РАЗРАБОТКА ПРИЛОЖЕНИЯ ДЛЯ ПРОГНОЗИРОВАНИЯ РАЗВИТИЯ БОЛЕЗНЕЙ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР

Погожев А. О., Погожева Е. О., Жакишева Т. М. Научный руководитель: к.т.н., Иванов М. А. Национальный исследовательский Томский Политехнический университет, Россия Карагандинский государственный технический университет, Россия pao00013@gmail.com

Введение

Каждое среднее и крупное сельскохозяйственное предприятие в среднем обрабатывает за сезон 10-20 тысяч гектаров земли. При таких объемах оно сталкивается с тремя ключевыми проблемами[3]:

- 1. **Необходимость обхода больших площадей агрономом**. Следствием человеческого фактора могут быть дополнительные издержки от потери урожая.
- 2. Падением урожая в следствие гибели растений от болезней [1]. Для предприятий это приводит к дополнительным убыткам, для потребителей к увеличению цен.
- 3. Увеличение пестицидной нагрузки на растения [2]. Фермер не только тратит лишние деньги на обработку (защиту культур), но и качество продукции после таких действий оставляет желать лучшего.

На решение данного комплекса проблем направлен проект CropSafe.

Основная часть

решения вышеописанных проблем, Лπя возникающих выращивании при сельскохозяйственных культур, на основе разработан теоретических ланных был математический алгоритм. Общая концепция данной теории: (1) культура изначально считается больной; (2) развитие болезни зависит от окружающих условий, которые имеют разную степень благоприятствования; с другой стороны, важным фактором является (3) устойчивость сорта культуры к развитию болезней.

На сегодняшний день разработан алгоритм, позволяющий решить задачу прогнозирования динамики развития болезни, для картофеля при болезни «фитофтороз». Входные данные алгоритма это: относительная влажность, температура, устойчивость картофеля, время. Выходные переменные — это вероятность заражения.

Приведем последовательность шагов работы алгоритма. Для этого введем интегральную переменная фито балы. Которая характеризует вероятность заражения культуры:

- Отслеживание относительной влажности;
- При достижение критического значения

следует проверка температуры и суммирование времени. Каждый прошедший час соответствует своему количеству фитофторозных баллов; для каждой культуры он свой.

• При достижении 30 баллов культура считается зараженной с вероятностью 100%. Необходимо произвести обработку для локализации потерь урожая.

Математическое представление

Постановка задачи: пусть – продолжительность периода (в часах) относительной влажностью. Устойчивость сорта к заболеванию представляет собой дискретное множество $\Omega = \{B, VB, VV\}$, где B — восприимчивый сорт, VB — умеренной восприимчивый сорт, VV— умеренной устойчивый сорт. $tcp: N \cup \{0\} \to \mathbb{R}_+$ — средняя температура (0 C) за период с относительной влажностью $\geq 90\%$, где $\mathbb{R}_+ = [0, +\infty)$. Ставится задача определения благоприятности погодных условий для развития фитофтороза по системе Симкаст в период 24 часа, начиная с 13ч до 12ч следующего дня.

Тогда отображение $Law: \mathbb{R}_+ \times \Omega \times \mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}$, где $Law(t, \omega, m)$ представлено в Табл. 1.

Таблица 1. $Law(t, \omega, m)$. Показатели определения благоприятности погодных условий для развития фитофтороза по системе Симкаст в период 24 часа, начиная с 13ч до 12ч следующего дня.

Средняя	Фитофторозные баллы				
температура	Часы пока относительная				
	влажность ≥90%				
	0	1	2	3	4
7.2-11.6 C	15	16-18	19-21	22-24	25 +
11.7-15.0 C	12	13-15	16-18	19-21	22 +
15.1-26.6 C	9	10-12	13-15	16-18	19 +

Алгоритм был реализован на языке python. Он состоит из 5 классов (см. рисунок 1): Счётчик фитофторозных баллов, Мониторинг влажности, Мониторинг температуры, Счётчик времени, Оповещение заражения.

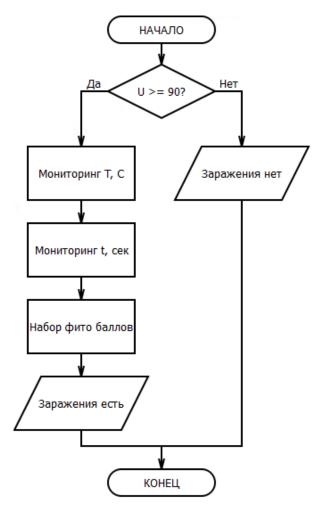


Рис. 1. Блок-схема последовательности выполнения классов

Заключение

На сегодняшний день разработано решение, позволяющий прогнозировать динамику развития болезни «фитофтороз» для картофеля используя метеоданные. Общая концепция данного метода такова: культура заведомо больна и развитие болезни зависит от окружающих условий.

В дальнейшем будут проводиться исследования распространения болезни «ржавчина» и разрабатываться алгоритмы, позволяющие решить задачу сохранения урожая пшеницы.

Список использованных источников

- 1. Богуславская Н.В., Филиппов А.В. Распространение возбудителя фитофтороза пасленовых в почве. // Микология и фитопатология, 1976, т. 10, № 4, с. 316.
- 2. Ван дер Планк Я.Е. Болезни растений (эпифитотии и борьба с ними) М.: "Колос", 1966, с. 5–359.
- 3. Иванюк В.Г. «фитофтороз картофеля и пути снижения его вредоносности», 2009 с. 52–55.