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Abstract. This paper describes the influence of a weld on elastoplastic transition in low-carbon 

steels. Depending on the level of internal stresses in the zone of the weld, the formation of 

Chernov-Lüders bands can occur either exactly in the weld or near it. In the second case, the 

influence of the weld is detected only when the front of the Chernov-Lüders band reaches it. In 

both cases, the features of kinetics for the fronts of the Chernov-Lüders bands are caused by 

the structural and phase inhomogeneity of a heat-affected zone and deposited metal. 

1. Introduction 

Strength and fracture are the most important characteristics of steels. To select a material for a product 

it is necessary to consider the material strength, since it determines whether it will resist loads for the 

required time before the material is fractured, and steels show the highest strength among materials. 

Another important quality is the availability of material. In this connection, the most common steels 

used to produce engineering constructions are low-carbon high-grade or low- grade steels. 

Engineering constructions consist of many elements. These elements can be joined by welds, the 

strength of which differs from the strength of material, most often toward a lower level. Thus, it is 

necessary to know the behavior of the base material under loading, as well as the behavior of material 

in the place of welded joints. The parameters defined as permissible for this structure should be used 

within elastoplastic transition range at the junction of elements. 

Elastoplastic transition in structural low-carbon steels consists of the stages such as microplasticity, 

during which there are elastic strains and processes leading to irreversible deformation; a yield drop 

and a yield plateau corresponding to the growth of the Chernov-Lüders band (CLB) through the cross 

section and its further distribution along the sample [1]. These processes lead to the accumulation of 

strain in the sample up to 3.5%. This transition ends after the material passes from an elastic stress 

state to a plastic strain state. 

Studying the behavior of material, that is the movement of CLB fronts in the basic material and in 

the material of welded joints, allows us to determine the limits of permissible stresses and strains for 

the engineering constructions consisting of these materials. 
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2. Methods and materials 

The most widely used material in engineering constructions is low-alloy high-grade steel (09G2S) that 

was chosen to be the object of the study. Specimens of the dog-bone shape with a working part size of 

2 × 6 × 40 mm were prepared from the 250 × 250 × 5 mm butt-welded plates, which were subjected to 

milling and mechanical grinding. In this case, the weld was located in the middle of the working 

section and perpendicular to the tension axis of the sample. The width of the deposited metal was 

about 5 mm, and the heat-affected zone surrounding this one was 1.5 mm. To observe CLB fronts, it is 

necessary to ensure that the working surface of the sample is the diffusively-reflecting one and the 

samples are subjected to deep etching in a 12% alcohol solution of nitric acid. 

A testing machine Walter+Bai AG LFM-125 was used for mechanical uniaxial tensile testing of 

the samples. During the test, a deformation diagram was recorded in digital form. After analyzing the 

tests, it can be concluded that the deformation rate of the sample is 8.3∙10-5 s-1 at the speed of the 

movable (top) testing machine grip of 0.2 mm/min. The method of digital statistical speckle 

photography was used during the tensile process to obtain an "in situ" record for the centers of 

deformation localization [2]. The use of this method leads to the fact that these centers of deformation 

localization appear as dark contrast bands superimposed on the speckle images of the deformed 

samples and, in fact, represent the boundaries or fronts of CLB. Comparison of the deformation 

diagram with the distribution of the deformation localization centers showed that the stages of the 

tensile curve were in a good agreement with the behavior of the CLB fronts. 

3. Results and discussion 

The propagation of CLBs in the homogeneous low-carbon steel samples can be called stochastic. 

However, numerous uniaxial tensile tests show that two CLBs formed often near both testing machine 

grips [2, 3]. Moreover, each band has two moving fronts diverging in different directions, one of 

which soon reaches the edge of the working section and then stops. The remaining fronts move 

towards each other at a constant velocity, at the same time, bands expansion rate remains the 

constants. This is because the velocity of the CLB front propagation directly depends on the expansion 

rate of the plastically deformed part in the sample [4]: 
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In this formula, N is the number of simultaneously moving CLB fronts, Vf
(i) is the propagation 

velocity of the i-th CLB front, and (Vf) is the expansion rate of the plastically deformed part in the 

sample, equal to approximately 0.16 mm/s for this case. Thus, if one of the moving CLB fronts stops, 

the velocity of the remaining one is increases by the velocity of the stopped front. These relations are 

valid both for any time moment and for any number of moving fronts. 

The samples with a weld have a different picture of the CLB formation. The presence of a weld in 

samples has a significant effect on the formation or distribution of CLBs. Depending on the process, 

internal stresses in heat-affected zones can be higher or lower compared with the basic metal. Since 

the stresses in heat-affected zones are higher than in the base metal, the formation of CLB occurs in 

the decarbonized zone of a weld [5]. In this case, the CLB formation in a weld differs from the CLB 

formation in the basic metal. If, in the latter case, a CLB grows from the one edge of the working 

section of the sample to the other one with clear boundaries, then for the first case the picture is 

different. In the beginning, a large number of small centers of deformation form in the zone of 

deposited metal, and then a CLB forms during the next 3-8 seconds. This CLB occupies the entire area 

of deposited metal, but does not have clearly observed fronts. The moving CLB fronts form only in the 

heat-affected zones of the weld during the first minute after the start of loading. Further propagation of 

the CLB fronts takes place according to the well-known scenario observed in the samples without a 

weld [2-4]. The velocity of the fronts is approximately equal to 100-150 μm/s and does not differ 

much from the velocities in homogeneous samples. 
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Figure 1. Chernov-Lüders bands behavior in welded joint zones. 

 

In the other case, if the internal stresses in heat-affected zones are lower than in the basic metal [5], 

another scenario of elastoplastic transition takes place and the presence of a weld has an effect on the 

CLB distribution. A CLB forms outside the zone of deposited metal, as in the case for the 

homogeneous sample, near one of the testing machine grips. When one of the fronts reaches the edge 

of the working section and stops, the velocity of another one increases according to formula (1), and 

the front continues propagation along the sample. Having reached the boundary of the weld, the CLB 

front stops and becomes the source of a new CLB nucleation directly in the deposited metal. In this 

case, the CLB forms in the deposited metal two times faster than in the homogeneous sample under 

normal conditions [2]. The time required for this process is approximately 3 seconds, and the speed is 

higher than 2 mm/s. The further deformation of the sample occurs directly in the weld: while the CLB 

is distributed in the zone of deposited metal, the CLB front remains stationary outside this zone. At the 

same time, the CLB front moves in the deposited metal at a velocity of about 0.5 mm/s and exceeds 

the velocity of CLB front propagation in the base material (Figure 1). At the time when the deposited 

metal is completely deformed, and the CLB front located in it disappears, the stationary CLB front in 

the heat-affected zone starts moving and continues to be propagated in the base metal with velocity is 

about 100 μm/s that corresponds to the velocity of front propagation in a homogeneous metal. 

4. Conclusions 

The existence of a weld in a sample determines the CLB formation. If stress in a heat-affected zone is 

higher than in the basic metal, a CLB will form directly in the weld. If stress in a heat-affected zone is 

higher than in the basic metal, a CLB will form outside the area of deposited metal. However, since 

the weld’s area has a large structural and phase inhomogeneity, regardless of where a CLB is formed, 

it strongly influences on the behavior of deformation. In this case, the difference in the structure of 

materials leads to the fact that the kinetics of CLB fronts in the deposited and base metal are 

substantially different, and the velocity of fronts there can differ by an order of magnitude. In addition, 

a CLB front can stop at the boundaries of zones with a different structural and phase state and become 

the source for the formation of one or even several CLBs. At the same time, the critical formation 

processes of moving CLB fronts are localized in heat-affected zones. 
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