Вестник Южно-Уральского государственного университета. Энергетика. 2012. № 16. С. 275.

- 2. Семенов М.И., Суховеев М.Е. Возможности использования биомассы заготовленной древесины в лесах Алтайского края // Вестник Алтайского государственного аграрного университета. 2014. № 12 С.122.
- Bulba, Elena Evgenievna. Experimental Research of Moisture Evaporation Process from Biomass in a Drying Chamber [Electronic resource] / E.E. Bulba, A.A. Malinovsky // MATEC Web of Conferences. — Les Ulis: 2015. — Vol. 23: Heat and Mass Transfer in the Thermal Control System of Technical and Technological Energy Equipment. — [01053, 4 p.].
- Бульба Е.Е., Иванова Н.А. Экспериментальное исследование скорости испарения жидкости из хвойной биомассы [Электронный ресурс] / Е. Е. Бульба, Н. А. Иванова // МАТЭК. — МАТЕС Web Conf. 2017 — том 110: тепло-и массоперенос в системе теплового контроля технических и технологических энергетического оборудования. — [01020, 5 с.].

Научный руководитель: Е.Е. Бульба, к.т.н., доцент каф. ТПТ ЭНИН ТПУ.

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНЫХ СЛЕДОВ ЖИДКОСТНОГО АЭРОЗОЛЯ ПРИ ДВИЖЕНИИ ЧЕРЕЗ ВЫСОКОТЕМПЕРАТУРНЫЕ ГАЗЫ

И.С. Войтков Томский политехнический университет ЭНИН, АТП

Продукты сгорания, выбрасываемые промышленными предприятиями в окружающую среду, являются причиной больших тепловых потерь. Потери тепла, заключающегося в парах, достигают 12-13 % теплоты сгорания газа [1]. Вдобавок, выбросы в атмосферу продуктов сгорания оказывают негативное влияние на экологическую обстановку [2]. По этой причине утилизация тепла дымовых газов является одной из важных задач энергосбережения. Использование тепла уходящих дымовых газов на сегодняшний момент становится возможным с применением водонагревателей контактного типа, принцип работы которых заключается в нагреве подаваемой в теплообменную контактную камеру распыленной воды при непосредственном ее взаимодействии с высокотемпературными продуктами сгорания топлива.

Традиционный подход, используемый при выборе таких водонагревателей, основывается на использовании эмпирических зависимостей и известных номограмм. Важнейшее внимание при выборе конструкции и режимов работы контактных водонагревателей традиционно уделяется определению скоростей движения продуктов сгорания, гидравлическому расчету, характеристикам распыла и пр. [3-4]. Однако до настоящего времени не получено достоверной экспериментальной информации о диапазонах изменения температур продуктов сгорания при воздействии на них распыленным капельным потоком, а также значениях характерных времен сохранения пониженных (относительно начальных) температур продуктов сгорания (после впрыска аэрозоля). В связи с этим представляет интерес экспериментальное определение максимальных перепадов температур, а также времен сохранения пониженных температур в следе аэрозольного капельного потока при его движении в потоке продуктов сгорания жидкого топлива.

Цель настоящей работы – экспериментальное определение динамики изменения температуры продуктов сгорания жидкого топлива при импульсной подаче водного капельного аэрозоля.

Экспериментальный стенд и методы исследований

При проведении исследований использовался экспериментальный стенд (рис. 1) для диагностики двухфазных газопарожидкостных потоков, работающий на базе панорамных оптических методов «Particle Image Velocimetry» (PIV) и «Shadow Photography» (SP). Для регистрации температур газовой среды (T_g) в следе капельного потока применялся измерительный комплекс «National Instruments» По основным элементам установка аналогична использованной в экспериментах [5].

Рис. 1. Схема экспериментального стенда: 1 – персональный компьютер (ПК); 2 – высокоскоростная плата аналогового ввода; 3 – термопары; 4 – синхронизатор сигналов; 5 – двойной импульсный Nd:YAG лазер; 6 – кросскорреляционная ССD видеокамера; 7 – диффузный экран; 8 – емкость с водой; 9 – распылительная форсунка; 10 – цилиндр из кварцевого стекла; 11 – полый цилиндр с горючей жидкостью

Для создания потока высокотемпературных продуктов сгорания применялись цилиндр 10 (высота – 1 м, диаметр – 0,2 м) из жаропрочного кварцевого стекла и полый цилиндр (горелка) 11, наполненный горючей жидкостью [5]. Во внутреннее пространство горелки 11 заливалось жидкое топливо – керосин (марки TC-1).

Для генерации капельного потока применялась система, состоящая из баллона с водой 8 (под давлением 100–300 кПа), канала подачи воды и распылительной форсунки 9. Использовались три типа распылительных форсунок, генерирующих различные (по дисперсности) капельные потоки: крупный распыл – R_d =0.08–0.25 мм; средний распыл – R_d =0.06–0.18 мм; мелкий распыл – R_d =0.04–0.12 мм

При проведении экспериментов осуществлялась импульсная (1-3 с) подача воды во внутреннюю полость цилиндра *10* (область высокотемпературных продуктов сгорания). Проводилась непрерывная регистрация температуры продуктов сгорания хромель-алюмелевыми термопарами (погрешность – 3 К). Данные сохранялись на персональном компьютере *1*, где выполнялась их обработка, и определялись характерные значения перепадов температур (ΔT_g), а также времен (τ) сохранения пониженных (относительно начальных) температур продуктов сгорания в следе капельного потока.

Результаты исследований и их обсуждение

На рис. 2 приведены зависимости времени (τ) сохранения «температурного следа» (восстановления температуры до начальных значений $T_{\rm g}$) водного аэрозоля при разных начальных размерах капель и их объемных концентрациях в потоке.

Зависимости хорошо иллюстрирует тот факт, что определяющее влияние на время сохранения пониженной температуры (τ) и перепад температур (ΔT_g) оказывает именно начальный размер капель и их объемная концентрация. Так, видно, что чем больше R_d , тем более продолжительное время сохраняются по-

ниженные температуры в следе. Полученный результат можно объяснить следующим образом. Механизм снижения температуры в следе капельного потока обусловлен двумя эффектами: во-первых, интенсивным испарением жидкости и во-вторых, вытеснением «горячих» продуктов сгорания непосредственно самим капельным потоком [4, 5]. Так, очевидно, что при размерах капель $R_d=0.01-0.12$ мм последние испаряются практически в полном объеме [4, 5], тем самым снижение температуры и, как следствие, времена т обусловлены главным образом процессом испарения воды. Однако при фиксированной концентрации капель увеличение их размеров приводит к росту расстояний между ними, как в продольном (соответствующем направлению движения), так и в поперечном направлениях. Интенсивность испарения капель снижается при росте $R_{\rm d}$ до 0.35 мм на 50-70 %. Тем самым снижение температуры продуктов сгорания по большей части обусловлено вытеснением «горячих» газов самим капельным потоком. Полученный результат имеет важное прикладное значение: скорость испарения жидкости напрямую зависит от температуры среды. Тем самым, используя импульсную подачу воды и регулируя при этом дисперсность потока, можно существенно повысить интенсивность испарения жидкости, тем самым, увеличив КПД водонагревателей контактного типа.

Заключение

В результате выполненных экспериментов установлено, что времена сохранения пониженных температур в следе капельного водного аэрозоля могут достигать 10-25 с в зависимости от дисперсности капельного потока. Выполненные исследования показали существенную роль процессов парообразования и вытеснения продуктов сгорания при формировании «температурных следов» аэрозолей. Выделенные особенности снижения температуры продуктов сгорания в следе капельного потока воды позволят существенно повысить эффективность работы водонагревателей контактного типа за счет замены непрерывной подачи воды на импульсную.

ЛИТЕРАТУРА:

- 1. Бухаркин Е.Н. К методике теплового расчета конденсационных утилизаторов тепла уходящих газов. // Теплоэнергетика. 1997.№ 2. С. 41-46.
- 2. Закревский В.А. Контактный нагрев воды уходящими газами в газовых котлах. // Энергетика вестник БНТУ. 2007. № 3. С. 54-62.
- 3. Ю.П. Соснин. Контактные водонагреватели. // Стройиздат. 1974г 362 С.
- 4. Волков Р.С., Кузнецов Г.В., Стрижак П.А. Экспериментальное исследование особенностей перемещения и испарения капель воды в типичных для теплообменных камер контактных водонагревателей условиях. // Теплоэнергетика. 2016. № 9. С. 68-75.

5. Волков Р.С., Кузнецов Г.В., Стрижак П.А. Экспериментальное исследование эффективности распыления жидкости при тушении возгораний в помещениях. // Безопасность жизнедеятельности. 2014. № 7. С. 38-42.

Научный руководитель: П.А. Стрижак, д. ф.-м.н., профессор, зав. каф. АТП ЭНИН ТПУ.

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ОПТИЧЕСКИХ ПЕЧЕЙ

Д.Х. Габидуллина, Г.А. Калугин, И.Р. Снопок Томский политехнический университет ЭНИН, АТЭС, 5031,5042

Введение

Оптическая печь устройство для фокусировки лучистой энергии от источника на объект нагрева. Оптические печи используются для изучения свойств материалов путем их нагрева до высоких температур, отсюда появляется необходимость в определении их параметров.

При нагреве в оптических печах используют зеркальные ящики, с целью выравнивания плотности теплового потока для того, чтобы упростить дальнейшие расчеты при определении свойств материалов (привести задачу теплопроводности к одномерному виду)

Цель исследования заключалась в определение параметров нагрева трех оптических систем: печи радиационного нагрева УРАН-1, оптической системы осветителя ОК-1 и бипараболидной оптической печи при использовании зер-кального ящика и без него.

Оборудование

Осветитель ОК-1 имеет следующие параметры: диаметр отражателя 350мм, фокусное расстояние 560мм. В качестве источника лучистого потока используется лампа накаливания мощностью 170Вт (на 12В). Форма отражателя-моноэлипсоидная. Параметры источника питания: напряжение U=6.5B, сила тока I=26.15А. Оптическая схема печи представлена на рис.1.

Параметры оптической печи УРАН-1 согласно [1]: фокусное расстояние 1000мм, диаметр отражателя 600мм. Источник лучистого потока- лампа накаливания мощностью 500Вт (на 220В). Форма отражателя- моноэлипсоидная. Источник питания дает следующие параметры сети: напряжение U=125.5B, сила тока I=1.42A. Схема печи представлена на рис.2.

Бипараболоидная система имеет следующие параметры: диаметр отражателя 650мм, расстояние между отражателями 520мм, фокусное расстояние 360мм. В качестве источника лучистого потока используется лампа накаливания мощностью 170Вт (на 12В) Источник питания дает следующие параметры сети: напряжение U=6.3В, сила тока I=8А. Оптическая схема печи представлена на рис.3.