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Abstract. Alumina composites reinforced with 3 vol.% multi-walled carbon nanotubes 

(MWCNTs) were prepared by spark plasma sintering (SPS). The influence of sintering 

temperature (1400-1600 °C) on the composites microstructure and mechanical properties was 

investigated. Microstructure observations of the composite shows that some CNTs site along 

alumina grains boundary, while others embed into the alumina grains and shows that CNTs 

bonded strongly with the alumina matrix contributing to fracture toughness and microhardness 

increase. MWCNTs reinforcing mechanisms including CNT pull-out and crack deflection were 

directly observed by scanning electron microscope (SEM). For Al2O3/CNT composite sintered 

at 1600 °C, fracture toughness and microhardness are 4.93 MPam1/2 and 23.26 GPa 

respectively. 

1.  Introduction 

Carbon nanotubes are widely used as reinforcements in polymers, metals, and ceramics to improve 

their mechanical and functional properties [1]. CNT has been considered as an ideal candidate for 

reinforcing/functioning elements because of small size, low density, high aspect ratio, and outstanding 

mechanical, electrical, and thermal properties. The demand for advanced composite materials 

comprising of high performance characteristics and improved functional properties is always 

rising [2]. Alumina, along with other ceramics like zirconia, silicon nitride, tungsten carbide, titania, 

etc., is not only being used as a biomedical material but also for high temperature applications in 

aerospace and automobile industries. This is due to its high hardness, good wear resistance, 

thermal/electrical insulation properties and excellent chemical inertness. But the main problem 

associated with alumina is its low fracture toughness which sometimes hinders its application as a 

structural material [3, 4]. Various types of particulate, whisker and fiber reinforcements have been 

used to improve the fracture toughness of alumina in the last few decades. In this regard, CNTs are 

achieving a lot of attention as a reinforcement candidate due to their good thermal stability up to 

1800 C [5] and excellent mechanical properties after sintering with alumina. CNTs connect the 

alumina grain boundaries and retard grain growth resulting in the grain refinement during the sintering 

at elevated temperatures which help in the improvement of fracture toughness, Young’s and shear 

modulii [6]. The toughening mechanism of CNT-alumina composites is mainly attributed to the crack 

deflection at CNT-alumina interface, crack bridging and CNT pull-out from alumina grains [7]. Most 

studies have been based on laboratory-scale self-made composite powders, which cannot meet the 
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requirements of wider applications. In the present study, commercial Al2O3/CNT composite powders 

were used as raw materials and sintered by spark plasma sintering. 

2.  Materials and methods 

Commercial -Al2O3/CNT composite powder (Applied Carbon Nanotechnology Co., Ltd., Korea) 

with MWCNT contents of 3 vol.% were used as the starting powder. The particle morphology of 

initial composite powder and microstructures of the fracture surfaces were observed by means of a 

scanning electron microscope (JSM-7500FA, JEOL). A small amount of composite powder was 

dispersed onto a TEM grid to be characterized by transmission electron microscopy (TEM, JEM-

2100F, JEOL). The measurements of particle size distribution of composite powder by means of laser 

diffraction method were performed with SALD-7101 (Shimadzu). Composites were prepared by spark 

plasma sintering (SPS-515S, Syntex) in a graphite die with an inner diameter of 15 mm at different 

sintering temperatures (1400, 1500, and 1600 C), constant load of 40 MPa, heating rate 100 C/min, 

and holding time 10 min. After sintering, the composites were allowed to cool naturally to room 

temperature. The density of the sintered disk-shaped composites was determined using the geometrical 

method. The theoretical densities were calculated according to the rule of mixtures, in which densities 

of 3.99 g/cm3 and 2.10 g/cm3 were assumed for the alumina and MWCNTs, respectively [8]. The 

relative density  is the ratio of the measured density to the theoretical density. Measurements of the 

microhardness HV were performed with a PMT-3M (LOMO) microhardness tester under ambient 

conditions. The Al2O3/CNT composites were indented using a Vickers diamond pyramid with a load 

of 4.9 N applied on the surface for 15 s. At least 10 measurements were carried out for each sample. 

The diagonal lengths of the indents were measured using the attached microscope, converted to 

Vickers hardness number (HV) and further converted to GPa. A Vickers hardness tester TP-3R-1 was 

used for fracture toughness measurements using a load of 49 N. The fracture toughness values KIC 

were calculated using the Anstis method [9]: 

KIC = 0.016 (
E

HV
)

1 2⁄

(
P

c3 2⁄ ), 

where E is the Young’s modulus, HV is the microhardness, c the radial crack length generated by 

Vickers's indentation and P the load at failure.  

3.  Results and discussion 

Figure 1a shows morphology of the Al2O3/CNT raw powder. The alumina particles are irregular in 

shape with size ranging from 100 nm to 9 m. Aggregation of alumina particles is not observable.  

 

   
 

Figure 1. (a) SEM image showing morphology of composite powder, (b) TEM image showing 

morphology of MWCNT and (c) particle size distribution of composite powder. 

Figure 1c shows the particle size distribution of composite powder. The average particle size of 

powder is approximately 1.7 m. TEM images shown in Figure 1b display the morphology and 

surface features of the CNTs used in this research. The surface of the CNTs is not smooth, and hollow 

a b 
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core and numerous graphitic layers of the CNTs are clearly visible, although the layers are not 

concentrical and some compartments exist. 

Let us now examine the three SEM micrographs of the sintered products obtained by SPS. First of 

all, it is seen that all of the samples, consist of 1-2 m sized grains (Figure 2a, b, c) and there is no 

evidence of CNTs damage during sintering. Employing the SPS sintering, the densification of samples 

can be realized in short time without a considerable grain growth process. The CNTs are located 

mainly in the inter-granular places and in some cases incorporated into grains. As can be seen (Figure 

2c), CNTs were distributed inside the alumina grains and strongly bonded with the alumina matrix. 

 

   
 

Figure 2. SEM images of the fractured surface of composites sintered at temperatures: (a) – 1400; 

(b) – 1500; (c) – 1600 C. 

As the sintering temperature rises from 1400 to 1600 C, the density of the Al2O3/CNT composite 

increases (Table 1). It is evident that the temperature increase intensifies the processes of diffusion in 

solid and plastic deformation with attainment of creep threshold stress, and, therefore, of the material 

yield [10]. In this case, the whole free volume in solid is filled with the material, pore disappear, and a 

compressed (monolith) compound is formed (Figure 2c). 

 

Table 1. Properties of Al2O3/CNT composites. 

T (C) ρ (%) HV (GPa) 

1400 89.80 14.69 

1500 97.84 17.52 

1600 98.60 23.26 

 

Microhardness of composite Al2O3/CNT is 14.69 GPa after sintering at 1400 °C. With increasing 

the sintering temperature to 1500 and 1600 °C, microhardness values increase by 19 % and 58 % 

respectively (Table 1). For comparison, in [11-13] composites Al2O3 containing 3, 2.4 and 0.9 vol.% 

of MWCNTs fabricated by SPS had microhardness values of 18.40, 18.50 and 17.00 GPa, 

respectively. The composite Al2O3 with 2.5 vol.% of MWCNT obtained by hot pressing [14] and 

Al2O3 composite with 0.1 wt.% of MWCNT were densified by pressureless sintering [15] had 

microhardness values of 18.00 and 16.66 GPa, respectively. It is also worth noting that at a load of 

4.9 N, no cracks appeared on the sample surfaces, which indicates an exceptionally high fracture 

toughness of the samples. 

More detailed views about the characteristics of microstructure of composites are shown in 

Figure 3a, b. MWCNT tend to assemble in bundle of nanotubes as can be seen in Figure 3a which 

consist of several tubes and aligned along their length in van der Waals bonding with one another. 

CNT bundle (d  180 nm) is embedded into the matrix and this bundle is divided into three little 

bundles (Figure 3a, d  20-35 nm). MWCNTs, which seem to have been entrapped in the matrix 

grains during SPS, are cut near the grain surface (Figure 3b). As shown in Figure 3b, observed the 

formation of strong interface between CNTs and matrix. Also shown clear evidence of pulled-out 
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CNTs, which indicates that the CNTs bear significant stress by sharing a portion of the load and, at the 

same time, toughen the matrix by a bridging effect. 

 

   
 

Figure 3. (a, b) SEM images of the fractured surface and (c) SEM images of crack on the surface of 

composite by indentation. 

The fracture toughness of the Al2O3/CNT composite after sintering at 1600 °C is measured to be 

4.93 MPam1/2, which is high enough due to crack deflection, crack bridging and pull-out mechanism 

[16, 17]. The improvement in fracture toughness is also attributed to minimization of CNTs damage 

during sintering [18]. The crack is characterized by a small number of deviations at large angles and 

therefore, a very tortuous path occurs explaining the high efficiency of the deflection mechanism and 

therefore, an increase in fracture toughness (Figure 3c). MWCNT pull-outs were also detected on the 

fracture surface suggesting a strong bonding between CNT and Al2O3 matrix and significant load 

transfer from the matrix to carbon nanotubes during loading. In intergranular fracture the crack 

propagates along the grain boundary thus consumes more fracture energy, which is favorable for the 

increment of fracture toughness. However, our results shows that the toughness of the Al2O3/CNT 

composite sintered at 1600 °C is 4.93 MPam1/2, which is 105 and 83 % increase in toughness over 

pure alumina with the same-as grain size (1.66 and 2 m) 2.41 and 2.70 MPam1/2 respectively [19, 

20]. 

The SPS method has been useful to give high mechanical properties of the Al2O3/CNT 

composites. The SPS technique is a pressure-assisted fast sintering method based on high-temperature 

plasma momentarily generated in the gaps between powder materials by electrical discharge during 

on-off direct current pulsing. It has been suggested that the direct current pulse could generate several 

effects such as spark plasma, spark impact, Joule heating, and an electrical field diffusion [21]. 

Through these effects, the formation of a comparatively stronger bond between MWCNTs is expected 

for the SPS samples. 

4.  Conclusions 

The investigated composites produced by SPS of the Al2O3/CNT composite powder presented strongly 

bonded CNTs with the alumina matrix. Microstructure investigation of the samples showed that 

structure of the composite sintered at 1600 °C is comprised of densely sintered grains of alumina 

surrounded by carbon nanotubes and some CNTs embedded into the alumina grains. The Al2O3/CNT 

composites thus fabricated showed effectively enhanced hardness and toughness compared to 

monolithic materials, which is based on the mechanisms CNT pull-out, CNT bridging and crack 

deflection. Multi-wall carbon nanotubes are attractive materials for reinforcement (strength and 

toughness) of ceramics and strong bonding of CNTs with matrix play an important role for 

reinforcement. 
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