УДК 621.314.5

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ПЕРЕХОДНЫХ ПРОЦЕССОВ В СХЕМЕ ОДНОТАКТНОГО ИНДУКТИВНО-КЛЮЧЕВОГО ФОРМИРОВАТЕЛЯ КВАЗИСИНУСОИДАЛЬНОГО ТОКА

В.В. Гребенников, Е.В. Ярославцев

Томский политехнический университет E-mail: grebennikovvv@tpu.ru

Проведен анализ индуктивно-ключевого формирователя однополярного квазисинусоидального тока, используемого в электрохимических технологиях. Получены аналитические выражения для определения временных параметров переходных процессов в схеме, которые позволяют предъявить требования к частотным свойствам и определить динамические потери ключа. Данные выражения являются основой для разработки инженерной методики проектирования формирователя квазисинусоидального тока.

Ключевые слова:

Источник питания, формирователь тока, квазисинусоидальный ток, электрохимические технологии.

Key words:

Power supply, current shaper, quasi-sinusoidal current, electrochemical technology.

Для интенсификации и управления электрохимическими процессами в ряде случаев целесообразно использовать источники питания на базе формирователя квазисинусоидального асимметричного тока. Устройство относится к сравнительно новому классу индуктивно-ключевых формирователей тока, предложенных в свое время профессором Б.А. Багинским [1]. Для инженерного расчета и проектирования формирователя необходимо получить аналитические выражения, которые позволят определить параметры элементов силовой части, а также предъявить требования к частотным свойствам и рассчитать динамические потери в ключах схемы, что имеет важное практическое значение.

Проведем анализ схемы при формировании одной полуволны тока. В этом случае формирователь можно представить в виде упрощенной схемы индуктивно-ключевого формирователя однополярного квазисинусоидального тока (рис. 1, а), принцип действия которого аналогичен используемому в активных корректорах коэффициента мощности [2]. Главное отличие заключается в том, что в корректорах квазисинусоидальный ток формируется во входной цепи выпрямителя, а в рассматриваемой далее схеме — в выходной цепи, нагрузке преобразователя постоянного напряжения, в однополярный ток заданной формы.

Способ формирования однополярного квазисинусоидального тока в нагрузке заключается в управлении величиной тока токоформирующего дросселя L, путем регулирования по заданному закону длительностей открытого и закрытого состояния ключа S и поясняется диаграммами токов и напряжений, приведенными на рис. 1, δ . Для наглядности частота переключений ключа выбрана относительно невысокой. При описании принципа действия схемы и выводе расчетных соотношений воспользуемся общепринятыми допущениями: источник E является идеальным источником напряжения; вентиль VD и ключ S — идеальны; активные потери в элементах схемы отсутствуют; дроссель L

является линейным элементом; нагрузка R_{H} постоянна и носит чисто активный характер.

Введем обозначения:

• $i_{\text{н уср}}(t) = i_{L \text{ уср}}(t) = I_{\text{м}} \sin \omega t$ — усредненное значение тока дросселя и нагрузки, в идеале представляющего собой заданную полуволну синусоиды с амплитудой I_{m} , угловой частотой ω и периодом T;

$$i_{1}(t) = 0.5\Delta I_{L} + i_{\text{H ycp}}(t) = 0.5\Delta I_{L} + I_{m} \sin \omega t,$$

$$i_{2}(t) = -0.5\Delta I_{L} + i_{\text{H ycp}}(t) = -0.5\Delta I_{L} + I_{m} \sin \omega t$$
; (1)

• соответственно верхний и нижний пороговые уровни, ограничивающие пульсации тока дросселя относительно значения $i_{\rm H \ yep}(t); \Delta I_L = i_1(t) - i_2(t) -$ заданный размах пульсаций тока дросселя;

$$K_{\text{III}} = \Delta I_L / I_m \,; \tag{2}$$

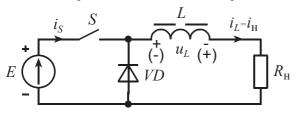
• коэффициент пульсаций тока дросселя и нагрузки;

$$U^* = I_m \cdot R_u / E = U_{mu} / E; (3)$$

• нормированная амплитуда выходного напряжения; $U_{\scriptscriptstyle mh}$ — усредненная амплитуда напряжения на нагрузке.

Пусть в момент времени t=0 ключ S замыкается, начиная первый цикл работы формирователя. Напряжение E через замкнутый ключ прикладывается одновременно к последовательно включенным L и R_{H} и обратному диоду VD, поддерживая последний в запертом состоянии. В этот момент ток дросселя $i_t(t)$, а, соответственно, и ток нагрузки равны нулю, следовательно, все напряжение источника Е прикладывается к дросселю с положительной полярностью, указанной на рис. 1, а, без скобок. Ток $i_L(t)$ начинает возрастать, а дроссель накапливать энергию. Индуктивность дросселя выбрана такой, чтобы скорость возрастания тока $i_L(t)$ превышала скорость роста $i_{H \text{ vcp}}(t)$ с определенным запасом. Увеличение тока $i_L(t)$ происходит до верхнего порогового уровня $i_1(t)$, при достижении которого в момент времени t_1 ключ S размыкается. Ток дросселя, замыкаясь через нагрузку и открывшийся обратный диод, начинает уменьшаться, при этом полярность напряжения на обмотке L меняется на противоположную, указанную на рис. 1, a, в скобках — токоформирующий дроссель отдает накопленную ранее энергию в нагрузку.

В момент времени t_2 , когда $i_L(t)$ достигает нижнего порогового уровня $i_2(t)$, ключ S вновь замыкается, начиная второй цикл работы формирователя. Ток дросселя снова начинает возрастать, и далее описанные процессы циклически повторяются.



a

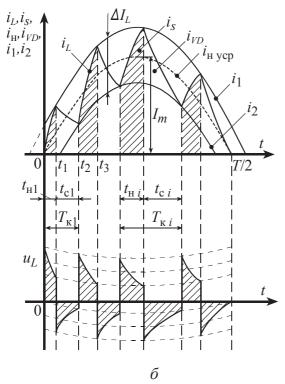


Рис. 1. Принципиальная схема индуктивно-ключевого формирователя однополярного тока (а) и диаграммы токов и напряжений (б)

В последнем цикле, когда требуемая полуволна выходной синусоиды уже сформирована, система управления на этапе спада тока (S выключен) фиксирует момент достижения током $i_L(t)$ нулевого значения, и после небольшой паузы выдает сигнал на начало формирования следующей полуволны. Таким образом, в результате большого числа циклов работы ключа в нагрузке формируется ток, усредненное (аппроксимированное) значение которого (на рис. 1, δ , показано пунктирной линией) соответствует полуволне синусоидального сигнала.

Для получения основных расчетных соотношений проведем анализ переходных процессов в рассматриваемой схеме [3]. Предположим, что на временном интервале T/2 для формирования заданной полуволны тока требуется N циклов, каждый из которых состоит из двух переходных процессов: нарастания и спада тока дросселя, соответственно. Обозначим номер текущего цикла буквой i, причем i=1...N — целое число. Присвоим параметрам тока, напряжения и времени индексы: буквенный индекс «н» или «с» — указывает на этап нарастания или спада $i_L(t)$, соответственно; числовой индекс соответствует номеру рассматриваемого цикла.

Рассмотрим переходные процессы, происходящие в первом цикле работы формирователя. Первый переходный процесс нарастания тока $i_L(t)$ начинается при t=0 в момент замыкания ключа S. Очевидно, что начальное значение тока дросселя при этом равно нулю: $I_{LH}(0)$ =0. Известно, что в этом случае изменение тока дросселя будет происходить по закону [3]:

$$i_{LH1}(t) = \frac{E}{R_{u}} (1 - e^{-t/\tau}),$$
 (4)

где $\tau = L/R_{\scriptscriptstyle \rm H}$ — постоянная времени цепи.

Согласно уравнению (1), верхнего порогового уровня $i_1(t)$ ток $i_{L_{H}1}(t)$ достигает за время нарастания t_{H1} :

$$i_1(t_{H1}) = 0.5\Delta I_L + I_m \sin \omega t_{H1}.$$
 (5)

Очевидно, что значение $i_1(t_{\rm HI})$ является независимым начальным условием для следующего переходного процесса. Для определения времени нарастания приравниваем уравнения (4) и (5) при $t=t_{\rm HI}$:

$$i_{L_{\rm HI}}(t_{_{\rm HI}}) = i_{\rm I}(t_{_{\rm HI}}); \implies \frac{E}{R_{_{\rm H}}}(1 - e^{-t_{_{\rm HI}}/\tau}) =$$

= $0.5\Delta I_L + I_m \sin \omega t_{_{\rm HI}}.$

Приведем последнее выражение к безразмерному виду

$$(1 - e^{-t_{\rm HI}/\tau}) = \frac{0.5\Delta I_L R_{\rm H}}{E} + \frac{I_m R_{\rm H}}{E} \sin \omega t_{\rm HI}.$$
 (6)

Тогда, из (6) с учетом обозначений (2) и (3) получаем:

$$e^{-t_{\text{HI}}/\tau} = 1 - 0,5U * K_{\text{ILI}} - U * \sin \omega t_{\text{HI}}.$$

Полученное уравнение является трансцендентным, поэтому для определения времени нарастания $t_{\rm HI}$ необходимо использовать известные численные методы решения трансцендентных уравнений.

В момент времени $t_1 = t_{H1}$ (рис. 1, δ) ключ S размыкается, и в схеме начинается второй переходный процесс — этап спада тока дросселя на первом цикле. Перенося начало отсчета времени в точку $t_1 = t_{H1}$, запишем закон изменения тока на текущем этапе [3]:

$$i_{Lc1}(t) = I_{Lc1}(0)e^{-t/\tau}$$
. (7)

Здесь $I_{Lcl}(0)$ — независимое начальное условие для рассматриваемого переходного процесса, определяемое, как уже отмечалось, из выражения (5):

$$I_{Lc1}(0) = i_1(t_{H1}) = 0.5\Delta I_L + I_m \sin \omega t_{H1}.$$
 (8)

Ток дросселя, снижаясь, достигает нижнего порогового уровня

$$i_2(t_{H1} + t_{c1}) = -0.5\Delta I_L + I_m \sin \omega (t_{H1} + t_{c1})$$
 (9)

за время спада тока t_{c1} , при этом с учетом (5), (7)—(9) справедливо:

$$i_{Lc1}(t_{c1}) = i_2(t_{H1} + t_{c1}); \Rightarrow (0, 5\Delta I_L + I_m \sin \omega t_{H1})e^{-t_{c1}/\tau} =$$

= -0, 5\Delta I_L + I_m \sin \omega(t_{H1} + t_{c1}),

или в нормированном виде с учетом ранее принятых обозначений

$$(0.5K_{_{\Pi\Pi}} + \sin\omega t_{_{\rm H}})e^{-t_{_{\rm Cl}}/\tau} = -0.5K_{_{\Pi\Pi}} + \sin\omega (t_{_{\rm H}} + t_{_{\rm Cl}}).$$

Полученное уравнение позволяет, используя численные методы, определить длительность спада $t_{\rm cl}$.

Найденные значения $t_{\rm H}$ и $t_{\rm cl}$ дают возможность определить длительность цикла и локальную частоту работы ключа в первом цикле, соответственно:

$$T_{\text{Kl}} = t_{\text{Hl}} + t_{\text{cl}}, \ f_{\text{Kl}} = \frac{1}{T_{\text{Kl}}} = \frac{1}{t_{\text{Hl}} + t_{\text{cl}}}.$$

Переходные процессы, происходящие в последующих циклах работы формирователя (i=2,...,N), рассчитываются аналогично. Отличительной особенностью этапов нарастания $i_L(t)$ этих циклов является наличие ненулевых начальных условий для тока дросселя: исходное значение тока в i-м цикле является, очевидно, конечным значением тока в предыдущем i-1 цикле:

$$I_{LHi}(0) = i_{Lci-1}(t_{ci-1}).$$

Дальнейший анализ показал, что для i-го цикла справедливы следующие уравнения:

• закон изменения тока дросселя на этапе нара-

$$i_{L_{\rm H}i}(t) = \frac{E}{R_{_{\rm H}}} + \left[I_{L_{\rm H}i}(0) - \frac{E}{R_{_{\rm H}}} \right] e^{-t/\tau},$$

$$I_{L_{\rm H}i}(0) = -\frac{\Delta I_{_L}}{2} + I_{_m} \sin \omega \left(\sum_{i=1}^{i-1} T_{_{\rm K}j} \right);$$

• закон изменения тока дросселя на этапе спада:

$$i_{Lci}(t) = I_{Lci}(0)e^{-t/\tau}$$

$$I_{Lc_i}(0) = \frac{\Delta I_L}{2} + I_m \sin \omega \left[\left(\sum_{j=1}^{i-1} T_{\kappa j} \right) + t_{\text{H}i} \right];$$

• трансцендентное уравнение для расчета времени нарастания тока t_{ui} :

$$1 + \left[-0.5U * K_{\text{nn}} + U * \sin 2\pi \left(\sum_{j=1}^{i-1} T_{\kappa_j} * \right) - 1 \right] e^{-t_{\text{n}i} * \delta} =$$

$$= 0.5U * K_{\text{nn}} + U * \sin 2\pi \left[\left(\sum_{j=1}^{i-1} T_{\kappa_j} * \right) + t_{\text{n}i} * \right], \quad (10)$$

где $\tau^* = \tau/T$ — относительная постоянная времени; $\delta = 1/\tau^* = T/\tau$ — коэффициент затухания переходно-

го процесса; t_{ii} *= t_{ii} /T — относительное время нарастания тока дросселя; $T_{\kappa i}$ *= $1/f_{\kappa i}$ *= $T_{\kappa i}$ /T= t_{ii} *+ t_{ci} * — относительная длительность цикла; t_{ci} *= t_{ci} /T — относительное время спада тока дросселя; $f_{\kappa i}$ *= $f_{\kappa i}$ /f= $1/T_{\kappa i}$ * — относительная локальная частота переключения;

трансцендентное уравнение для расчета времени спада тока t_{si}:

$$\left\{0,5K_{n\pi} + \sin 2\pi \left[\left(\sum_{j=1}^{i-1} T_{\kappa_{j}}^{*}\right) + t_{ni}^{*}\right]\right\} e^{-t_{ci}*\delta} =$$

$$= -0,5K_{n\pi} + \sin 2\pi \sum_{j=1}^{i} T_{\kappa_{j}}^{*}. \tag{11}$$

Уравнения (10) и (11) имеют большое практическое значение, поскольку позволяют определить временные параметры переходных процессов, что, в свою очередь, дает возможность предъявить требования к частотным свойствам и рассчитать динамические потери ключа. Из уравнений видно, что на длительность нарастания и спада тока дросселя сложным образом влияют одновременно несколько параметров: коэффициент пульсаций K_{nn} , нормированная амплитуда выходного напряжения U^* , коэффициент затухания переходного процесса δ и теку-

щая фаза формируемой синусоиды
$$\omega t_i = 2\pi \sum_{i=1}^i T_{\kappa_i j} *.$$

Выявить влияние отдельного параметра достаточно сложно, однако можно отметить некоторые тенденции из общефизических соображений:

- коэффициент пульсаций ($K_{\rm nn}$) определяет «ширину окна» (ΔI_L), в котором происходит изменение тока дросселя. Чем больше $K_{\rm nn}$ (шире «окно»), тем больше длительность переходных процессов, при прочих равных условиях, и наоборот;
- величина рабочего напряжения, приложенного к дросселю (U_l) оказывает влияние на длительность временного интервала, на котором происходит изменение его тока. Из математической модели для индуктивности [3] $u_l(t) = Ldi_l(t)/dt$ следует, что скорость изменения тока определяется отношением U_l/L , где L индуктивность дросселя. Следовательно, при прочих равных условиях, чем больше величина рабочего напряжения, тем выше скорость изменения тока и меньше длительность временного интервала, за который ток меняется на определенную величину. С уменьшением U_l скорость изменения тока падает, и длительность временного интервала увеличивается;
- постоянная времени токоформирующей цепи (τ) определяет длительность переходного процесса. Чем меньше постоянная времени, тем меньше длительность временного интервала ($t_{\rm H}$ и $t_{\rm c}$), при прочих равных условиях, и наоборот;
- текущая фаза синусоиды влияет на величину приращения тока дросселя. В течение этапов нарастания или спада тока дросселя происходит

одновременное изменение мгновенного значения усредненного тока нагрузки на величину $\Delta i_{\text{H VCP}}$ и тока дросселя i_L , при этом ток дросселя на каждом временном интервале получает приращение $\Delta i_L = \Delta I_L \pm \Delta i_{\text{н уср}}$. Если ток дросселя и усредненный ток нагрузки одновременно нарастают или спадают, то Δi_L увеличивается. Уменьшение Δi_L происходит, если один из них нарастает, а другой спадает. При прочих равных условиях, увеличение Δi_L ведет к возрастанию длительности временного интервала, и наоборот. Величина приращения тока дросселя достаточно сильно зависит от текущей фазы формируемой синусоиды. В связи с этим величина приращения пропорциональна скорости изменения усредненного значения тока нагрузки;

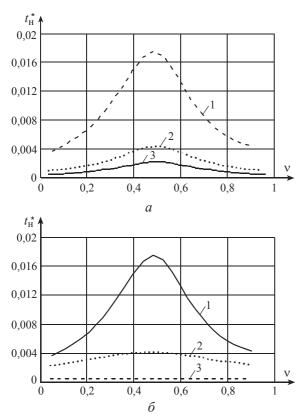


Рис. 2. Зависимости относительного времени нарастания тока дросселя от относительной текущей фазы при $K_{\text{nn}} = 0,2$: a) $U^* = 0,8$ и δ : 1) 50; 2) 200; 3) 400; 6) $\delta = 50$ и U^* : 1) 0,8; 2) 0,5; 3) 0,1

• скорость изменения усредненного значения тока нагрузки меняется по косинусоидальному закону, т. е. максимальна на краях полупериода и минимальна в центре полупериода формируемой синусоиды. Данный параметр усугубляет влияние текущей фазы формируемого тока на длительность временных интервалов.

С помощью математического пакета Mathcad получены численные решения трансцендентных уравнений (10), (11), и определено количество циклов переключения ключа на полупериоде формируемой синусоиды. Зависимости отдельных параметров $(t_{\rm H}^*, t_{\rm c}^*, T_{\rm K}^*, f_{\rm K}^*)$ от относительной текущей

фазы $v=\omega t/\pi$ приведены на рис. 2–6. Ход представленных зависимостей обусловлен влиянием описанных выше параметров.

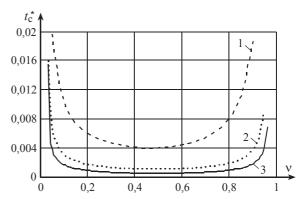


Рис. 3. Зависимости относительного времени спада тока дросселя от относительной текущей фазы при K_{nn} =0,2, U^* =0,8 и различных значениях δ : 1) 50; 2) 200; 3) 400

Зависимости $T_{\kappa}^*=f(v)$ (при $K_{\Pi\Pi}=0,2$ и различных δ и U^*) изображены на рис. 4. Параметр T_{κ}^* представляет собой сумму t_{Π}^* и t_{c}^* , поэтому влияние значений δ и U^* на T_{κ}^* объясняется их влиянием на t_{Π}^* и t_{c}^* , описанным ранее. Видно, что в начале и в конце полупериода формируемого сигнала при любых δ и U^* относительная длительность цикла имеет максимальное значение, обусловленное бо́льшими значениями t_{c}^* по сравнению t_{Π}^* .

Кривые, отражающие рассматриваемые зависимости при $U^* = 0.8$, имеют три локальных экстремума: один максимум и два минимума. Локальный максимум $T_{\kappa \max}^*$, наблюдаемый приблизительно в центре полупериода синусоиды, обусловлен значительным превышением $t_{\rm H}^*$ над $t_{\rm c}^*$. Значение первого минимума $T_{\kappa \, \text{minl}}^*$, лежащего в первой половине полупериода, меньше значения второго — $T_{\kappa \, \text{minl}}^*$, лежащего во второй половине полупериода. Это объясняется асимметрией графиков зависимостей t_{H}^{*} и t_{c}^{*} относительно центра полупериода синусоиды. С увеличением δ (a, следовательно, уменьшением длительности рабочего цикла) различие между значениями минимумов уменьшается, т. е. уменьшается разница $\Delta T_{\kappa \min}^* = T_{\kappa \min}^* - T_{\kappa \min}^*$ рис. 4, а. Например, в рассматриваемом случае справедливо (рис. 4, *a*): при δ =50, $\Delta T_{\text{к min}}^*$ =0,7·10⁻³; при $\delta = 200$, $\Delta T_{\text{k min}}^{*} = 0.08 \cdot 10^{-3}$; при $\delta = 400$, $\Delta T_{\text{K min}} = 0.01 \cdot 10^{-3}$.

Анализ показал, превышение локального максимума $T_{\rm \kappa \ max}^*$ над локальным минимумом $T_{\rm \kappa \ min2}^*$ в данном случае не зависит от δ и составляет $T_{\rm \kappa \ max}^*/T_{\rm \kappa \ min2}^* \approx 1,61$ для любого значения коэффициента затухания.

По мере уменьшения U^* влияние $t_{\rm H}^*$ на $T_{\rm K}^*$ ослабевает за счет того, что значения $t_{\rm H}^*$ и $t_{\rm C}^*$ становятся соизмеримыми в центральной части полупериода (случай при $U^*=0,5$), в результате чего величина $T_{\rm K}^*$ практически не меняется при изменении v- рис. 4, δ . Дальнейшее снижение U^* приводит к тому, что $t_{\rm H}^*$ становится много меньше $t_{\rm C}^*$. В этом случае справедливо: $T_{\rm K}^* \!\!\approx\! t_{\rm C}^*$, следовательно, при малых

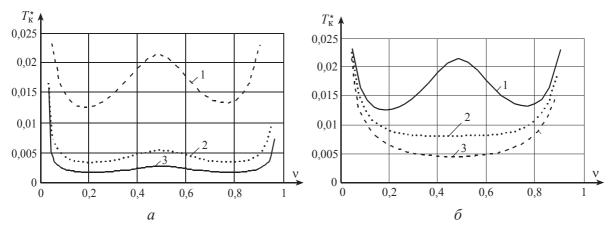


Рис. 4. Зависимости относительной длительности цикла переключения ключа от относительной текущей фазы при K_{nn}=0,2: a) U*=0,8 и δ: 1) 50; 2) 200; 3) 400; 6) δ=50 и U*: 1) 0,8; 2) 0,5; 3) 0,1



Рис. 5. Зависимости относительной локальной частоты переключения ключа от относительной текущей фазы при K_{пп}=0,2: a) U*=0,8 и δ: 1) 400; 2) 200; 3) 50; 6) δ=50 и U*: 1) 0,1; 2) 0,5; 3) 0,8

значениях U^* графики зависимости $T_{\kappa}^*=f(v)$ практически совпадают с графиками $t_{\rm c}^*=f(v)$ (случай: $U^*=0.1$).

Влияние значения δ на величину $T_{\rm k}^*$ объясняется влиянием этого параметра на $t_{\rm h}^*$ и $t_{\rm c}^*$, рассмотренные ранее.

На рис. 5 приведены зависимости относительной локальной частоты переключения ключа f_{κ}^{*}

от относительной текущей фазы при разных U^* и δ при постоянном $K_{\text{пл}}$. Поскольку частота обратно пропорциональна длительности цикла, ход представленных зависимостей легко объясняется с учетом рис. 4 и вышеизложенных комментариев относительно зависимостей $T^* = f(y)$

сительно зависимостей $T_{\kappa}^* = f(v)$. На рис. 6 представлены графики зависимостей количества циклов работы ключа N от параметра δ

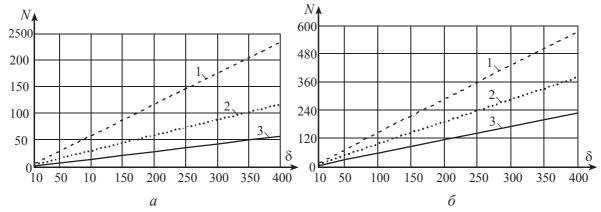


Рис. 6. Зависимости количества циклов переключения ключа от коэффициента затухания: a) $U^*=0.1$ и K_{nn} : 1) 0,05; 2) 0,1; 3) 0,2; 6) $K_{nn}=0.2$ и U^* : 1) 0,1; 2) 0,5; 3) 0,8

при различных K_{nn} и U^* . Видно, что с увеличением δ количество циклов возрастает практически по линейному закону. Это объясняется тем, что с ростом δ обратно пропорционально уменьшается τ^* , а, следовательно, и сама постоянная времени токоформирующей цепи. Это приводит к сокращению продолжительности переходных процессов, а, следовательно, и к уменьшению длительности цикла работы ключа. Наименьшая скорость изменения N с ростом δ наблюдается при максимальных $K_{\text{пл}}$ (величина U^* фиксирована) и максимальных значениях U^* ($K_{\text{пл}}$ фиксирован). С уменьшением как $K_{\text{пл}}$, так и U^* скорость изменения N возрастает. Это связано с тем, что с уменьшением $K_{\text{пл}}$ уменьшается размах пульсаций тока дросселя, а, следовательно, снижаются длительности этапов нарастания и спада тока i_I , и, соответственно, T_{κ}^* . С уменьшением U^* увеличивается величина рабочего напряжения на обмотке дросселя, следовательно, возрастает скорость изменения тока i_L , что приводит к уменьшению $t_{\scriptscriptstyle H}^*$, а, соответственно, и $T_{\scriptscriptstyle K}^*$.

СПИСОК ЛИТЕРАТУРЫ

 Багинский Б.А., Гребенников В.В., Нигоф Б.М. Огородников Д.Н., Ярославцев Е.В. Модуляционный формирователь квазисинусоидального асимметричного тока // Приборы и техника эксперимента. – 2001. – № 2. – С. 121–123.

Выводы

- 1. Проведен анализ индуктивно-ключевого формирователя однополярного квазисинусоидального тока. Предложен интегральный параметр количество циклов работы ключа, что позволяет оценить параметры формируемого тока и предъявить требования к частотным свойствам элементов схемы формирователя.
- 2. Получены соотношения, позволяющие проследить тенденции и характер изменения временных параметров переходных процессов, происходящих в токоформирующей цепи и произвести их расчет для заданных параметров нагрузки и тока.
- 3. Установлено, что тенденции изменения временных параметров обусловлены величиной напряжения, прикладываемого к дросселю формирователя в каждом цикле работы ключа, а также соотношением периода формируемого тока и постоянной времени токоформирующей цепи.
- Зиновьев Г.С. Основы силовой электроники. Изд. 2-е, испр. и доп. – Новосибирск: Изд-во НГТУ, 2003. – 664 с.
- Попов В.П. Основы теории цепей. Изд. 3-е, испр. М.: Высшая школа, 2000. – 575 с.

Поступила 14.10.2011 г.

УДК 621.314

ИНВЕРТОРНЫЙ ИСТОЧНИК ПИТАНИЯ ДЛЯ ЗАРЯДА ЕМКОСТНОГО НАКОПИТЕЛЯ

Е.Ю. Буркин, В.В. Свиридов, Е.Ю. Степанов

Томский политехнический университет E-mail: burkin@gmail.com

Дан краткий обзор теории заряда емкостного накопителя. Описано и исследовано схемное решение для увеличения мощности, передаваемой в нагрузку в течение рабочего цикла заряда емкостного накопителя на основе формирования ступенчатого зарядного тока.

Ключевые слова:

Источник для заряда емкостного накопителя, инверторный источник питания, оптимизация зарядного процесса.

Kev words:

Capacitor charging circuit, inverter power supply, charging efficiency optimization.

В настоящее время широко распространен способ аккумулирования больших энергий, основанный на применении в качестве накопителей батарей конденсаторов. Батареи конденсаторов используются для получения импульсов тока самой различной длительности и энергии — от десятков Дж до десятков МДж. К достоинствам емкостных накопителей энергии, обусловившим их широкое распространение, следует отнести простоту осуществления коммутаций при заряде и разряде ба-

тареи конденсаторов и возможность строгого дозирования накопленной энергии посредством стабилизации уровня зарядного напряжения.

В работах [1—4] описаны наиболее известные схемы источников для заряда емкостных накопителей энергии (ЕНЭ). Однако предложенные пути повышения коэффициента полезного действия ведут к увеличению количества элементов схемы и, как следствие, изменению массогабаритных параметров.