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1 Introduction

The interfaces between two media serve as useful tool to control the electromagnetic fields, including

the radiation ones. In addition, the presence of separating boundaries gives rise to new types of

phenomena in classical electrodynamics. One of the interesting effects is the generation of surface

electromagnetic waves propagating along interfaces (for a review see [1]). These waves play an

important role in a large number of physical problems and have important applications, in particular,

in diagnostics of interfaces, in measurements of various characteristics of materials (for example,

the absorption coefficients), in wireless energy transfer.

The problem of the generation of surface electromagnetic waves is exactly solvable for highly

symmetric interfaces only. Here we consider the problem of the radiation of surface waves by a point

charge rotating around a dielectric cylinder along a circular trajectory. The radiation intensity at large

distances from the cylinder is discussed in [2, 3]. In the absence of the cylinder the corresponding

results are reduced to those for the synchrotron radiation in a homogeneous medium. The presence of

the medium may essentially influence the spectral-angular distribution of the radiation intensity (see,

for instance, [4–6] and references therein). It has been shown that, under the Cherenkov condition for

the material of the cylinder and the charge velocity, in the corresponding angular distribution strong

narrow peaks may appear. The angular density of the radiation intensity at those peaks exceeds the

corresponding value in a homogeneous medium by several orders of magnitude. Similar features

for a helical motion around a cylindrical waveguide are studied in [7]. In addition to the radiation at

large distances from the cylinder, the radiation can be present confined inside the dielectric cylinder.

The corresponding energy flux through the cross section of the cylinder has been studied in [8].

Similar investigations for a charge rotating inside a dielectric cylindrical waveguide are presented

in [9–12]. In the present paper we consider the third type of radiation corresponding to surface

waves propagating along the cylinder surface. As it will be shown below, this type of waves are

emitted on the eigenmodes of the dielectric cylinder and exponentially decrease outside the cylinder.

The organization of the paper is as follows. In the next section we consider the electromag-

netic fields outside a cylindrical dielectric waveguide. The electromagnetic fields for the surface

waves and the corresponding radiation intensity are discussed in section 3. The main results are

summarized in section 4.
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2 Electromagnetic fields outside a cylinder

Consider a dielectric cylindrical waveguide of radius rc having dielectric permittivity ε0 and a point

charge q rotating around the waveguide along the circle with radius rq, rq > rc (see figure 1). For

generality, we assume that the system is immersed in a homogeneous medium with permittivity

ε1. In a cylindrical coordinate system (r, φ, z) with the z-axis along the waveguide axis, the charge

coordinates are given by (rq, ω0t, z = 0), where ω0 is the angular velocity of the charge rotation.

For the charge velocity one has v = ω0rq.

Figure 1. Geometry of the problem.

In accordance with the problem symmetry the strengths for the electric and magnetic fields,

E(r, t) and H(r, t), are expanded as

F(r, t) = 2Re

[ ∞
∑′

n=0

ein(φ−ω0t)
∫ ∞

−∞
dkzeikz zFn(kz, r)

]

, (2.1)

where F = E,H, and the prime means that the term n = 0 should be taken with the weight 1/2. The

Fourier components for the fields in the region r > rc can be decomposed as

Fn(kz, r) = F
(0)
n (kz, r) + F

(c)
n (kz, r) (2.2)

where F
(0)
n (kz, r) are the fields in a homogeneous medium with permittivity ε1 in the absence of the

waveguide and the part F
(c)
n (kz, r) is induced by the waveguide. In cylindrical coordinate system

the components for the magnetic field are given by (for simplicity, in what follows we will omit the

arguments for the Fourier components)

H
(0)
nl
=

qvkzi
2−σl

2πc

∑

p=±1

pσl−1Jn+p(λ1r<)Hn+p(λ1r>), l = r, φ, (2.3)

and H
(0)
nz = 0 with σr = 1, σφ = 2, and λ2

j
= ω2

nεj/c2 − k2
z with ωn = nω0, j = 0, 1. In (2.3), Jν(x)

is the Bessel function and Hν(x) ≡ H
(1)
ν (x) is the Hankel function of the first kind, r< = min(re, r),

r> = max(re, r).
By using the electromagnetic field Green tensor from [2], for the part induced by the waveguide

in the region r > rc one gets (see [7] for a helical motion)

H
(c)
nl
=

qvkzi
2−σl

2πc

∑

p=±1

pσl−1B
(p)
n Hn+p(λ1r), H

(c)
nz = −qvλ1

2πc

∑

p=±1

pB
(p)
n Hn(λ1r), (2.4)
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with l = r, φ, and

B
(p)
n = − π

2i

VJ
n+p

VH
n+p

Hn+p(λ1rc) +
pλ0Jn+p(λ0rc)Jn(λ0rc)

2rcαn(kz)VH
n+p

∑

l=±1

Hn+l(λ1rq)
VH
n+l

. (2.5)

Here we have introduced the notations

αn(kz) =
ε0

ε1 − ε0
− λ0

2
Jn(λ0rc)

∑

l=±1

l
Hn+l(λ1rc)

VH
n+l

, (2.6)

and VF
n = λ1Jn(λ0rc)F ′

n(λ1rc) − λ0Fn(λ1rc)J ′
n(λ0rc), with F = J,H. The Fourier components for

the electric field are found by using the equation E = ic∇ × H/(ωε0).

3 Radiation fields and the intensity for surface waves

The formulae given above describe two types of the radiation. The first one corresponds to the

radiation propagating at large distances from the waveguide. For this radiation the quantity λ1 is

real and the corresponding spectral-angular distribution has been investigated in [3, 7]. Here we

are interested in the second type of the radiation in the region r > rc that corresponds to purely

imaginary values of λ1. The corresponding fields exponentially decay in the surrounding medium.

In order to find the parts in the fields corresponding to the radiation with imaginary λ1, let us

consider the limit z → ∞ in the Fourier expansion (2.1) for a fixed value of the radial coordinate

r . The phase of the exponent in the integrand has no stationary points. For regular functions

Fn(kz, r) the corresponding integral will decay exponentially for large z. From here it follows

that the radiation will be conditioned by the possible singular points of the integrand. The parts

F
(0)
n (kz, r) in the fields are regular and they do not contribute to the radiation in the region under

consideration. The singularities in the waveguide-induced fields F
(c)
n (kz, r) correspond to the zeros

of the function αn(kz) in (2.6). They are simple poles and correspond to the eigenmodes of the

cylindrical waveguide (see [13]).

For the further consideration it is convenient to write the function αn(kz) in the form

αn(kz) = Un(kz)/
[

(ε1 − ε0)
(

V2

n − n2u2

)]

, (3.1)

with the notations Vn = |λ1 |rcJ ′
n/Jn + λ0rcK ′

n/Kn, u = λ0/|λ1 | + |λ1 |/λ0, and

Un = Vn

(

ε0 |λ1 |rcJ ′
n/Jn + ε1λ0rcK ′

n/Kn

)

− n2(λ2

0
+ |λ1 |2)

(

ε1λ
2

0
+ ε0 |λ1 |2

)

λ−2

0
|λ1 |−2, (3.2)

where Jn = Jn(λ0rc), Kn = Kn(|λ1 |rc), the prime means the differentiation with respect to the

argument of the function and Kν(x) is the Macdonald function. The equation Un = 0 determines

the eigenmodes of the dielectric waveguide. Let ±kn,s, kn,s > 0, s = 1, 2, . . ., be the solutions of

this equation with respect to kz for n , 0. For these solutions we will introduce the notations

λ0rc = λn,s ≡ rc

√

ω2
nε0/c2 − k2

n,s, |λ1 |rc = λ(1)n,s ≡ rc

√

k2
n,s − ε1ω2

n/c2. (3.3)

For the allowed values of kn,s one has ωn
√
ε1/c 6 kn,s 6 ωn

√
ε0/c. As a necessary condition

for the existence of the eigenmodes we have ε0 > ε1. In the notations (3.3), in (3.2) one has

Jn = Jn(λn,s), Kn = Kn(λ(1)n,s).

– 3 –
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For the evaluation of the radiation parts in the fields we need to specify the contour for the

integral over kz in (2.1). This is done by taking into account that in physically realistic situations

the dielectric permittivity ε0 is a complex quantity, ε0 = ε
′
0
+ iε′′

0
, with ε′′

0
(nω0) > 0 for n > 0.

On the base of this it can be seen that (for details see, for example, [12]) in the integral over kz

the contour avoids the poles kz = kn,s (kz = −kn,s) from below (above). The condition for λn,s

to be real defines the maximum value for s, that will be denoted by sn. It is determined from the

condition kn,sn < ωnrc
√
ε0/c < kn,sn+1.

With the contour of the integration specified above, the radiation fields are obtained with the

help of the residue theorem:

F(r)(r, t) = 4πRe

{

i

∞
∑

n=1

ein(φ−ω0t)
sn
∑

s=1

Res
[

eikz zFn(kz, r)
]

}

. (3.4)

where superscript (r) stands for the radiation parts of the fields. Evaluating the residue, the radiation

fields are presented in the form

F(r)(r, t) = qv

c

∞
∑

n=1

sn
∑

s=1

Fn,s(r)
α′n

(

kn,s
) R

[

n(φ − ω0t) + kn,sz
]

, (3.5)

where R(x) = sin x for the components E
(r)
r , E

(r)
z , H

(r)
φ

, and R(x) = cos x for the components E
(r)
φ

,

H
(r)
r , H

(r)
z . For the magnetic field, the components of the vector in the right-hand side of (3.5) are

given by the expressions

Hl
n,s(r) = −kn,s

∑

p=±1

p2−σl B
(p)
n,sKn+p(λ(1)n,sr/rc), Hz

n,s(r) =
λ
(1)
n,s

rc

∑

p=±1

B
(p)
n,sKn(λ(1)n,sr/rc), (3.6)

where l = r, φ, and

B
(p)
n,s =

λn,sJn+p/Jn

(Vn − pnu)K2
n

∑

l=±1

lKn+l(λ(1)n,srq/rc)
Vn − lnu

. (3.7)

For the electric field we get

E l
n,s(r) = −(−1)σl c

2ε1ωn

∑

p=±1

pσl

∑

j=±1

(

ω2

nε1/c2
+ j k2

z

)

B
(jp)
n,s Kn+p(λ(1)n,sr/rc),

Ez
n,s(r) = −

cλ
(1)
n,skn,s

ε1ωnrc

∑

p=±1

pB
(p)
n,sKn(λ(1)n,sr/rc). (3.8)

Note that in (3.5) one can write α′n
(

kn,s
)

= U ′
n

(

kn,s
)

/
[

(ε1 − ε0)
(

V2
n − n2u2

) ]

. The term with a

given n describes the radiation with the frequency ωn. The corresponding fields are suppressed

by the factor e−λ
(1)
n,sr/rc at distances r ≫ rc/λ(1)n,s. This allows us to interpret the waves under

consideration as surface electromagnetic waves in the exterior region. There is also radiation

propagating inside the waveguide. The latter is investigated in [14].

Having the radiation fields we can evaluate the radiation intensity for the surface waves. The

corresponding energy flux through the plane z = const perpendicular to the axis of the cylinder is

– 4 –
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given by the expression

I(s) =
c

4π

∞
∫

rc

dr

2π
∫

0

dφ r
(

E
(r)
r H

(r)
φ

− E
(r)
φ

H
(r)
r

)

. (3.9)

Substituting the expressions (3.5) for the radiation fields we get I(s) =
∑∞

n=1
I
(s)
n , where the radiation

intensity on a fixed harmonic n is given by

I
(s)
n =

q2
v

2

8ε1

sn
∑

s=1

kn,sλ
2
n,sK−4

n

ωnα
′2
n (kn,s)J2

n

(

∑

l=±1

lKn+l(λ(1)n,srq/rc)
Vn − lnu

)2
∑

p=±1

Jn+p

Vn − pnu

×
[

(

ω2
n

c2
ε1 + k2

n,s

)

r2
c Jn+p

Vn − pnu
−
λ
(1)2
n,s Jn−p

Vn + pnu

] [

K ′2
n+p −

(

1 +
(n + p)2

λ
(1)2
n,s

)

K2

n+p

]

. (3.10)

Note that for a given angular velocity of the charge, ω0, the orbit radius appears in the argument of

the function Kn+l(λ(1)n,srq/rc) and in the coefficient through v
2. For large values of rq, λ

(1)
n,srq/rc ≫ 1,

the intensity of surface waves is suppressed by the factor exp[−2λ
(1)
n,srq/rc].

For the number of the radiated quanta at a given harmonic n, per period of the charge rotation,

one has N
(s)
n = T I

(s)
n /(~ωn), where T = 2π/ω0. In figure 2, we display the dependence of N

(s)
n as a

function of the harmonic for the electron energy Ee = 2 MeV and for the values of the parameters

ε1 = 1, ε0 = 3.74 (dielectric permittivity for quartz), rc/rq = 0.99. For these values of the

parameters one has sn = 1 for 1 6 n 6 7, sn = 2 for 8 6 n 6 12, and sn = 3 for 13 6 n 6 16.

For the radius of the electron orbit of the order 1 cm and for harmonics n ∼ 102 the corresponding

radiation is in the terahertz range. If the circular motion is generated by an external magnetic field

Hext then for relativistic electrons rq ≈ 1.7 × 103Ee/(mec2Hext) cm, where it is assumed that Hext

is measured in Gausses. Note that for neodymium magnets Hext can be of the order 104 G.

0 5 10 15

0.00

0.05

0.10

0.15

0.20

0.25

n

(ℏ
c
/q
2
)N
n(
s
)

Figure 2. The number of the radiated quanta per period of the rotation on a given mode n for different values

of n and for the values of the parameters Ee = 2 MeV, ε1 = 1, ε0 = 3.74, rc/rq = 0.99.

4 Conclusion

We have investigated the electromagnetic fields and radiation intensity for surface waves emitted

by a point charge rotating along a circular trajectory around a dielectric cylinder immersed into

– 5 –
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a homogeneous medium. These waves are radiated on the eigenmodes of the dielectric cylinder

and exponentially decrease in the exterior medium. The radiation fields are expanded as (3.5)

where the components of the vector Fn,s(r) for the magnetic and electric fields are given by the

expressions (3.6) and (3.8). The energy flux for the surface waves through the plane perpendicular

to the cylinder axis is given by the expression (3.10). Note that, in the problem under consideration

we have also the radiation at large distances from the cylinder and the radiation propagating inside

the cylinder. The geometry considered here is of interest from the point of view of generation and

transmitting of waves in waveguides, a subject which is of considerable practical importance in

microwave engineering and optical fiber communications.
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