АНАЛИЗ МУЛЬТИСЕНСОРНЫХ СИСТЕМ И СЕНСОРНОГО СЛИЯНИЯ ДАННЫХ

Петренко Н.А.

Научный руководитель: Багутдинов Р.А. Национальный исследовательский Томский политехнический университет nap26@tpu.ru, bagutdinov@tpu.ru

Введение

Для решения ряда научных и прикладных задач используются комплексы параметров, которые можно реализовать с помощью мультисенсорных систем (МС). Разные цели требуют разных подходов, следовательно, важно определить, каким образом будет организована МС. В рамках данной работы предложена обобщенная классификация МС, представляющая собой ряд характеристик и позволяющая формализовать новые классы задач. Также возможно ее применение при решении проблемы слияния данных.

Классификация мультисенсорных систем

Мультисенсорные системы (МС) по их параметрам можно условно разделить на четыре группы, представленные на рисунке 1.

Можно выделить МС по назначению: использование их в различных сферах, таких как промышленность (газовые анализаторы, «электронный язык»), робототехника (системы компьютерного зрения), медицина, обеспечение безопасности и т.д.

Мультисенсорные системы могут быть реализованы набором аппаратных средств (датчиков, сенсоров), отклики которых используются без какой-либо дальнейшей обработки. Также МС может быть представлена программным обеспечением, которое обрабатывает и оперирует различными типами данных. Но наиболее распространены программноаппаратные комплексы (ПАК), включающие в себя обе реализации.

Если рассматривать МС как ПАК, то по способу их локализации можно выделить два основных вида: централизованные и распределенные [1]. В первом случае, сенсоры локализованы в одном месте и напрямую подключены к месту обработки, что позволяет получать данные в одном временном осуществляется интервале. Также легко мониторинг и управление каждым датчиком, следовательно, возможно обнаружение дефектов и последующая корректировка. Недостатками являются покрытие малых площадей и большая нагрузка на обработку (затраты большого количества времени и вычислительных мощностей).

Распределенные системы в отличие от централизованных способны покрывать большие площади, а предварительная обработка данных непосредственно на датчиках может облегчить нагрузку центрального процессора (обработочного пункта). Но в данном случае необходимо учитывать потерю данных при передаче, должна быть решена проблема обмена данными между датчиками и центральным процессором, а также нужно организовать корреляцию данных по времени, т.к. возможны непредвиденные задержки.

Существуют и другие архитектуры, которые реализуются непосредственно под прикладные задачи. Например, создаются частичные центры обработки в разных узлах системы, что облегчает последующие операции с полученными данными [2].

Информации, получаемой из одного источника, может быть недостаточно, т.к. данные могут быть неполными, зашумленными, поврежденными. Эту проблему может решить использование мультисенсорной системы, в которую включаются как однородные датчики (регистрирующие данные одного типа), так и разнородные, т.е. позволяющие измерять несколько несинхронизированных параметров.

Обработка и слияние данных

Работа с МС подразумевает, так называемое, сенсорное слияние – объединение данных, полученных с разных источников, позволяет обеспечить меньшую неопределенность информации и сохранение надежности системы (в случае отказа какого-либо сенсора) [3]. Исходные (сырые) данные имеют разную природу и объем, поэтому возникает задача приведения их под «общий знаменатель» ДЛЯ дальнейшего использования. Данные должны быть совместимы, согласованы по времени и объединены в единую структуру [4]. Существующие методы [5] имеют ряд недостатков: некоторые алгоритмы требуют использование исходных данных в их явном детализированном виде, следовательно,

появляется необходимость выделения ресурсов на хранение сверхбольших баз данных. Другие в свою очередь могут работать лишь с определенным видом информации (признаками), что может привести к потере важных данных. Кроме того, использование, например, нейросетей предполагает наличие больших вычислительных возможностей машин, что не всегда доступно и

удобно, особенно при обработке данных в режиме реального времени. Согласно же предложенной классификации, определив назначение МС, способ ее реализации, вид информация\и, которая приходит на вход, можно провести фильтрацию, исключить ненужные в рамках данной задачи данные и подобрать подходящие алгоритмы обработки и слияния.

Рис. 1. Классификация мультисенсорных систем

Заключение

По результатам анализа можно сделать вывод, что на данный момент слабо сформулированы гносеологические аспекты описания МС, т.е. нет определенной устоявшейся терминологии. Существует сложность интерпретации данных.

Возникают высокие требования к вычислительным машинам, и появляется проблема хранения больших объемов данных. Представленная в работе классификация позволяет сгруппировать имеющуюся информацию о МС и упрощает подбор методов, с помощью которых будет производиться обработка и слияние данных, в зависимости от типа системы и поставленной залачи.

Список использованных источников

- 1. Multi-sensor Data Fusion System Architectures. [Электронный ресурс]. URL: https://www.nutaq.com/multi-sensor-data-fusion-system-architectures/ (дата обращения 12.09.2017)
- 2. Пат. 89257 Российская Федерация, МПК G06F 15/00, G05B 13/00. Распределенная информационно-управляющая система на основе интеллектуальных датчиков / В.Н. Котов, Э.В. Мельник, И.П. Щербинин, Я.С. Коровин; заявитель и правообладатель Южный федеральный университет. №2009134431/22; заявл. 14.09.2009; опубл. 27.11.2009, Бюл. № 33
- 3. Буймистрюк Г. Технологии слияния сенсорной информации для управления в

критических ситуациях // Control Engeneering Россия. – 2014. – №5 (53). – С.47-51.

- 4. Багутдинов Р.А. Подход комплексирования обработки сенсорной информации в многосенсорных системах при проектировании робототехнических комплексов / Наукооемкие технологии и интеллектуальные системы: сборник статей Международной научно практической конференции, г. Омск, 12 сентября 2017 г. Уфа: ОМЕГА САЙНС, 2017. С.4-6.
- 5. Чубукова И.А. Лекции по Data Mining. [Электронный pecypc]. URL: http://portal.tpu.ru:7777/departments/kafedra/vt/Disciplines_VT/Data_storehouses/FilesTab/Tab/lections% 20data%20mining.pdf (дата обращения 5.09.2017)