ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ СТЕКЛОКОМПОЗИТНЫХ ГИБКИХ СВЯЗЕЙ ПРИ ПОПЕРЕЧНОМ СРЕЗЕ

Синявский А.И., Овчинников А.А.

Томский государственный архитектурно-строительный университет E-mail: IrivanXXX@gmail.ru

Научный руководитель: Родевич В.В., к.т.н., доцент Томского государственного архитектурно-строительногой университета, г.Томск

В трехслойных стеновых панелях, применяемых в настоящее время в крупнопанельном домостроении [1], соединительные гибкие связи, выполненные из стеклокомпозитных материалов, подвергаются действию поперечных сил. Для обоснования их надежности проведены испытания гибких связей на поперечный срез с учетом длительного срока эксплуатации конструкций – в течение 50 лет («старение» гибких связей выполнено по методике [2,3].

Результаты испытаний приведены в таблице 1.

Таблица. Результаты испытаний гибких связей на поперечный срез.

№	Описание образца	Ср.значение прочности	C	11
серии		на срез, МПа	C_{v}	$\mu_{0,5}$
1	СК ГС (исх.сост.)	275,94	5,780	4,625
2	СК ГС (щ.возд.)	239,67	1,510	1,208

Вывод: по результатам проведенных испытаний снижение прочности гибких связей при поперечном срезе с учетом эксплуатации в среде бетона в течение 50 лет не превышает 15 %, что должно учитываться при проектировании конструкций с применением стеклокомпозитных гибких связей.

Литература

- 1. ГОСТ 31310-2005 Панели стеновые трехслойные железобетонные с эффективным утеплителем. Общиетехнические условия.
- 2. ГОСТ 31938-2012 Арматура композитная полимерная для армирования бетонных конструций. Общие технические условия.
- 3. Родевич, В.В., Овчинников А.А. Материалы III Международной научной конференции студентов и молодых ученых «Молодежь, наука, технологии: новые идеи и перспективы», Томск, ТГАСУ, 2016, 206-211.