МОДЕЛЬ ТЕРМОСИФОНННОГО ТЕПЛООБМЕННИКА ДЛЯ ОХЛАЖДЕНИЯ МОДУЛЬНЫХ АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ

К.Ю. Ушаков, А.Н. Петерс, А.П. Зайцев

Научный руководитель: доцент, к.т.н. Е.Ю. Темникова Кузбасский государственный технический университет имени Т.Ф. Горбачева, г Кемерово, Россия

Автономные модули систем управления имеют большие тепловыделения, которые необходимо отводить во избежание перегревов оборудования и для обеспечения его безотказного функционирования. При этом нужно соблюдать определенные требования к качеству, а именно чистоте, рабочей среды, применяемой в системе охлаждения. Например, для охлаждения модульных автоматизированных систем управления электрокалориферных установок для подачи воздуха в шахты применяют холодильные агрегаты, которые соответствуют предъявляемым требованиям. Однако стоимость одного агрегата в среднем составляет около 2 млн. руб., кроме того они считаются достаточно громоздкими.

На сегодняшний день существуют системы охлаждения, применяемые в различных устройствах теплообменного оборудования, на основе испарительно-конденсационного цикла — замкнутые двухфазные термосифоны различных конструкций [1-2]. Они считаются эффективными по сравнению с другими элементами систем охлаждения, так как имеют высокие теплопередающие характеристики и просты в изготовлении [1, 3-4]. Но внедрение термосифонов до настоящего времени не является крупномасштабным, так как, несмотря на относительно простой механизм работы термосифонов, не разработана общая теория процессов теплопереноса в них, учитывающая большой комплекс физических процессов, протекающих в зонах испарения и конденсации, в паровом канале, движущейся пленке конденсата [1, 5].

Целью данной работы является экспериментальное исследование процесса отвода теплоты с помощью двухфазных замкнутых термосифонов. Для этого использовали экспериментальную установку, представленную в [6].

Замкнутый двухфазный термосифон представляет собой вертикально ориентированную бесфитильную тепловую трубу, в которой перенос теплоносителя от зоны испарения к зоне конденсации происходит под действием подъемной силы. Рабочее вещество (фреон), испаряясь в нижней части устройства за счет подвода теплоты от горячего воздуха, позволяет переносить большое количество энергии. Пар, образующийся в зоне испарения, из-за воздействия выталкивающей силы поднимается в центральной части в область конденсации, где и происходит выделение скрытой теплоты фазового перехода за счет холодного воздуха. Сконденсированный пар по внутренней боковой поверхности термосифона под действием силы тяжести возвращается в зону испарения [3].

В ходе выполнения экспериментальных исследований снимались показания температур горячего и холодного воздуха на входе и выходе из установки с помощью термометров сопротивления, предназначенных для измерения среднеинтегральных значений двумерного поля в сечении температур потока воздуха. Бифилярная намотка термометров сопротивления применяется для того, чтобы получить безындукционное сопротивление. То есть проволоку складывают вдвое и в таком виде наматывают на катушку, что приводит к протеканию тока в соседних витках в противоположные стороны и тогда магнитные поля почти полностью уничтожаются. Тарировка бифилярных термометров сопротивления производилась в климатической камере FEUTRON GREIZ ТИП 3522/1. Посредством анемометра определялись скорости горячего и холодного воздуха на выходе из стенда (табл. 1).

На основе полученных измерений проводились расчеты теплового баланса (табл. 1) по уравнению

$$Q = \rho V c_p \left(t_{\text{\tiny BMX}} - t_{\text{\tiny BX}} \right)$$

Из табл. 1 видно, что для опытов 1-7, 12, 13 тепловой баланс удовлетворительно сходится, причем для опыта 4 тепловые потоки имеют одинаковое значение. Можно предположить, что расхождение значений количества тепла связано с не корректной организацией измерения скоростей потоков горячего и холодного воздуха. В связи с чем, необходимо изменить методику измерения скоростей воздуха.

Кроме того нужно более точно и углубленно изучить работу термосифона, определить оптимальную степень заполнения рабочего вещества в трубках, найти длины зон кипения и конденсации фреона.

В дальнейшем предполагается проводить измерения температур на стенках термосифона в нижней и верхней частях с целью определения коэффициентов теплоотдачи воздуха, кипения и конденсации фреона по различным методикам с использованием данных численных и экспериментальных исследований других авторов [1-7]. Также будет определяться термическое сопротивление, которое является основным критерием эффективной работы термосифонов, причем основной вклад в него вносит зона испарения [7]. Известно, что на теплопередающие характеристики термосифонов влияет большое количество факторов: количество заправленного теплоносителя, его теплофизические свойства, длины зон нагрева (испарения) и конденсации и условия охлаждения зоны конденсации. Наличие большого количества влияющих факторов ставит задачу поиска наиболее оптимальной конструкции системы охлаждения на основе двухфазных замкнутых термосифонов, что является важным для конкретных условий их применения [4].

СЕКЦИЯ 13. ЭНЕРГОСНАБЖЕНИЕ И АВТОМАТИЗАЦИЯ ОБЪЕКТОВ НЕФТЕГАЗОВОЙ ПРОМЫШЛЕННОСТИ

Таблица 1

№	Горячий воздух						Холодный воздух					
	t _{вх} , °	t _{вых} , °	r	, _M /c	VЧ	Q, кВт	t _{вх} , °	t _{вых} , °	r	W	V10 ⁻³ , м ³ /c	Q, кВт
1	67,7	60,19	1,059	0,93	28,5	0,23	22,9	25,28	1,183	0,83	56,4	0,16
2	69,9	62,38	1,053	0,93	28,5	0,23	22,9	25,7	1,182	0,83	56,4	0,19
3	71,6	64,57	1,046	0,93	28,5	0,21	22,9	26,27	1,180	0,83	56,4	0,23
4	72,1	64,57	1,046	0,93	28,5	0,23	22,9	26,27	1,180	0,83	56,4	0,23
5	103	86,53	0,982	0,93	28,5	0,45	24,0	28,24	1,172	0,83	56,4	0,29
6	105	88,73	0,976	1	30,6	0,48	24,0	28,24	1,172	0,83	56,4	0,29
7	107	90,92	0,970	0,96	29,4	0,46	24,0	29,22	1,168	0,83	56,4	0,35
8	69,9	62,38	1,053	1,06	32,4	0,26	22,9	26,27	1,180	1,13	76,8	0,31
9	76,5	71,16	1,026	1,06	32,4	0,18	25,0	28,24	1,172	1,13	76,8	0,29
10	78,6	71,16	1,026	1,06	32,4	0,25	25,0	28,24	1,172	1,13	76,8	0,29
11	78,6	71,16	1,026	1,06	32,4	0,25	25,0	28,24	1,172	1,13	76,8	0,29
12	112	95,31	0,958	1,06	32,4	0,50	26,1	30,21	1,164	1,13	76,8	0,37
13	114	97,51	0,953	1,06	32,4	0,50	26,1	30,21	1,164	1,13	76,8	0,37

Созданная модель экспериментального стенда [6] на основе термосифонов может стать прототипом теплообменного аппарата, который можно будет использовать для охлаждения различного оборудования. В частности, для охлаждения модульных автоматизированных систем управления электрокалориферных установок для подачи воздуха в шахты, где на сегодняшний день применяют холодильные агрегаты стоимостью около 2 млн. руб. каждый.

Литература

- 1. Безродный, М. К. Процессы перноса в двухфазных термосифонных системах. Теория и практика / М.К. Безродный, И.Л. Пиоро, Т.О. Костюк. Киев: Факт, 2005. 704 с.
- 2. Аль-Ани, М. А. Особенности гидродинамики и тепломассопереноса в термосифонах для использования в теплоэнергетическом оборудовании: дис. ... к-та техн. наук: 05.14.14, 01.04.14: защищена 01.07.11 Томск, 2011. 142 с.
- 3. Кузнецов, Г. В. Режимы смешанной конвекции в замкнутом двухфазном термосифоне цилиндрической формы / Г.В. Кузнецов, М.А. Аль-Ани, М.А. Шеремет // Известия Томского политехнического университета. 2011. Т. 318. № 4. С. 18-23.
- 4. Кравец, В. Ю. Интенсивность теплоотдачи в зоне испарения двухфазных термосифонов / В.Ю. Кравец, В.И. Коньшин, Н.С. Ванеева // Восточно-Европейский журнал передовых технологий. 2014. Т. 2. № 5 (68). С. 45-50.
- 5. Красношлыков, А. С. Численное моделирование тепловых режимов термосифонов / А.С. Красношлыков, Г.В. Кузнецов // Материалы III Междунар. молодежного форума «Интеллектуальные энергосистемы», Томск, 28 сент. 2 окт. 2015. Т. 1. Томск: Изд-во ТПУ, 2015. С. 25-28. Режим доступа: http://forumenergy2015.enin.tpu.ru/ru/site/page/view/compilation
- Загл. с экрана.
- 7. Ushakov, K.Yu. Evaluation of Thermosyphon Application for Cooling the Modular Automated Control Systems / K.Yu. Ushakov, A.N. Peters, A. R. Bogomolov, E.Yu. Temnikova // MATEC Web of Conferences, 2016, Vol. 72 (2016), Heat and Mass Transfer in the System of Thermal Modes of Energy Technical and Technological Equipment (HMTTSC-2016), Tomsk, Russia, April 19-21, 2016, Published online: 09 August 2016. DOI: http://www.matec-conferences.org/articles/matecconf/2016/35/contents/contents.html