Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки/профиль <u>09.06.01 Информатика и вычислительная техника / 05.13.06 Автоматизация технологических процессов и производств (атомная промышленность)</u>
Школа <u>Инженерная школа ядерных технологий</u>
Отделение <u>Ядерного топливного цикла</u>

Научный доклад об основных результатах подготовленной научно-квалификационной работы

Тема научного доклада			
Система управления каскадом центробежных экстракторов аффинажного стенда для			
отработки экстракционной технологии переработки ОЯТ			

УДК 621.039.59:66.061.3-52

Аспирант

	Группа	ФИО	Подпись	Дата
	A4-38	Зеленецкая Екатерина Петровна		

Руковолитель профиля полготовки

J				
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
профессор	Ливенцов С.Н.	д. т. н., профессор		

Руководитель отделения

1 ykobodnieno orgenemm				
Должность	ФИО	Ученая степень,	Подпись	Дата
		звание		
профессор	Горюнов А.Г.	Л. Т. Н.		

Научный руководитель

Должность	ФИО	Ученая степень,	Подпись	Дата	
		звание			
профессор	Горюнов А.Г.	Д. Т. Н.			

Система управления каскадом центробежных экстракторов аффинажного стенда для отработки экстракционной технологии переработки ОЯТ

В последние десятилетия стали уделять значительное внимание энергетическому комплексу страны, в поисках альтернативных источников энергогенерации, которые способы обеспечить возрастающий уровень энергопотребления при этом не приводящим к существенному увеличению стоимости энергоресурсов. Наиболее перспективным решением является развитие ядерного сектора энергетики, способного обеспечить устойчивую наработку энергии более высокого уровня мощности по сравнению с имеющимися производствами при меньшем объемном эквиваленте добываемого сырья. Госкорпорация «РОСАТОМ» запустила пилотный многопрофильный проект «Прорыв» направленный на замыкание ядерного топливного цикла через реакторные установки на быстрых нейтронах, в рамках которого на площадке ОАО «СХК» реализуется лабораторный аффинажный стенд. Один из модулей стенда предназначен практической отработки разрабатываемых экстракционных технологий пристанционной переработке отработанного уран-плутониевого ядерного топлива с реакторных установок на быстрых нейтронах. Но, прежде чем приступать к непосредственному внедрению разрабатываемых технологий в производство, необходимо модельные испытания в целях диагностики и оптимизации экстракционного аффинажа, снижения сопутствующих рисков путем внедрения автоматизированных систем управления технологическими процессами.

Настоящая работа посвящена разработке компьютерной модели, позволяющей имитировать работу производства экстракционного аффинажа с учетом функций систем управления технологическими процессами, обеспечивать подачу тестовых воздействий на имитационные модели процессов и регистрировать реакции систем на изменение целевых переменных. Разрабатываемая компьютерная модель направлена на диагностику экстракционных технологий нового поколения, предназначенных для пристанционной переработки отработанного ядерного топлива, реализуемых в рамках замыкания ядерного топливного цикла на базе реакторных установок на быстрых нейтронах.

В рамках тематики научных исследований проведён патентный поиск, а также анализ научно-технической литературы и современных научных исследований. Изучены имеющиеся на сегодняшний день в открытых источниках теоретические и практические подходы в решении задач исследования физико-химических процессов, протекающих в экстракционном оборудовании, по извлечению ценных компонент из растворов, содержащих делящиеся элементы. Определены обоснованные требования к разрабатываемым моделям экстракционного оборудования и блоков, реализующих

определение количественного покомпонентного извлечения целевых продуктов из растворов.

В целях повышения качества управления каскадом центробежных экстракторов аффинажного стенда, в работе предложены новые технические решения контроля целевых компонентов по каскаду центробежных экстракторов, основанных на поглощающих свойствах целевых компонентов, а также на определении плотности в промежуточных емкостях. Реализуемый в разрабатываемой модели модуль системы контроля изменения концентраций целевых компонентов по диагностируемой технологической схеме и плотности растворов в баках-сборниках, является базовым в динамическом модуле реализующим функции системы управления технологическими процессами, протекающими в каскаде центробежных противоточных экстракторов.

Разработана компьютерная модель каскада центробежных экстракторов как объекта управления. Спроектированные модели систем измерения и контроля целевых параметров технологических процессов протекающих в диагностируемых и оптимизируемых схемах заложены в основу модуля системы управления экстракционным каскадом. Разработанные модели объединены в единый программный модуль, что позволяет синтезировать оптимальные системы контроля и управления аффинажным стендом при любом изменении в конфигурации производственных схем или технологий.

Разработанный модуль обеспечивает возможность определения концентраций целевых компонент циркулирующих в технологической схеме растворов в любой точке каскада за счёт встраиваемой системы измерения и контроля концентрационного распределения в многокомпонентных растворах, в основу которой заложены методы плотнометрии. На основе получаемых данных с системы контроля происходит перенастройка параметров контура управления каскадом центробежных экстракторов, в случае каких-либо изменений в технологической схеме. Несмотря на жесткую связь между двумя рассматриваемыми системами измерения, в целом контур управления является «гибким».