СИНТЕЗ И ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА $K_{1-x}Mg_{1-x}Sc(Lu)_{1+x}(MoO_4)_3$: Eu^{3+} ($0 \le x \le 0,5$)

С.Ю. Батуева

Научный руководитель: профессор, д. х. н. Н.М. Кожевникова Байкальский институт природопользования Сибирского отделения Российской академии наук, Россия, г. Улан-Удэ, ул. Сахьяновой 6, 670047

E-mail: tsyretarova@inbox.ru

SYNTHESIS AND LUMINESCENT PROPERTIES OF K_{1-x}Mg_{1-x}Sc(Lu)_{1+x}(MoO₄)₃:Eu³⁺ (0≤x≤0,5)

S.Yu. Batueva

Scientific Supervisor: Prof., Dr. N.M. Kozhevnikova

Baikal Institute of Nature Management Siberian branch of the Russian Academy of sciences

Russia, Ulan-Ude, Sakhyanovoy str., 6, 670074

E-mail: tsyretarova@inbox.ru

Abstract. Solid solutions $K_{1-x}Mg_{1-x}Sc(Lu)_{1+x}(MoO_4)_3$: Eu^{3+} $(0 \le x \le 0.5)$ were prepared by the solid-state method synthesis. The properties were characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), photoluminescence (PL) and photoluminescent excitation spectra (PLE). The obtained phases of the variable composition were studied by X-ray phase analysis, differential-thermal analysis, excitation and luminescence spectra were measured.

Введение. Молибдаты одно-, двух- и редкоземельных элементов представляют интерес как источники материалов с различными ионопроводящими, сегнетоэлектрическими, электрофизическими и оптическими характеристиками. [1]. Возможность варьирования катионного состава в рамках одного структурного типа позволяет осуществить направленный синтез фаз переменного состава $M_{1-x}A_{1-x}R_{1+x}(MoO_4)_3$, которые изоструктурны насикону. Такое строение фаз $M_{1-x}A_{1-x}R_{1+x}(MoO_4)_3$ топологически идентично ромбоэдрической структуре корунда; атомы A(R) размещаются на тройных осях, MoO_4 -группы - на двойных. Вакантная часть октаэдрических и тетраэдрических пустот сливается в трехмерную сеть каналов, полости которых заполнены щелочными катионами. Необходимым условием реализации структуры насикона является размер двухи трехзарядных катионов 0,06-0,9 Å, которому удовлетворяют катионы Mg^{2+} и Sc^{3+} , Lu^{3+} а также не очень большой размер дополнительного катиона K^+ , располагающегося в пустотах каркаса [2]. Фазы переменного состава $M_{1-x}Mg_{1-x}R_{1+x}(MoO_4)_3$, Me-Na, K; A-двухзарядный катион, R-Gd, Y, Lu, Sc, легированные ионами Eu^{3+} , являются перспективными материалами для создания красных люминофоров I^{1-3} .

Цель настоящей работы — изучение возможности вхождения катионов Mg, Sc, Lu в структуру фазы переменного состава $K_{1-x}Mg_{1-x}Sc(Lu)_{1+x}(MoO_4)_3$, которая представляет собой твердый раствор вычитания на основе структуры $KMgSc(MoO_4)_3$, определение условий синтеза и спектральнолюминесцентных свойств фазы переменного состава, легированной ионами Eu^{3+} .

Экспериментальная часть. Молибдаты $KMgSc_{0,5}Lu_{0,5}(MoO_4)_3$ и $K_{0,5}Mg_{0,5}ScLu_{0,5}(MoO_4)_3$ были получены замещением части скандия на лютеций в фазе переменного состава $K_{1-x}Mg_{1-x}Sc_{1+x}(MoO_4)_3$ ($0\le x\le 0,5$) методом твердофазного синтеза с использованием K_2CO_3 , MgO, MoO_3 квалификации «x.ч» и

 Sc_2O_3 , Lu_2O_3 марки «ос.ч.» в интервале температур 450–750°С в течение 120–250 часов. Для введения различных концентраций ионов активатора оксиды скандия и лютеция эквимолярно заменялись на оксид европия в молибдатах со структурой NASICON. Таким способом были получены образцы кристаллических фаз с концентрациями 1–6 мол. % оксида редкоземельного элемента (Eu_2O_3).

Достижение равновесия в образцах контролировали рентгенографически (автодифрактометр D8 ADVANCE фирмы Bruker (Си K_{α} -излучение, графитовый монохроматор)). Параметры кристаллической решетки уточняли с использованием программ «Рентген». Дифференциальный термический анализ проводили на дериватографе ОД–103 фирмы МОМ, скорость подъема температуры 10 град/мин, навеска 0,3–0,4 г. Спектрально-люминесцентные характеристики образцов оценены по спектрам возбуждения фотолюминесценции (ФЛ) и спектрам ФЛ измеренных в пяти повторностях на спектрофлуориметре СМ 2203 (Solar, Беларусь). Погрешность измерения составляла \pm 2 нм. Спектры возбуждения регистрировали в максимуме ФЛ (616 нм). Все измерения проводили при комнатной температуре.

Результаты и их обсуждение. По данным РФА полученные образцы фазы переменного состава $KMgSc_{0,5}Lu_{0,5}(MoO_4)_3$ и $K_{0,5}Mg_{0,5}ScLu_{0,5}(MoO_4)_3$ являются однофазными и принадлежат к структурному типу насикона (пр.гр. R $\overline{3}$ c, Z=6), кристаллизуются в тригональной сингонии (рис.1). Полученные фазы изоструктурны тройному молибдату $KMgIn(MoO_4)_3$, рентгенограммы $KMgSc_{0,5}Lu_{0,5}(MoO_4)_3$ и $K_{0,5}Mg_{0,5}ScLu_{0,5}(MoO_4)_3$ индицированы в тригональной сингонии с использованием параметров элементарной ячейки монокристалла $KMgIn(MoO_4)_3$ [3]. Фазы переменного состава $KMgSc_{0,5}Lu_{0,5}(MoO_4)_3$ и $K_{0,5}Mg_{0,5}ScLu_{0,5}(MoO_4)_3$ плавятся инконгурэнтно при 1085 °C.

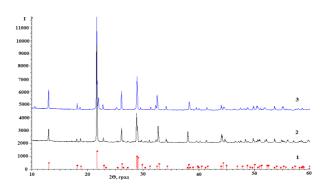
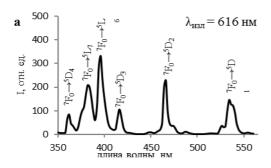



Рис. 1. Рентгенограммы 1 - $KMgIn(MoO_4)_3$, 2 - $KMgSc_{0.5}Lu_{0.5}(MoO_4)_3$, 3 - $K_{0.5}Mg_{0.5}ScLu_{0.5}(MoO_4)_3$

В спектрах возбуждения люминесценции для образцов KMgSc_{0,5}Lu_{0,5}(MoO₄)₃:Eu³⁺ и $K_{0,5}Mg_{0,5}ScLu_{0,5}(MoO_4)_3$:Eu³⁺, снятых при $\lambda_{u_{33}} = 616$ нм (рис. 2,3 а), наблюдается набор пиков, соответствующих внутриконфигурационным переходам 4*f*-4*f* переходам иона европия 7F_0 – 5D_4 , 7F_0 – 5G_2 , 7F_0 – 5D_3 , 7F_0 – 5D_2 и 7F_0 – 5D_1 на длинах волн 362, 382, 396, 412 и 466 нм, соответственно [4].

Анализ спектров люминесценции для $KMgSc_{0,5}Lu_{0.5}(MoO_4)_3$: Eu^{3+} и $K_{0,5}Mg_{0,5}ScLu_{0.5}(MoO_4)_3$: Eu^{3+} , снятых при возбуждении с длиной волны $\lambda_{Bo36}=396$ нм, показал, что люминесценция синтезированных образцов связана с переходами $^5D_0 \rightarrow ^7F_j$ (j=1, 2, 3, 4) катиона Eu^{3+} [4,5], причем наибольшей интенсивностью обладает электрический дипольный переход $^5D_0 \rightarrow ^7F_2$, определяющий характерное красное свечение образцов ($\lambda_{max} \sim 616$ нм) (рис. 2,3 б). Менее интенсивная полоса при 594 нм относится к магнитному дипольному переходу $^5D_0 \rightarrow ^7F_1$.

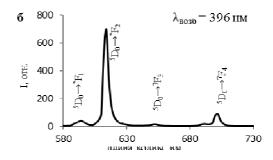


Рис. 2. Спектры возбуждения (а) и люминесценции (б) $KMgSc_{0,5}Lu_{0,5}(MoO_4)_3$: Eu^{3+}

Известно [4], что относительные интенсивности переходов ${}^5D_0 \rightarrow {}^7F_1$ и ${}^5D_0 \rightarrow {}^7F_2$ сильно зависят от локального окружения ионов европия. Когда ионы европия занимают центросимметричные позиции магнитный дипольный переход ${}^5D_0 \rightarrow {}^7F_1$ должен быть относительно интенсивным, в то время как, электрический дипольный переход ${}^5D_0 \rightarrow {}^7F_2$ запрещен по четности и должен быть слабым. Спектры люминесценции ионов Eu^{3+} в образцах проявляют интенсивную люминесценцию перехода ${}^5D_0 \rightarrow {}^7F_2$ при 616 нм, что указывает на то, что ионы европия располагаются в низкосимметричных позициях.

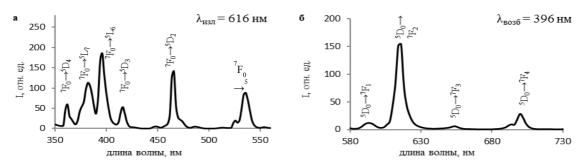


Рис. 3. Спектры возбуждения (а) и люминесценции (б) $K_{0.5}Mg_{0.5}ScLu_{0.5}(MoO_4)_3$: Eu^{3+}

Полученные люминесцентные характеристики $KMgSc_{0,5}Lu_{0,5}(MoO_4)_3$: Eu^{3+} и $K_{0,5}Mg_{0,5}ScLu_{0,5}(MoO_4)_3$: Eu^{3+} указывают на перспективность их использования в качестве узкополосных красных люминофоров.

СПИСОК ЛИТЕРАТУРЫ

- 1. Раскина М. В. и др. Структура и люминесцентные свойства твердых растворов $Sm_{2-x}Eu_x(MoO_4)_3$ // ЖНХ. -2015. -T. 60, № 1. -C. 89–97.
- 2. Кожевникова Н. М. и др. Тройные молибдаты. Улан-Удэ: Изд-во БГУ, 2000. 298 с.
- 3. . Кожевникова Н. М. и др. Фазы переменного состава $K_{1-x}A_{1-x}R_{1-x}(MoO_4)_3$ (0≤x≤0.2-0.6); A = Ni, Mg, Co,Mn; R = Yb,Lu,Sc со структурой насикона. // ЖНХ. 2008. Т. 53, № 5. С. 864–868.
- 4. Y. Jiang, et al. Surfactant-assisted hydrothermal synthesis of octahedral structured NaGd(MoO₄)₂:Eu³⁺/Tb³⁺ and tunable photoluminescent properties // Opt. Mater. 2014. V. 36. P. 1865–1870.
- 5. Цыретарова С. Ю. и др. Люминофоры красного и зеленого свечения на основе оксидной стеклокерамики, активированной ионами Eu^{3+} и Tb^{3+} // Полифункциональные химические материалы и технологии: Материалы Междунар. научной конференции. Томск, 2015. Т. 2. С. 264–267.