УДК 552.321.6:553.08

КУЛИБИНСКИЙ И НИЖНЕДЕРБИНСКИЙ КОМПЛЕКСЫ: ОБЩНОСТЬ ПЕТРОЛОГО-ГЕОХИМИЧЕСКИХ ЧЕРТ (СЕВЕРО-ЗАПАД ВОСТОЧНОГО САЯНА)

А.Н. Юричев

Томский государственный университет E-mail: juratur@sibmail.com

Исследованы петролого-геохимические особенности кулибинского и нижнедербинского мафит-ультрамафитовых комплексов северо-западной части Восточного Саяна. Показан их петрографический и минералогический состав, рудная минерализация, петрохимические и геохимические черты. Полученные данные позволили установить большое сходство сравниваемых комплексов и предположить высокую перспективность обнаружения в их ультрамафитовых сериях Pt-Cu-Ni оруденения.

Ключевые слова:

Мафит-ультрамафитовые массивы, петрография, петрохимия, геохимия, рудная минерализация. *Key words:*

Mafic-ultramafic massifs, petrography, petrochemistry, geochemistry, ore mineralization.

Введение

В последнее десятилетие стали появляться новые данные по Pt-Cu-Ni оруденению, связанному с различными типами ультрамафит-мафитовых формаций разновозрастных полвижных поясов Центральной и Юго-Восточной Азии, охватывающих обширную территорию Южной Сибири, Казахстана. Монголии и Северного Китая [1–9], что представляет как большой научный, так и практический интерес. На территории Дербинской и Канской глыб Восточного Саяна, рис. 1, при проведении ранее геолого-съемочных (ГСР) и прогнознометаллогенических работ были выявлены многочисленные тела ультрамафитовых и мафит-ультрамафитовых интрузий, в которых неоднократно отмечалась рудная минерализация меди, никеля и благородных металлов [2, 7, 10]. В 1960-1973 гг. в результате тематических исследований И.В. Волохова и В.М. Иванова [11], ГСР масштаба 1:50000 под руководством А.Н. Смагина дифференцированные перидотит-пироксенит-габбровые интрузивные тела, выявленные в пределах Дербинской глыбы, были сведены в нижнедербинский комплекс, объединяющий Аштатский, Азертакский, Нижнедербинский, Бурлакский, Медвежий, Конжульский и Тубильский массивы. Массивы подобной формационной принадлежности на Канской глыбе в результате ГСР масштаба 1:50000 в 60-80-е гг. прошлого века выделены в кулибинский комплекс, который в настоящее время наиболее детально изучен на примере Кунгусского и Кулижинского массивов [12, 13]. В результате последних исследований авторами неоднократно отмечалось сходство мафит-ультрамафитовых массивов кулибинского и нижнедербинского комплексов.

Структурная позиция, генезис и металлогеническая специализация обоих комплексов, выделяемых в ранг весьма перспективных на обнаружение промышленных концентраций Cu, Ni и Cr [2], остаются дискуссионными до настоящего времени.

Целью настоящего исследования является доказательство существенного сходства мафит-ультрамафитовых массивов кулибинского и нижнедербинского комплексов путем сравнения их петролого-геохимических характеристик.

Рис. 1. Положение Канской и Дербинской глыб в структурах юго-западного обрамления Сибирской платформы: I, II – выступы кристаллического фундамента платформы: I – Ангаро-Канский, II – Присаянский; III−V – докембрийские структуры складчатого обрамления: III – Канский, IV – Арзыбейский, V – Дербинский блоки; разломы (цифры в кружках): 1 – Главный Восточносаянский, 2 – Канско-Агульский

Краткая геологическая характеристика исследуемых комплексов

Кулибинский комплекс (PR₁ по [3]) представлен дифференцированными и расслоенными массивами и телами размером до 5,5 км², которые локализованы в Канской глыбе в долинах pp. Кулиба, Кулижа, Мал. Агул, Кунгусс и на водораздельных хребтах между ними [7]. Они залегают в окружении интенсивно дислоцированных позднеархейских (?) – раннепротерозойских амфиболито-гнейсовых пород караганской серии, представленной амфиболитами, плагиоклазамфиболитовыми сланцами, биотитовыми и двуслюдяными гнейсами с прослоями мраморов и кварцитов. Массивы комплекса характеризуются на современном денудационном срезе преимущественно габброидным составом (роговообманковые габбро, габбро-нориты, нориты и габбро-порфириты) при подчиненной роли ультрамафитов (лерцолиты, верлиты, роговообманковые вебстериты, клинопироксениты и горнблендиты) [13]. Установленные аэромагнитные аномалии на исследуемой территории (по данным А.Н. Смагина, 2008 г.), очевидно, указывают на наличие значительных по объему пластин перидотитов в основании массивов комплекса и их практически полную сохранность в результате слабого современного эрозионного среза последних.

Нижнедербинский комплекс (R₃ по [11], O₁ по [14]) представлен дифференцированными и расслоенными мафит-ультрамафитовыми интрузивами размером до 16 км², которые размещаются в Дербинской глыбе в виде широтного пояса, протягивающегося примерно на 40 км от левобережья р. Кижарт на западе до правобережья р. Конжул на востоке. Плутоны залегают в окружении интенсивно дислоцированных раннепротерозойских метаморфических образований дербинской и урманской свит, которые представлены, главным образом, кристаллическими сланцами и мраморизованными известняками [10]. Анализ тектонической обстановки показал, что массивы зажаты в серии тектонических пластин, разбитых поперечными сбросами и взбросами, по которым смещены целые блоки. Это явление отчетливо проявлено в различной величине эрозионного среза интрузивных тел и их блокировке [11]. Они характеризуются многообразием петрографических вариаций пород, в составе которых может быть выделено две группы: ультрамафитов (лерцолиты, верлиты, вебстериты, клинопироксениты, горнблендиты) и габброидов (лейкократовые габбро-нориты, оливиновые габбро, габбро) [15]. Среди данных пород на современном денудационном срезе наиболее широкое развитие обнаруживают клинопироксениты, слагающие около половины площади выходов; на долю габброидов приходится около трети этой площади, остальное занимают оставшиеся перидотиты.

Петрографо-минералогическая характеристика пород

Кулибинский комплекс представлен двумя основными контрастными сериями пород – ультраосновными и основными ультрамафитами, а также габброидами при подчиненной роли первых. Сре-ЛИ ультрамафитов установлены лерцолиты (CPx~60, OPx~15, Ol~30 %), верлиты (Ol~45, СРх~40...45, Нb~10 %), роговообманковые перидотиты (Hb~45, Ol~25, OPx~20, CPx~10 %), роговообманковые вебстериты (ОРх~20, СРх~40, Нь~40 %), роговообманковые клинопироксениты (СРх~60, Нb~35, Рl~5 %), пироксеновые горнблендиты (Hb~65...90; CPx~10...25 %) и горнблендиты (Нь~70...85, СРх~10...15, РІ~5...10 %). Структура пород панидиоморфная, гипидиоморфная и пойкилитовая. По химическому составу оливин соответствует хризолиту (Fa=16...19 %), ортопироксен - бронзиту (En=80...82,5, Fs=15...17, Wo=1...2 %), клинопироксен – диопсиду и железистому диопсиду (En=41...48, Fs=5...10,5, Wo=46...50 %), а также субкальциевому авгиту (En=48...52, Fs=14...16, Wo=27,5...29 %), табл. 1-3, плагиоклаз, по координатам двойниковой оси – лабрадору № 57-61. Габброиды представлены роговообманковыми норитами (Hb~35...50, OPx~5...10, Pl~40...60 %), роговообманковыми габбро-норитами (Hb~35...40, CPx+OPx~5...15, Pl~45...50 %) и роговообманковыми габбро (Hb~30...90, CPx до 10, Pl~10...60 %). Структура пород порфировидная, габбро-офитовая, гипидиоморфная и пойкилитовая. По химическому составу клинопироксен соответствует субкальциевому авгиту (En=48...49, Fs=13...16,5, Wo=28,5...29 %), табл. 3, плагиоклаз, по углу симметричного погасания, – лабрадору № 55–57.

Комплекс	Кулибинский								Нижнедербинский			
Порода	Лерцолит			Верлит				Верлит				
Образец	43-1-1	43-1-2	43-1-3	905-2-1	905-2-2	905-3-2	905-5-1	3/1	7/1	7/2	7/5	
SiO ₂	38,35	38,71	38,70	39,26	39,04	38,81	39,25	39,82	39,95	40,06	38,98	
MgO	42,59	43,29	43,45	44,27	44,98	43,75	43,64	45,43	45,91	45,52	41,73	
MnO	0,22	0,38	0,36	0,30	0,26	0,41	0,36	0,14	0,11	0,12	0,15	
FeO _{tot}	18,02	16,85	17,13	15,73	15,49	16,18	15,85	14,54	13,65	13,95	19,12	
CoO	0,15	0,08	0,14	0,17	0,16	0,13	0,34	-	-	-	-	
NiO	0,11	0,46	0,12	0,12	0,05	0,22	0,25	0,15	0,05	0,12	0,08	
Сумма	99,43	99,78	99,9	99,84	99,98	99,51	99,69	100,08	99,66	99,77	100,06	
Fa, мол. %	19,2	18,7	18,5	16,9	16,2	17,6	17,3	15,24	14,31	14,67	20,44	

Таблица 1. Химический состав оливина в ультрамафитах нижнедербинского и кулибинского комплексов, мас. %

Примечание: здесь и далее анализы минералов из пород нижнедербинского комплекса выполнены в ОИГГиМ СО РАН (г. Новосибирск) на микроанализаторе Camebax-Micro оператором О.С. Хмельниковой [16]; из пород кулибинского комплекса – на электронном сканирующем микроскопе «Tescan Vega II XMU», оборудованном энергодисперсионным спектрометром (с полупроводниковым Si (Li) детектором INCA x-sight) INCA Energy 450 и волнодисперсионным спектрометром INCA Wave 700 в ИЭМ РАН (г. Черноголовка) оператором А.Н. Некрасовым. Fa – содержание фаялитовой молекулы, Fa=[Fe/(Fe+Mg)]×100; «-» – элемент не обнаружен.

Комплекс		K	улибински	Й		Нижнедербинский					
Минерал			Бронзит			Бронзит Гиперстен					
Порода		Лерцолит		Bep	ЛИТ	Вер	лит	Клпир.	Вебст.	Габбро-норит	
Образец	43-2-1	43-2-2	43-5-2	905-1-1	905-1-3	3/1	7/5	3/2	7/6	1/5	6/1
SiO ₂	54,41	56,33	55,37	54,96	55,05	53,14	53,10	53,82	54,54	52,05	52,64
MgO	30,04	31,27	30,00	31,07	30,52	28,66	27,60	29,03	28,09	22,06	23,19
Al ₂ O ₃	2,12	0,60	2,34	2,28	2,06	4,03	3,52	3,99	2,00	2,07	1,61
MnO	0,32	0,51	0,14	0,28	0,18	0,30	0,29	0,35	0,38	0,45	0,41
FeO _{tot}	11,46	10,86	10,54	9,92	10,43	11,46	13,50	12,25	13,50	19,71	19,36
CaO	0,94	0,39	0,95	0,95	1,01	1,22	0,85	0,46	1,27	2,30	1,54
Na ₂ O	0,27	-	0,02	0,08	0,03	0,05	0,02	0,05	0,06	0,07	0,06
Cr ₂ O ₃	0,04	-	0,04	0,19	0,27	0,20	0,32	0,08	0,00	0,00	0,00
NiO	-	0,01	0,34	0,26	0,19	0,02	0,01	0,04	0,02	0,06	0,02
Сумма	99,60	99,97	99,74	99,97	99,73	99,09	99,2	100,07	99,86	98,76	98,84
En, мол. %	80,2	82,6	79,9	82,4	81,1	79,67	77,12	80,15	76,79	63,45	66,00
Fs	17,2	16,1	15,8	14,7	15,6	17,88	21,16	18,97	20,7	31,80	30,87
Wo	1,8	0,8	1,8	1,8	1,9	2,45	1,72	0,89	2,51	4,75	3,13

Таблица 2. Химический состав ортопироксена в породах нижнедербинского и кулибинского комплексов, мас. %

Примечание: Клпир. – клинопироксенит; Вебст. – вебстерит; Еп – содержание энстатитовой молекулы, En=[Mg/(Mg+Fe+Ca)]×100; Fs – содержание ферросиллитовой молекулы, Fs=[Fe/(Mg+Fe+Ca)]×100; Wo – содержание волластонитовой молекулы, Wo=[Ca/(Mg+Fe+Ca)]×100.

Таблица 3. Химический состав клинопироксена в ультрамафитах и габброидах нижнедербинского и кулибинского комплексов, мас. %

Комплекс			Кулиб	инский			Нижнедербинский					
Минерал	Диопсид			Субкальциевый авгит (САв)			Диопсид			САв	Авгит	
	7	8	9	10	11	12	1	2	3	4	5	6
Порода	1	2	3	4	5	6	7	8	9	10	11	12
Образец	43-4-1	905-5-1	44-9k	43-4-3	903-4	901-2-2	7/1	3/2	7/6	3/1	1/5	3/8
SiO ₂	53,12	52,44	52,45	53,14	53,11	51,99	54,36	51,94	51,64	51,52	50,49	51,19
MgO	16,57	17,53	14,95	18,44	18,97	17,73	17,62	15,72	15,83	19,29	13,66	13,46
Al ₂ O ₃	1,30	1,57	1,26	4,66	4,96	7,48	0,83	3,56	4,17	4,61	3,53	3,21
MnO	0,10	0,26	0,13	0,09	0,18	0,20	0,17	0,18	0,22	0,22	0,29	0,27
FeO _{tot}	3,74	3,78	6,64	9,36	8,97	8,40	3,18	4,80	5,79	8,37	9,10	8,98
CaO	23,99	23,26	23,62	12,66	12,01	12,63	23,76	22,20	21,04	14,17	20,52	20,80
Na ₂ O	0,11	0,11	0,37	0,74	1,05	0,94	0,11	0,41	0,32	0,35	0,61	0,64
TiO ₂	0,11	0,13	0,11	0,46	0,22	0,43	0,03	0,24	0,26	0,18	0,68	0,54
Cr ₂ O ₃	0,64	0,44	0,09	0,17	0,10	0,03	0,30	0,24	0,42	0,39	0,11	0,07
NiO	-	0,14	-	-	-	0,06	0,02	0,02	-	0,06	0,01	0,03
Сумма	99,68	99,56	99,63	99,71	99,57	99,9	100,37	99,32	99,68	99,15	99	99,19
En, мол. %	46,1	48,3	41,22	50,6	52,2	48,5	48,28	45,77	46,30	56,47	40,76	40,26
Fs	5,9	5,8	10,34	14,5	13,8	12,9	4,91	7,83	9,48	13,74	15,23	15,06
Wo	48	45,9	48,19	28,4	27,5	29,1	46,81	46,40	44,22	29,79	44,00	44,69

Примечание: ультрамафиты: 1, 4 – лерцолиты, 2, 7, 10 – верлиты, 3 – горнблендит, 5 – пироксеновый горнблендит, 8 – клинопироксенит, 9 – вебстерит; габброиды: 6 – габбро, 11, 12 – габбро-нориты.

Нижнедербинский комплекс представлен двумя основными породными группами – ультрамафитами и габброидами с преобладающей ролью первых. Среди *ультрамафитов* установлены верлиты (Ol~15...70, CPx~20...80, Hb~5 %), вебстериты (OPx~15...25, CPx~75...85, Hb~8...10 %), клинопироксениты (CPx~88...95, OPx~3...5, Hb~7...9 %), роговообманковые клинопироксениты (CPx~70...84, Hb~16...30, Pl~4 %) и горнблендиты (Hb~95...97, CPx~3...5, отмечается Pl). Структура пород преимущественно панидиоморфная, участками – гипидиоморфная и пойкилитовая. По химическому составу оливин соответствует хризолиту (Fa=14,5...20,5 %),

ортопироксен – бронзиту (En=77...80, Fs=18...21, ₩о=1...2,5 %), клинопироксен – диопсиду и железистому диопсиду (En=46...48, Fs=5...9,5, Wo=44...47 %), а также субкальциевому авгиту (En=56,5, Fs=13,5, Wo=30 %), табл. 1-3, плагиоклаз – лабрадору № 57-60. Габброиды представлены лейкократовыми габбро-норитами (CPx~21...25, OPx~5...10, Pl~65...74 %), реже – оливиновыми габбро (Ol~10, CPx~15, Pl~75 %) и метагаббро (CPx~40, Pl~50...60, Be~10 %). Структура пород порфировидная, габбровая, пойкилитовая. По химическому составу ортопироксен соответствует гиперстену (En=63,5...66, Fs=31...32,

Wo=3...5 %), клинопироксен – авгиту (En=40...41, Fs=15, Wo=44...44,5 %), табл. 2, 3, плагиоклаз, по оптическим свойствам (углу симметричного погасания) – лабрадору № 55–57 (крупные порфировидные зерна) и андезину № 37–47 (мелкие зерна).

Роговая обманка по химическому составу как в породах кулибинского, так и в породах нижнедербинского комплексов соответствует эденитовой разновидности, для которой характерны повышенная магнезиальность и щелочность (табл. 4).

Таблица 4.	Химический состав	роговой	обманки в	в порода	ах ни
	жнедербинского и к	улибинск	кого компл	ексов, М	iac. %

Комплекс		Кули	бинский	ĺ	Нижнедербинский			
Порода	Горі	нбл.	Габ	ібро	Верлит	Вебст.	Горнбл.	
Образец	903-9	44-9	901-2-1	901-2-2	7/5	7/6	8/6	
SiO ₂	44,48	42,17	46,89	44,14	42,81	42,84	41,77	
MgO	14,50	15,34	16,15	14,66	15,78	14,75	13,00	
Al ₂ O ₃	10,79	12,66	9,66	11,47	14,05	14,66	15,86	
MnO	0,16	0,28	0,14	0,27	0,16	0,14	0,23	
FeO _{tot}	11,46	9,64	9,77	10,73	7,84	9,03	10,03	
CaO	11,38	11,52	11,61	11,84	11,32	11,52	11,66	
Na ₂ O	2,13	2,52	1,93	2,31	2,51	2,13	2,98	
K ₂ O	0,36	0,41	0,33	0,44	0,42	0,54	0,52	
TiO ₂	1,68	2,29	1,22	1,35	1,43	1,61	1,30	
Cr ₂ O ₃	0,25	0,06	0,26	0,24	0,30	-	0,02	
NiO	0,20	0,24	0,08	-	0,02	0,01	-	
H ₂ O	2,00	2,00	2,00	2,00	2,00	2,00	2,00	
Сумма	99,38	99,13	100,05	99,46	98,63	99,23	99,37	
f, %	30,75	26,06	25,50	29,20	21,79	25,56	30,21	
Ппимоизь		որսհո	— гог	NIGRAUT	иит·f -	- vono		

Примечание: Горнбл. — горнблендит; † — железистость, f=[Fe/(Mg+Fe)]×100.

Рудная минерализация

В ультрамафитах выявлено два основных типа минерализации: магнетит-хромшпинелиевая и сульфидная. Магнетит-хромшпинелиевая минера-

лизация отмечается в виде рассеянной вкрапленности мелких (от 0,05 до 0,15 мм) одиночных зерен хромшпинели и магнетита. Сульфидная минерализация (табл. 5) наблюдается преимущественно в виде каплевидных пирротин-пентландитовых выделений (структуры распада твердого раствора) размером до 0,2 мм, приуроченных к интерстициям силикатных минералов. Реже отмечаются халькопирит (минерал обрастает зерна пирротина либо образует мелкие самостоятельные выделения), пирит (в качестве акцессорных мелких зерен, не обнаруживающих четкой связи с другими сульфидами) и эпигенетические сульфидные минералы: миллерит, аваруит и никелин (в виде редких мелких до 0,05 мм единичных зерен в магнетитовой «сыпи»). Сравнительно недавно в перидотитах кулибинского комплекса среди сульфидных зерен выявлены самостоятельные мельчайшие зерна мончеита (Рt≈34...37, Рd≈4,5...5,5, Те≈58...60 %) (устное сообщение А.С. Мехоношина, 2011 г.). Аналогичная платино-палладиевая минерализация ранее отмечалась в перидотитах и пироксенитах нижнедербинского комплекса [7].

В габброидах рудные минералы по химическому составу объединяются в две группы: железо-титанистую окисную и сульфидную. Железотитанистая окисная минерализация представлена самостоятельными мелкими зернами магнетита, титаномагнетита (Ті до 5,91 %), ильменита, рутила и нигрина; сульфидная минерализация (табл. 5) – пиритом, халькопиритом и в незначительной степени пентландитом. Пирит наряду с халькопиритом образует сливные агрегаты размером до 2 мм. Встречаются обособленные зерна пирита, очевидно, первичного магматического, с размером до 0,06 мм, которые характеризуются идиоморфным обликом и нередко обнаруживают мелкие включения халькопирита и пентланлита.

Таблица 5. Средние составы рудных минералов системы Fe-Ni-Co-Cu-S, мас. %

Ком-кс	Минерал	Порода	N	S	Fe	Со	Ni	Cu	Сумма
КИЙ	Пирротиц	Лерцолит	4	35,61	63,85	0,42	-	-	99,88
	тирротин	Верлит	2	36,18	63,05	0,64	0,27	-	100,14
	Ni- пирротин	Верлит	2	36,37	57,87	2,77	3,15	-	100,16
1HCI		Лерцолит	4	32,02	36,13	2,68	29,29	-	100,12
Иби	Пентландит	Верлит	3	33,18	37,76	3,5	26,3	-	100,74
цý		Габбро	2	35,08	28,81	0,34	35,22	-	99,45
_	Пирит	Габбро	5	53,27	46,30	0,27	0,48	-	100,32
	Халькопирит	Габбро	9	34,68	31,12	0,21	-	33,37	99,38
	Пирротиц	Клинопироксенит	55	36,47	62,95	0,05	0,02	-	99,51
Z	пирротин	Верлит	18	35,05	62,33	0,03	0,04	-	99,47
CKI	Понтланлит	Клинопироксенит	15	33,20	34,65	1,70	30,13	0,03	99,94
ZH	пентландит	Верлит	6	33,02	35,39	1,87	29,79	0,06	100,11
eb(c		Верлит	4	54,04	46,53	-	-	-	100,57
Leg	Пирит	Клинопироксенит	16	53,47	46,64	-	-	-	100,14
× ×		Габбро	21	53,10	46,12	0,25	-	-	99,99
		Клинопироксенит	2	35,23	29,76	0,063	0,02	34,30	99,41
	лалькопирин	Верлит	5	34,83	30,25	0,04	0,01	34,07	99,84

Примечание: анализы рудных минералов из пород нижнедербинского комплекса выполнены на электронном сканирующем микроскопе Hitachi S3400N в НОЦ «Урановая геология» ТПУ (г. Томск) [16]; из пород кулибинского комплекса – на электронном сканирующем микроскопе «Tescan Vega II XMU» в ИЭМ РАН (г. Черноголовка). N – количество проанализированных образцов.

Петрохимические особенности

Для кулибинского комплекса фигуративные точки ультрамафитов на вариационных диаграммах образуют линейное распределение в виде единого эволюционного тренда (рис. 2). При снижении содержаний MgO в породах отмечается более значительное увеличение содержаний SiO₂ и CaO, при этом содержания Al₂O₃ несущественно возрастают. Аналогичный тренд распределения фигуративных точек обнаруживают ультрамафиты нижнедербинского комплекса с образованием последовательного ряда пород: верлиты-вебстериты-клинопироксениты. При этом фигуративные точки составов габброидов кулибинского и нижнедербинского комплексов образуют совместный рой, чаще обособленный, несколько «оторванный» от ультрамафитового тренда (рис. 2), что, вероятно, связано с нарушением последовательной дифференциации магматических расплавов от ультраосновных к основным при формировании массивов этих комплексов.

Геохимические особенности

Ультрамафиты кулибинского комплекса характеризуются практически однотипными графиками распределения редкоземельных элементов (РЗЭ) с хорошо выраженным Еu-минимумом ((Eu/Eu*)_n=0,73...0,84), рис. 3, *а*. Содержание ред-

ких земель в них изменяется от 10 до 15-ти кратных хондритовых норм, при этом прослеживается тенденция в сторону РЗЭ-обогащения пород в ряду лерцолит—верлит—роговообманковый перидотит—вебстерит. Породы комплекса имеют общий пологий отрицательный наклон спектров, что обусловлено постепенным и незначительным уменьшением концентраций РЗЭ от легких к тяжелым $((La/Yb)_n=1,60...2,96)$. По конфигурации они хорошо сопоставляются со спектрами ультрамафитов нижнедербинского комплекса. Однако последние более истощены легкими землями, в частности La и Ce, что придает спектрам слабый положительный наклон $((La/Yb)_n < 0,8)$, рис. 3, *a*.

Сопоставление распределения примесных элементов в ультрамафитах рассматриваемых интрузивных комплексов на многокомпонентной диаграмме, рис. 3, δ , также обнаруживает их большое геохимическое сходство. В обоих комплексах отмечаются U, La-Ce-Sr, Nd, Eu и Gd положительные пики, отражающие обогащенность пород этими элементами по отношению к примитивной мантии, Nb-Ta (Nb), P, Zr и Ti отрицательные пики, значения которых близки или несколько выше значений примитивной мантии, за исключением Nb пика для нижнедербинского комплекса, значения которого ниже значения примитивной мантии. Отличие заключается в отсутствии в ультрамафитах

Рис. 2. Бинарные диаграммы для пород исследуемых комплексов: 1, 2 – кулибинский комплекс: 1 – перидотиты, 2 – габброиды; 3, 4 – нижнедербинский комплекс: 3 – перидотиты, 4 – габброиды; 5 – тренды изменения составов ультрамафитов

Рис. 3. Диаграммы распределения элементов лантаноидной группы (а), нормированных по углистому хондриту С1 [17] и спайдер-диаграммы для наиболее распространенных примесных элементов (б), нормированных по примитивной мантии [18] в породах кулибинского (1 – верлит, 2 – лерцолит, 3 – вебстерит, 4 – роговообманковый перидотит, 5 – роговообманковый габбро-норит, 6 – роговообманковое габбро) и нижнедербинского (Ndu – перидотиты, Ndg – габброиды) комплексов

нижнедербинского комплекса Ва и К положительных пиков. Ва в последних образует отрицательные пики со значениями несколько беднее по отношению к примитивной мантии. При этом ультрамафиты кулибинского комплекса характеризуются высокими содержаниями Ва, Th, U и K, которые доходят до 10-ти кратных значений примитивной мантии.

Габброиды кулибинского комплекса характеризуются схожими графиками распределения РЗЭ, которые, в свою очередь, подобны по конфигурации таковым для ультрамафитов (рис. 3, а). Они обнаруживают близкие концентрации РЗЭ с поздними ультрамафитовыми дифференциатами – роговообманковыми перидотитами и вебстеритами, однако отличаются от них более слабым Еи-минимумом ((Eu/Eu*),=0,81...0,97), который на отдельных трендах практически не наблюдается. Содержание редких земель в данных породах изменяется от 10 до 20-ти кратных хондритовых норм. Их спектры выделяются общим пологим отрицательным наклонением ((La/Yb)_n=2,82...3,18) и по конфигурации хорошо сопоставляются со спектрами габброидов нижнедербинского комплекса. Однако последние характеризуются несколько более низкими концентрациями РЗЭ и присутствием на отдельных трендах Еи-максимума ((Eu/Eu*),=1,31), рис. 3, а.

Сопоставление распределения примесных элементов в габброидах кулибинского и нижнедербинского комплексов (рис. 3, δ), также обнаруживает их существенную геохимическую схожесть. В обоих комплексах отмечаются Rb, K (U-K), La-Ce-Sr, Nd, Eu и Gd положительные пики и Nb-Ta, P, Zr и Ti отрицательные пики. При этом габброиды нижнедербинского комплекса характеризуются более высокими содержаниями Sr, превышающими в 20 раз его содержание в примитивной мантии.

Обсуждение результатов и выводы

Проведенные исследования позволяют судить о высоком сходстве кулибинского и нижнедербинского перидотит-пироксенит-габбровых комплексов северо-западной части Восточного Саяна. Автор допускает, что последующие детальные исследования этих объектов позволят впоследствии при совершенствовании региональных схем корреляции объединить их в единый мафит-ультрамафитовый комплекс, интрузивные тела которого формировались в условиях надсубдукционной обстановки из исходного известково-щелочного расплава нормальной титанистости и глиноземистости при пониженной магнезиальности. В пользу данного утверждения свидетельствуют перенасыщенность «свежих» пород комплексов SiO_2 , частое присутствие в составе пород ортопироксена и роговой обманки, отсутствие тренда обогащения железом, заметное по сравнению с толеитовой серией содержание в составе РЗЭ легких элементов Се-группы и более высокая сумма РЗЭ, а также высокое содержание H₂O – до 3 мас. % [19].

Оба комплекса содержат две петрохимически контрастные серии пород: первая включает перидотиты и пироксениты, а вторая — габброиды. Перидотиты обнаруживают в своем составе сульфидную минерализацию преимущественно пирротинпентландитовой специализации, которая по своему химизму свидетельствует о высокой железистости рудно-магматической системы и обнаруживает сходство с вкрапленной сульфидной минерализацией Кингашского массива, расположенного в пределах Канской глыбы и включающего одноименное Pt-Cu-Ni месторождение. В пользу этого также свидетельствует обнаруженная ранее среди сульфидов в перидотитах платино-палладиевая минерализация.

Состав сульфидной минерализации перидотитов сравниваемых комплексов свидетельствует о ее кристаллизации из высокотемпературного сульфидного расплава в условиях быстрого охлаждения и без значительного его фракционирования в процессе высокой скорости транспортировки известково-щелочной базальтовой магмы из мантийного очага в верхние этажи литосферы. Согласно гравитационной модели, наибольшее накопление сульфидов происходит в результате опускания капель сульфидной жидкости из головы магматической колонны в придонные части магматической

СПИСОК ЛИТЕРАТУРЫ

- Агафонов Л.В., Лхамсурэн Ж., Кужугет К.С., Ойдуп Ч.К. Платиноносность ультрамафит-мафитов Монголии и Тувы. – Улаанбаатар: Монгольский государственный университет науки и технологии, 2005. – 224 с.
- Сердюк С.С., Кириленко В.А., Ломаева Г.Р., Бабушкин В.Е., Тарасов А.В., Зверев А.И. Геология и перспективы сульфидного Pt-Cu-Ni оруденения Восточной части Алтае-Саянской складчатой области. – Красноярск: Изд-во «Город», 2010. – 184 с.
- Корнев Т.Я., Еханин А.Г., Князев В.Н., Шарифулин С.К. Зеленокаменные пояса юго-западного обрамления Сибирской платформы и их металлогения. – Красноярск: КНИИГиМС, 2004. – 176 с.
- Конников Э.Г., Арискин А.А., Бармина Г.С., Кислов Е.В. Петрология мафит-ультрамафитовых расслоенных интрузий докембрийских платформ: состояние вопроса и новые подходы // Геология и геофизика. – 2003. – Т. 44. – № 12. – С. 1365–1372.
- Налдретт А.Дж. Магматические сульфидные месторождения медно-никелевых и платинометальных руд. – СПб.: СпбГУ, 2003. – 487 с.
- Поляков Г.В., Изох А.Э., Кривенко А.П. Платиноносные ультрамафит-мафитовые формации подвижных поясов Центральной и Юго-Восточной Азии // Геология и геофизика. – 2006. – Т. 47. – № 12. – С. 1227–1241.
- Платиноносность ультрабазит-базитовых комплексов Юга Сибири / под ред. В.И. Богнибова, А.П. Кривенко, А.Э. Изоха и др. – Новосибирск: Изд-во СО РАН, филиал «ГЕО», 1995. – 151 с.
- Юричев А.Н., Чернышов А.И. Рудная минерализация идарского дунит-гарцбургитового комплекса (Северо-Запад Восточного Саяна) // Известия Томского политехнического университета. – 2012. – Т. 321. – № 1. – С. 69–75.
- Lehmann J., Arndt N., Windley B., Zhou M.-F., Wang C.Y., Harris C. Field Relationships and Geochemical Constraints on the Emplacement of the Jinchuan Intrusion and its Ni-Cu-PGE Sulfide Deposit, Gansu, China // Econ. Geol. – 2007. – V. 102. – P. 75–94.

камеры и их сегрегации в структурных ловушках в результате гравитационной дифференциации [5]. Такая модель указывает на потенциальную рудоносность ультрамафитов, перекрытых габброидами. При этом массивы кулибинского комплекса по отношению к нижнедербинским, очевидно, характеризуются большей сохранностью предполагаемого Pt-Cu-Ni оруденения, что обусловлено меньшей степенью их эрродированности.

- Еханин А.Г., Филиппов Г.В., Аникеева А.Н. Особенности геологического строения и рудоносности Бурлакского ультрабазит-базитового массива (Восточный Саян) // Известия вузов. Сер. Геология и разведка. – 1991. – Т. 9. – № 1. – С. 72–78.
- Волохов И.В., Иванов В.М. Нижне-Дербинский габбро-пироксенит-перидотитовый интрузивный комплекс Восточного Саяна // Геология и геофизика. – 1964. – № 5. – С. 52–67.
- Юричев А.Н., Чернышов А.И. Рудная минерализация перидотитов и габброидов кулибинского комплекса (северо-запад Восточного Саяна) // Известия ТПУ. – 2011. – Т. 319. – № 1. – С. 64–70.
- Чернышов А.И., Юричев А.Н. Петрология и потенциальная рудоносность мафит-ультрамафитовых массивов талажинского и кулибинского комплексов Восточного Саяна. – Томск: ЦНТИ, 2012. – 132 с.
- Изох А.Э., Поляков Г.В., Гибшер А.С. и др. Высокоглиноземистые расслоенные габброиды Центрально-Азиатского складчатого пояса: геохимические особенности, Sm-Nd изотопный возраст и геодинамические условия формирования // Геология и геофизика. – 1998. – Т. 39. – № 11. – С. 1565–1577.
- Черкасова Т.Ю., Мазуров А.К., Чернышов А.И. Потенциальная рудоносность расслоенных мафит-ультрамафитовых массивов Нижнедербинского комплекса (СЗ Восточного Саяна) // Известия Известия Томского политехнического университета. – 2010. – Т. 317. – № 1. – С. 20–27.
- 16. Черкасова Т.Ю. Геолого-генетическая модель образования и потенциальная рудоносность мафит-ультрамафитовых массивов нижнедербинского комплекса (Восточный Саян): автореф. дис. ... канд. геол.-минерал. наук. – Томск, 2010. – 21 с.
- Anders E., Grevesse N. Abundances of the elements: meteoritic and solar // Geochim. Cosmochim. Acta. – 1989. – V. 53. – P. 197–214.
- Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes / eds. A.D. Saunders, M.J. Norry / Magmatism in the oceanic basins // Geol. Soc. Spec. Publ. – 1989. – № 42. – P. 313–345.
- Богатиков О.А., Коваленко В.И., Шарков Е.В. Магматизм, тектоника, геодинамика Земли. – М.: Наука, 2010. – 606 с.

Поступила 31.10.2012 г.