиски и разведка рудных месторождений. 2012. № 2 (41). С. 11 22.
- 6. Кузнецов В.М., Палымская З.А., Пузырев В.П. и др. Золото-серебряное оруденение в криптовулканической структуре // Колыма. -1992. -№ 3. C. 5 8.
- 7. Пальянова Г.А., Кравцова Р.Г., Журавкова Т.В. Твердые растворы $Ag_2(S,Se)$ в рудах золото-серебряного месторождения Роговик (Северо-Восток России) // Геология и геофизика. 2015. Т. 56. № 12. С. 2198 2211.
- 8. Шпикерман В.И., Горячев Н.А. Плитотектоническая металлогения складчатых систем аккреционного типа // Металлогения складчатых систем с позиций тектоники плит. Екатеринбург: УрО РАН, 1996. С. 64 78.

СПЕЦИАЛИЗИРОВАННЫЕ ШЛИХО-ГЕОХИМИЧЕСКИЕ ИССЛЕДОВАНИЯ ПРИ ПОИСКОВЫХ РАБОТАХ В УСЛОВИЯХ ЕНИСЕЙСКОГО КРЯЖА Р.Х. Мансуров

Центральный научно-исследовательский геологоразведочный институт цветных и благородных металлов, г. Москва, Россия

Представляемые результаты поисковых исследований получены в ходе проведения работ в рамках госконтракта Роснедра МПР РФ «Поисковые работы на большеобъемное золотое оруденение, локализованное в углеродисто-терригенных комплексах в пределах Енисейской, Байкало-Патомской и Верхояно-Колымской золоторудных провинций». Объект исследований — рудопроявление Южное расположено в пределах Средне-Ишимбинской перспективной площади на восточном склоне Енисейского кряжа, в 120 км юго-восточнее пгт. Северо-Енисейский. Структурная позиция рудопроявления характеризуется его приуроченностью к зоне системы Ишимбинского рудоконтролирующего разлома в узле его пересечения секущими СВ разрывами. В геологическом строении принимают участие карбонатно-терригенные отложения сухопитской (погорюйская, аладынская и карточки свиты) и тунгусикской (потоскуйская свита) серий, среднего и верхнего рифея, соответственно.

Методически шлихо-геохимические поиски осуществлялись согласно применяемой ФГУП ЦНИГРИ методике поисков золоторудных месторождений в сложных горно-таежных ландшафтах [1]. С учетом повсеместно распространенных перекрывающих информативный элювиально-делювиальный слой дальнеприносных отложений опробование производилось, в среднем, на глубине 0,8-1,0 м. Это позволило получить наиболее представительные результаты о коренной золотоносности исследуемой площади.

В ходе выполнения работ проведен комплекс геохимических работ, включающий в себя геохимические поиски по потокам рассеяния, литохимические поиски по вторичным ореолам рассеяния, шлихо-геохимические поиски. Лабораторно-аналитические методы включали в себя химико-спектральный на золото, ICP-MS, пробирно-атомно-абсорбционный, рентгено-фазовый анализы. Кроме того, проведены специализированные шлихо-минералогические исследования; изотопно-геохимические исследования.

Литохимические поиски по вторичным ореолам рассеяния (ВОР) в пределах рудопроявления осуществлялись как в стандартном площадном варианте (сеть опробования 200х20 м, глубина опробования 0,3-0,4 м), так и в профильном по линиям горных выработок путем опробования нижнего надкоренного информативного слоя элювиально-делювиальных отложений в копушах глубиной 0,8-1,0 м, бульдозерных расчистках глубиной 1 м и шурфах до коренных пород (интервал опробования 10-40 м, глубина опробования 0,8-1,0 м). По результатам площадного опробования установлено несколько контрастных ореолов Au. Последние образуют практически сплошное аномальное геохимическое поле (АГХП) размером около 1,5х2,2 км, в пределах которого локализуется