чилась в 1,5...2 раза и составила 4...6 МПа, что удовлетворяет требованиям производства, согласно которым они не должны разрушаться при загрузке в печь.

Рис. 6. Схема утилизации отходов производства минеральной ваты

СПИСОК ЛИТЕРАТУРЫ

- Горяйнов К.Э., Горяйнова С.К. Технология теплоизоляционных материалов. – М.: Стройиздат, 1982. – 376 с.
- Попильский Р.Я., Пивинский Ю.Е. Прессование порошковых керамических масс. – М.: Металлургия, 1983. – 176 с.
- Равич Б.М. Брикетирование руд и рудно-топливных шихт. М.: Недра, 1968. – 122 с.

В результате проведенных исследований был установлен состав рабочей смеси и основные технологические параметры процесса формования:

- состав рабочей смеси: "корольки" : глина : жидкое стекло = 8,33 : 1,25 : 0,42;
- давление прессования 100...130 МПа;
- сушка обдувом "горячим" воздухом при температуре 200...250 °С;
- время сушки 10...15 мин.

В работе предложена технологическая схема формования "корольков" (рис. 6), согласно которой "корольки" из расходного бункера поступают на классификатор. Фракция с размером частиц менее 7 мм направляется на приготовление рабочей смеси, а куски размером более 7 мм поступают на измельчение. В смеситель дозатором подаются "корольки", глина и раствор жидкого стекла. Время перемешивания составляет 6...8 мин. Приготовленная таким образом рабочая смесь подается в расходный бункер валкового пресса. Спрессованные брикеты из пресса поступают на сетчатый конвейер конвективной сушилки. Для сушки брикетов используются дымовые газы, отводимые от вагранки с температурой не более 250 °С. Высушенные брикеты поступают в емкость для сбора готовой продукции.

Таким образом, в результате проведенных исследований предложен способ утилизации "корольков", позволяющий использовать их в качестве вторичного сырья в технологии производства минеральной ваты.

- Вакалова Т.В., Хабас Т.А., Эрдман С.В., Верещагин В.И. Практикум по основам технологии тугоплавких неметаллических и силикатных материалов. – Томск: Изд-во ТПУ, 1999. – 169 с.
- Китайцев В.А. Технология теплоизоляционных материалов. М.: Гос. изд-во литературы по строительству, архитектуре и строительным материалам, 1959. – 352 с.

УДК 546.831.4

СИНТЕЗ И ИЗУЧЕНИЕ СВОЙСТВ ТОНКОПЛЕНОЧНОЙ И ДИСПЕРСНОЙ СИСТЕМЫ SiO₂-P₂O₅

В.В. Козик, Л.П. Борило, В.Ю. Бричкова

Томский государственный университет E-mail: anton br@rambler.ru

Синтезированы пленки SiO₂-P₂O₅ с содержанием оксида фосфора до 20 %, изучены свойства пленкообразующих растворов и свойства двойных оксидов.

Тонкопленочные материалы применяют в быстро развивающихся областях электронной техники, светотехнической промышленности, строительной индустрии. Свойства тонкопленочных материалов отличаются от свойств материалов в массивном состоянии. Это связано с тем, что для таких систем существенным является отношение площади поверхности к объему твердого тела, то есть сказывается так называемый фактор дисперсности (наноструктурный фактор) [1]. Немаловажным фактором для тонкопленочных материалов является также гетерогенность, или многофазность, указывающая на наличие межфазной поверхности и поверхностных эффектов, связанных в первую очередь с поверхностью подложки, которая оказывает структурирующее действие на формирование пленки [2].

Кремнеземистый фосфат, кубическая или псевдокубическая фаза $SiO_2-P_2O_5$, представляет собой высокоогнеупорный материал. Эта система интересна тем, что ее компоненты и бинарные смеси, близкие к ним по составу, легко образуют стекла, тогда как их соединения легко кристаллизуются. В структуре $SiO_2-P_2O_5$ элементарная ячейка представлена редкой координацией [SiO₆]. Она аналогична α -кристобалиту и поэтому способствует кристаллизации кремнезема из расплавов метафосфата натрия [3].

Целью данной работы являлось получение тонких пленок SiO_2 - P_2O_5 из пленкообразующих растворов (ПОР), а также установление взаимосвязи между условиями получения и физико-химическими свойствами тонкопленочных и дисперсных систем на основе SiO_2 - P_2O_5 .

Экспериментальная часть

Тонкие пленки двойных оксидов SiO₂ и P₂O₅ получали золь-гель методом путем осаждения из спиртовых растворов ПОР на основе тетраэтоксисилана с добавлением фосфорной кислоты на подложках из кремния и стекла методом центрифугирования со скоростью вращения центрифуги 2000...3000 об/мин. Формирование пленок проводили в два этапа температурной обработки в атмосфере воздуха: при 333 K (1 ч) и 873 K (30 мин).

Физико-химические процессы в ПОР изучали методами вискозиметрии (ВПЖ-2), процессы, протекающие при формировании пленок, – методами дифференциально-термического, ИК-спектроскопического и масс-спектрометрического анализов. Свойства полученных пленок изучали эллипсометрически (ЛЭФ-3М).

Рис. 1. Зависимость вязкости ПОР на основе тетраэтоксисилана от времени старения при концентрации H₃PO₄: 1) 0; 2) 59,6; 3) 134; 4) 224 ммоль/л

Получение пленок из растворов основано на способности исходных веществ вступать в реакцию гидролитической поликонденсации и образовывать коллоидные растворы. При этом происходит увеличение массы частиц и, следовательно, изменение вязкости растворов. Важной в технологическом плане является стабильность вязкости ПОР во времени. По экспериментально найденной взаимосвязи между вязкостью и временем хранения растворов можно судить о возможности их использования для получения пленок. На рис. 1 приведены кинетические кривые изменения вязкости ПОР на основе тетраэтоксисилана, содержащих фосфорную кислоту, концентрацию которой изменяли от 0 до 224 ммоль/л.

Свежеприготовленный раствор тетраэтоксисилана в водноспиртовой смеси еще не является пленкообразующим и при нанесении его на подложку испаряется без остатка. Образование пленки происходит только после 2-х сут. созревания раствора. Вязкость системы в это время меняется резко (рис. 1, 1-ая кривая) в результате гидролиза и поликонденсации, протекающим по уравнениям:

 $Si(OC_2H_5)_4 + H_2O \rightarrow Si(OC_2H_5)_3OH + C_2H_5OH$

 $2Si(OC_2H_3)_3OH \rightarrow (H_5C_2O)_3Si - O - Si(OC_2H_5)_3 + H_2O$

По истечении 2-х сут. процессы в ПОР замедляются, и вязкость меняется медленно. Реакции гидролиза и поликонденсации продолжаются, но протекают с очень малой скоростью в связи с пространственными затруднениями. После накопления в растворе три- и тетрасилоксанов с концевыми группами -OH вязкость начинает увеличиваться вследствие процессов циклизации силоксанов, обусловленных подвижностью связи Si-O. Раствор через некоторое время из золя превращается в гель. При этом пленки из таких растворов получаются неравномерными и часто отслаиваются, что делает их непригодными для использования.

При введении в систему H_3PO_4 стабилизация реологических свойств ПОР происходит в течение одних суток, что объясняется ускорением процессов гидролиза и конденсации за счет увеличения кислотности среды. В то же время, временная область пригодности ПОР для получения пленок расширяется (рис. 1, 2-ая кривая). Это связано с тем, что пространственные затруднения, создаваемые объемистыми анионами $H_2PO_4^{-}$, HPO_4^{2-} (реже PO_4^{3-}), препятствуют циклизации силоксанов. Фосфорная кислота является довольно-таки сильной кислотой по первой ступени диссоциации (pK₁=2,12):

Образующийся анион нуклеофильно замещает этокси- или гидроксогруппу силоксана по SN₂-ме- ханизму:

В случае высокой концентрации фосфорной кислоты пространственные затруднения имеют малую значимость по сравнению с ее катализирующим действием и, как следствие этого, - происходит резкое увеличение вязкости на относительно ранних этапах созревания ПОР и гелеобразование в растворе (рис. 1, кривые 3, 4).

При нанесении ПОР на подложку по данным весового анализа происходит уменьшение массы пленки в течение 15...20 мин (Т=298 К). Очевидно, сначала с поверхности улетучивается растворитель, а затем происходит циклизация полиорганосилоксанов. В системе, не содержащей Н₃РО₄, имеет место следующий процесс циклизации силоксанов:

.

В присутствии H_3PO_4 анионы $H_2PO_4^-$ встраиваются в каркас образующегося цикла:

Данные термического (рис. 2), ИК-спектроскопического и масс-спектрометрического (табл. 1, 2) анализов, проведенных для пленок и высушенных порошков ПОР, показывают, что процесс образования SiO₂ происходит в три стадии.

Первая стадия идет в температурном интервале 298...473 К, связанным с испарением воды в результате образования конденсированных силанольных групп (конденсация по -ОН группам) с поверхности пленок и частиц порошка полисилоксанов. На второй стадии (температурный интервал 473...823 К) отщепляется этиловый спирт и уксусная кислота, образующаяся в процессе окисления объемных этоксигрупп.

Таблица 1. Газовыделение при ступенчатом прогреве ПОР по данным масс-спектров

Газообразный	С∙10⁻⁵ , мас. % (при различных					
продукт	температурах прогрева, К)					
	333	373	473	573	673	873
H ₂ O	0	7532	1250	5600	140	0
CO,	0	0	0	0	3	52
C,H,OH	1400	180	58	620	110	0
CH₃COOH	63	0,8	0	39	14	0,8
C _x H _y	0	0	0	0	39	4

На третьей стадии (823...973 К) происходит сгорание продуктов термоокислительной деструкции полисилоксанов и образование SiO₂.

Колебания	Наличие полос в ИК-спектрах, см						
(тип)	(при различных температурах, К)						
	298	333	373	473	573	773	
н—о—н si—о—н	-	3550	3660	3680	-	-	
Валентные CH_2 ; CH_3	2995	2995	2935	2935	2935	-	
	2870	2865					
H		16.40	16.40	16.40	16.40		
0	-	1640	1640	1640	1640	_	
Н							
Деформационные CH ₂ ; CH ₃	1455	1455	-	-	-	-	
	1400	1400					
Si— O— Si	1175	1090	1095	1100	1100	1100	
	1090						
H		050					
Si	_	960	_	-	_	_	
0							
Si— O— Si	800	800	800	800	800	800	
	600	600	600				
0							
Si	465	460	460	460	460	460	
0							

Таблица 2.	Отнесение	полос	ИК-спектр	ов плен	ЮК, П	олучен
	ных из ПО	Р при ј	сазличных	темпера	атурах	прока
	ливания					

Сравнительный анализ процессов формирования SiO_2 в объемной фазе и в тонком слое приведен в табл. 3.

Результаты показывают, что процессы в тонком слое энергетически выгоднее, протекают быстрее и при более низких температурах. Это обусловлено размерными эффектами, связанными с малой толщиной пленки, а также влиянием поверхности подложки, что сказывается на лимитирующей стадии процесса формирования пленок.

Для первой стадии процесса получения порошка SiO₂-P₂O₅ были рассчитаны кинетические параметры. Энергия активации E_a составила 15,4 кДж/моль, что говорит об облегчении процессов удаления молекул воды по сравнению с чистой системой вследствие ослабления межмолекулярных связей. На начальной стадии созревания ПОР с увеличением содержания H₃PO₄ получаются более тонкие пленки. С увеличением времени хранения ПОР повышение концентрации H₃PO₄ приводит к образованию более толстых пленок, что согласуется с данными реологических исследований.

В свою очередь, повышение степени структурирования ПОР при увеличении времени его созре-

вания приводит к уменьшению показателя преломления получаемых из них пленок (табл. 4).

Рис. 2. Дериватограмма высушенного при Т=333 К ПОР

Таблица 4. Изменение оптических свойств пленок (d — толщины; n — показателя преломления) в зависимости от состава и времени созревания ПОР

Соперуацие	Оптические свойства пленок						
РО %	a	(, нм	п				
$1_{2}O_{5}, 70$	4 дня 21 день		4 дня	21 день			
0	-	204,32	-	1,346			
5	161,53	187,30	1,481	1,412			
10	121,91	184,33	1,485	1,418			
15	133,52	197,11	1,497	1,408			
20	141,52	214,22	1,495	1,468			
25	84,45	247,70	1,487	1,413			
30	72,79	-	1,469	-			

Выводы

Синтезированы пленки $SiO_2-P_2O_5$ с содержанием оксида фосфора от 0 до 20 %, установлены их оптические свойства и изучены закономерности в изменении реологических свойств ПОР. Проведен сравнительный анализ процессов формирования SiO_2 в объемной фазе и в тонком слое.

Таблица 3. Кинетические параметры получения порошка SiO₂ (по данным дифференциально-термического анализа)

Стадии	л Порошок SiO ₂				Пленка SiO ₂				
рова- ния	7интерв, К	Степень превращ., %	Относит. скорость процесса, г/мин	<i>Е</i> _а , кДж/моль	<i>Т</i> интерв, К	Степень превращ., %	Относит. скорость процесса, г/мин	<i>Е</i> _а , кДж/моль	
1	298473	33,0	6,3	41,4	298423	20,5	3,2	10,4	
2	473823	29,5	6,2	51,8	423673	59,5	2,9	16,0	
3	823973	37,65	7,9	68,5	673773	20	3,4	17,4	

СПИСОК ЛИТЕРАТУРЫ

 Козик В.В., Борило Л.П., Турецкова О.В., Шульпеков А.М. Тонкопленочные композиционные материалы на основе SiO₂ и оксидов РЗЭ // Конденсированные среды и межфазные границы. – 2002. – Т. 4. – № 3. – С. 231–235.

УДК 621.1.016

Борило Л.П. Тонкопленочные неорганические наносистемы. — Томск: Изд-во Том. ун-та, 2003. — 134 с.

 Эйтель В. Физическая химия силикатов. — М.: Изд-во иностр. лит-ры, 1962. — 1056 с.

УТОЧНЕННАЯ МЕТОДИКА РАСЧЕТА ОПТИМАЛЬНОГО ДИАМЕТРА ГАЗОПРОВОДА

С.В. Голдаев

Томский политехнический университет Тел.: (382-2)-56-40-10

Предложена уточненная методика расчета оптимального диаметра газопровода, в которой учтена зависимость коэффициента гидравлического сопротивления от диаметра трубы и режима движения газа. Показано, что приближенная методика, предполагающая постоянным упомянутый коэффициент, дает на 10...12 % завышенные значения оптимального диаметра и на 2...3 % суммарные затраты на строительство и эксплуатацию газопровода.

R

Доставка и распределение природного газа потребителям (промышленным, энергетическим, бытовым) требуют больших затрат денежных и материальных средств, в том числе одного из наиболее дефицитных видов проката – труб. Поэтому снижение стоимости и металлоемкости систем газоснабжения имеет важное значение [1]. При транспортировке газа по трубам преодолеваются гидравлические сопротивления, на что тратятся определенные энергетические затраты. Кроме того, поддержание газопровода в рабочем состоянии вызывает дополнительные издержки [2]. В связи с этим возникает необходимость расчета оптимальных значений диаметра газопровода D_{op} для транспортировки заданного количества газа.

Цель работы заключалась в том, чтобы на основе предложенного уточненного метода расчета D_{op} определить погрешность известного приближенного алгоритма [3].

Предполагались известными следующие исходные данные: молекулярная масса перекачиваемого газа (метан, пентан и т.п.) M; его объемный расход при нормальных физических условиях V_0 , м³/с; длина горизонтального газопровода L, м; КПД насоса η_n , передачи η_p , двигателя η_d . Стоимости: электроэнергии Ze_1 за 1 кВт·ч, амортизации Za_1 и эксплуатации трубопровода Zr_1 руб. в год на 1 м длины и 1 м диаметра.

В приближенной методике принималось, что коэффициент трения постоянен и равен λ_p , и что потери на местные сопротивления составляют k_m ($k_m < 1$) от потерь на трение [3]. Такое допущение, использованное в [3], объясняется, вероятно, тем, чтобы вычисления не были итерационными. Как подчеркивается в [1], гидравлический расчет газопроводов следует выполнять с учетом зависимости коэффициентов гидравлического сопротивления от режима движения газа (ламинарный, переходный, турбулентный). Расчет выполнялся для условной температуры *Т*. Принималось (с последующей проверкой), что падение давления в трубопроводе невелико, и среднее давление примерно равно атмосферному.

Как известно [1], процесс оптимизации состоит из следующих операций: 1) составление целевой функции (Ц Φ) и 2) отыскание значений параметров, при которых ее значение будет экстремальным.

Использовался экономический критерий оптимальности, учитывающий приведенные затраты. Суммарная годовая стоимость газопровода как функция диаметра *D*, выражалась уравнением [3]

$$E_{s} = B / D^{3} + (Za_{1} + Zr_{1})LD,$$

= $Ze_{n}(1 + k_{m})(\lambda_{p} / 2)L \cdot r_{g}(4V / \pi)^{2},$ (1)

где *r_g*, *V* – плотность газа и объемный расход газа; *Ze_n* – стоимость электроэнергии с учетом продолжительности эксплуатации газопровода в течении года.

С использованием аналитического условия минимума ЦФ ($\partial E_s / \partial D=0$, $\partial^2 E_s / \partial D^2 > 0$), в [3] получено выражение для оптимального значения диаметра газопровода

$$D_{opp} = [5B/(Za_1 + Zr_1)L]^{1/6}.$$
 (2)

Уточненный метод расчета основывался на том, что коэффициент сопротивления являлся функцией от *D* и вычислялся следующим образом [4].

Для труб круглого сечения при ламинарном режиме течения газа (критерий Рейнольдса Re<2300) –

$$\lambda_{lm} = 64/\text{Re}, \quad \text{Re} = 4\rho V/(\mu D), \quad (3)$$

где *µ* – коэффициент динамической вязкости.

При турбулентном режиме течения (Re > 2300) для шероховатых труб –

$$\lambda_{tb} = 0.11 (k_{_{\rm 3KB}} / D + 68 / \text{Re})^{0.25}, \qquad (4)$$