УДК 631.811.944:631.445.12

РАСПРЕДЕЛЕНИЕ КАЛЬЦИЯ И ЖЕЛЕЗА В ВЕРТИКАЛЬНОМ ПРОФИЛЕ ТОРФЯНЫХ ЗАЛЕЖЕЙ ТАЁЖНОЙ ЗОНЫ ЗАПАДНОЙ СИБИРИ

В.С. Архипов, В.К. Бернатонис

Томский политехнический университет E-mail: vsa@tpu.ru

Изучено совместное распределение кальция и железа по глубине торфяных залежей в болотах Западной Сибири. С этой целью отобрано 1410 проб торфа на 17 болотах в таёжной зоне Западной Сибири. Методом нейтронно-активационного анализа определено содержание кальция и железа в отобранных пробах. Построены кривые послойного распределения элементов. Установлено, что на болотах водораздельного залегания накопление кальция и железа происходило синхронно. В низинных болотах речных долин бассейна Оби аккумуляция кальция и железа протекала раздельно, что нашло своё отражение в формах послойных кривых.

Ключевые слова:

Торф, залежь, кальций, железо, распределение.

Key words:

Peat, peat deposit, calcium, iron, distribution.

Кальций и железо относятся к основным золообразующим элементам торфов, во многом определяющим их свойства и направления использования. Поступление этих элементов в торфяную залежь происходит различными путями в зависимости от водно-минерального режима торфяника. В таёжной зоне Западной Сибири торфообразование протекало с высокой интенсивностью, что отразилась и на особенностях распределения золообразующих элементов в торфяных залежах [1, 2]. По мнению специалистов, накопление зольных элементов в торфах обеспечивается за счет следующих источников [3, 4]:

- 1. Минеральная часть растений торфообразователей, включая биогенные минералы (первичная или конституционная зола);
- 2. Привнесённые в торфяную залежь минеральные соединения с потоками водной и воздушной миграции (вторичная зола). В составе вторичной золы обычно различают кластогенную (механически задержанные частицы), сорбционную золу, а также золу различных органоминеральных соединений, образовавшихся при взаимодействии торфа с болотными водами.

Различная биофильность Са и Fe, а также специфичные формы миграции этих элементов в болотных ландшафтах наложили свой отпечаток на процессы их накопления в торфяных залежах [1, 2]. В связи с этим в данной работе изучено совместное распределение Са и Fe в торфяных залежах таёжной зоны Западной Сибири.

Методика исследований

В ходе полевых работ обследовано 17 болот таёжной зоны (южная и средняя тайга), расположенных на территории Томской области. Доминирующие в южной тайге верховые сфагновые болота сложены разнотипными залежами. В Обь-Иртышском междуречье такие болота занимают водоразделы рек, образуя крупнейшую в мире Васюганскую болотную систему (рис. 1). Обследованные участки этой системы (№ 5, 22 и Югинский) входят в состав Большого Васюганского болота (БВБ) общей площадью 3,582 млн га [4]. Состав и строение изученных участков характерны для северных отрогов БВБ, занимающих вторичные водоразделы рек бассейна Оби: Шегарки, Иксы, Бакчара, Андармы и других рек, впадающих в левобережные притоки Оби (Чая, Парабель, Васюган). Ряд изученных верховых болот южной тайги (Семиозерье, Колпашевское, Полудёновское) расположены на террасах и склонах водоразделов правых притоков Оби (Чулым, Кеть). Верховые болота средней тайги представлены двумя крупными болотными массивами — Айгарово и Саим, расположенными на вторых террасах Оби. Кроме того, в труднодоступных районах средней тайги отобраны послойные пробы в четырех единичных пунктах на Сосново-Махнинском участке Васюганской болотной системы и на правобережных террасах в низовьях Тыма.

Крупные низинные болота, расположенные в южнотаёжной зоне, представлены торфяниками Суховское, Гусевское (левобережье Оби) и Клюквенное, Березовая Грива (правобережье Оби). Особенности минерализованных залежей изучены на болоте Аркадьево, расположенном на границе таежной и лесостепной зон.

Пробы торфа отбирали на типичных для каждого болота участках торфяной залежи в 10—25 пунктах, выбранных по материалам геологической разведки и в основном совпадающих с пунктами разведочной сети. Пробы отбирали ручным торфяным буром на полную глубину залежи послойно с интервалом 0,5 м. Всего было отобрано 1410 проб торфа с 17 болот и участков крупных болотных систем (рис. 1). Образцы торфа проанализированы на содержание золы, влаги, Са и Fe. Зольность и влажность определяли стандартным методом (ГОСТ 11306-83, ГОСТ 11305-83). Валовое содержание Са и Fe определяли в числе 20 других эл-

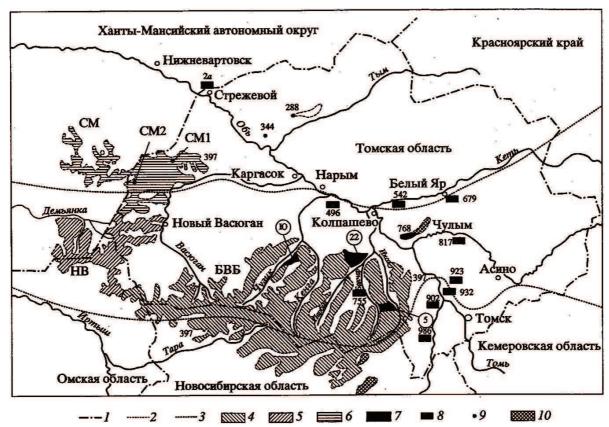
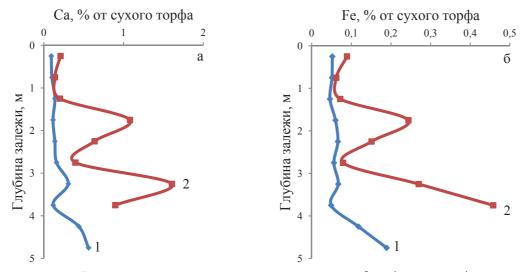
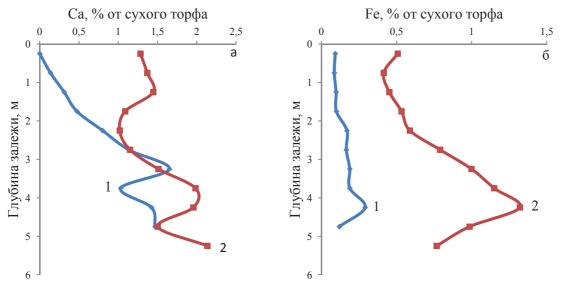


Рис. 1. Схема расположения изученных торфяных болот. Верховые сфагновые болота водоразделов, склонов и высоких террас (номера и названия болот приняты по данным разведки на 1971 г.): 2а — Саим; 344 — Жарково (отдельный пункт отбора); 288 —Пульсецкое (отдельный пункт отбора); 542 — Колпашевское; 679 — Полуденовское (восточный участок); 768 — Семиозерье (юго-западный участок); 923 — Чистое (юго-западный участок); 496 — Айгарово; 397 — Васюганская болотная система и ее главные участки: Большое Васюганское болото (БВБ), Ново-Васюганское (НВ); Сосново-Махнинское (СМ). Участки опробования торфяной залежи на БВБ: № 5 при с. Красный Бакчар (5), № 22 (22), Югинское (Ю); СМ1, СМ2 — отдельные пункты опробования на Сосново-Махнинском участке Васюганской болотной системы. Низинные болота в долинах рек: 755 — Суховское (южный участок); 902 — Гусевское (южный участок); 986 — Аркадьево: 817 — Березовая Грива; 932 — Клюквенное.

Условные обозначения: 1 — границы административных областей; 2 — границы Васюганской болотной системы; 3 — границы южнотаежной болотной зоны по Лисс [5]. Главные участки Васюганской болотной системы по данным «Гипроторфразведки» 1964 г.: 4 — Большое Васюганское (БВБ); 5 — Ново-Васюганское (НВ); 6 — Сосново-Махнинское (СМ); 7 — участки отбора проб торфа на БВБ и других болотах; 8 — болото и его номер; 9 — отдельный пункт опробования торфяной залежи; 10 — крупный болотный массив


ементов методом нейтронно-активационного анализа (НАА). При этом использован наиболее экспрессный, широко распространённый относительный вариант инструментального НАА, то есть одновременное облучение потоком нейтронов анализируемого образца и образца сравнения (эталона) с известным составом. Облучение образцов и измерение наведённой γ -активности проводили на аппаратуре Института ядерной физики (НИИЯФ) при Томском политехническом университете [1].

Обсуждение результатов


По результатам анализов проб торфа построены кривые послойного распределения Са и Fe по всем опробованным пунктам. При сравнении полученных кривых выявлены различные сочетания совместного распределения Са и Fe в торфяных залежах. Наблюдается как сходство в накоплении элементов, так и определенный антагонизм. На рис. 2–5

представлены наиболее распространённые варианты послойного распределения Са и Fe. Для удобства сравнения кривые послойного распределения Са и Fe совмещены: в левой половине рисунка приведены кривые распределения Са, а в правой — Fe для одинаковых пунктов опробования торфяной залежи.

В верховых сфагновых болотах водоразделов распространено стабильное содержание Са и Fe по глубине торфяной залежи (рис. 2, кривые 1а, 1б). Такое распределение характерно для фускум-залежи однородного строения и встречается обычно на центральных участках водораздельных болот южной и средней тайги. Содержание Са и Fe в таких залежах обычно не превышает 0,2 %, а весовое соотношение Са/Fe составляет в среднем 2—3. Такое соотношение Са/Fe свойственно торфяным залежам БВБ (участок 5, 22) и другим крупным болотным системам (Айгарово, Семиозёрье).

Рис. 2. Послойное распределение Ca и Fe в залежи верховых сфагновых болот (центр массива): 1 — фускум-залежь (Васюганское, уч. 5 вершина массива); 2 — фускум-залежь (Васюганское, уч. 5 склоны массива)

Рис. 3. Послойное распределение Са и Fe в залежи верховых сфагновых болот (периферия): 1 — смешанная топяная (Васюганское, уч. 22); 2 — низинная лесо-топяная (Васюганское, уч. 22)

Однородные фускум-залежи формировались в условиях преимущественно атмосферного питания и образовывали наиболее мощные участки массивов, приуроченные к древним генетическим центрам торфообразования. В сложной системе сопряженных болотных геохимических ландшафтов такие участки играют роль автономного звена, где формируются ультрапресные кислые воды с повышенным содержанием органического вещества [6]. В южной тайге они зачастую образуют центральные участки залежей на северных отрогах БВБ [7] и на водораздельных равнинах Кеть-Тымского [8] и Кеть-Чулымского междуречья. В средней тайге они встречаются в составе крупных болотных систем на водоразделах рек Вах-Ватинский Еган [9] и других правых притоков Оби. Однородность строения таких залежей и их автономность от внешних условий обусловлена, по мнению О.Л. Лисс [10], их огромной массой, накопленной уже в среднем голоцене.

Основная часть площади верховых сфагновых болот водоразделов и высоких террас занята залежью неоднородного строения, в профиле которой чередуются генетические слои торфа. Особенно широко распространены такие залежи в подзоне южной тайги. Послойное распределение Са и Fe по глубине таких залежей представлено на рис. 2 (кривая 2а, 2б). Как видно, содержание Са и Fe в таких залежах повышено по сравнению с предыдущим вариантом (рис. 2, кривые 1а, 16) и составляет в среднем 0,8...1,0 % для Са и 0,15...0,3 % для Fe.

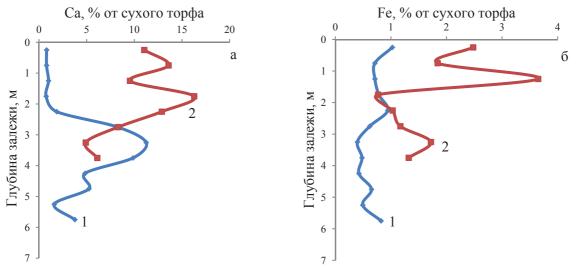
Содержание Са и Fe по глубине изменяется синхронно и выражается кривой с максимумами (рис. 2, кривые 2а, 2б). Анализ строения таких залежей показал, что чередование максимумов содержания Са и Fe коррелирует со сменой генетических слоёв торфа. В частности, рассматриваемая фускум-залежь имеет выраженное двухслойное строение: придонные слои переходного (сфагнового и

осокового) торфа сменяются слоями фускум-торфа на глубине 3,0...3,5 м. Кроме того, на поздней стадии развития залежи в слоях фускум-торфа на глубине 1,5...2,0 м резко возрастает содержание sph.fuscum от 50 до 90 %.

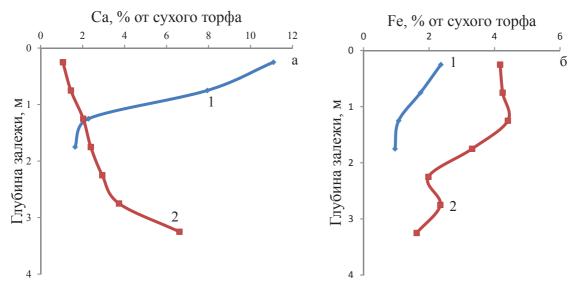
Залежи такого строения занимают понижения и протяженные склоны крупнейших водораздельных массивов на северо-восточных отрогах БВБ. В системе сопряженных геохимических ландшафтов такие участки играют подчинённую роль и находятся под постоянным влиянием водных потоков, стекающих с центральных водораздельных участков торфяного массива. Тем не менее, определяющую роль в питании болотного массива играют атмосферные осадки. Это подтверждается сходством соотношения Ca/Fe=2-4, в торфах и современной растительности верховых болот [4].

Значительную часть площади водораздельных болот составляют обширные окраины, занятые переходными, низинными и смешанными залежами. Послойное распределение Са и Fe таких залежей характеризуется неравномерным ростом содержания элементов с глубиной особенно в средних и придонных слоях (рис. 3). Это связано с особенностями водно-минерального режима окраины торфяного массива. Поскольку периферийные участки находятся в зоне сброса болотных вод, стекающих с повышенных участков массива, они являются подчинёнными звеньями в системе сопряженных геохимических ландшафтов болотного массива (транзитные топи, зоны формирования болотных водотоков). Минерализация таких залежей несколько повышена по сравнению с центром массива за счет постоянной подпитки водами выщелачивания подстилающих пород, расположенных выше по склону водораздела. Содержание Са и Fe в глубоких слоях залежи доходит соответственно до 2 и 1,4 %. Соотношение Са и Fe в торфах краевых участков болотных массивов колеблется в более широком интервале (1,5–6), чем на участках с преобладанием атмосферного питания. В строении периферийных залежей и соответственно в накоплении Са и Fe наиболее четко отражаются изменения климатических фаз голоцена [10].

В южной тайге наряду с водораздельными болотами распространены болота речных долин, занимающие террасы и поймы рек. Послойное распределение Са и Fe в торфяных залежах речных террас южной тайги представлено на рис. 4, 5. Распределение Са и Fe в таких залежах существенно отличается от распределения в залежах водоразделов, как по уровню накопления элементов, так и по их послойному распределению. Специфика низинных болот террасного залегания определяется их положением в системе сопряженных геохимических ландшафтов. Болота террасного залегания занимают низшие уровни рельефа и характеризуются минимальной степенью геохимической автономности. В заболоченных ландшафтах южной тайги они выступают как геохимические барьеры на путях миграции химических элементов от водоразделов до речной сети. Вследствие этого в структуре торфяных болот речных долин преобладают низинные торфа с повышенной зольностью: осоковые, осоково-гипновые, древесно-осоковые и древесные. Эти виды торфа составляют основной объем залежи в низинных болотах Суховское, Гусевское, Клюквенное.


Среднее содержание Са (1,5...3,0%) и Fe (0,9...1,8%) в торфяных залежах низинных болот почти на порядок выше, чем в верховых сфагновых болотах [1, 2]. Сложный комплекс геолого-геохимических и гидрогеологических условий обусловливает более разнообразный режим питания низинных болот по сравнению с верховыми, что отразилось и на послойном распределении Са и Fe.

Характерной особенностью послойного распределения Са и Fe в торфяных залежах низинных болот является отсутствие синхронности в накоплении этих элементов. Кривые распределения Са и Fe в одном профиле существенно различаются по форме. В низинных залежах Обь-Иртышского междуречья распространено обогащение кальцием средних слоёв залежи на глубине 2,5...4 м [2], что отражается в виде пика на кривой распределения Са (рис. 4, кривая 1а).


Соответствующий пик на кривой распределения Fe (рис. 4, кривая 1б) слабо выражен и смещен ближе к поверхности залежи. В минерализованной залежи низинного осоково-гипнового болота Аркадьево качественно разный характер накопления Са и Fe выражен особенно наглядно (рис. 4, кривые 2а, 2б). Содержание Са и Fe по глубине залежи изменяется в прямо противоположном направлении (противофазе). Еще один вариант антагонизма в распределении Са и Fe представлен на рис. 5 (кривые 2а, 2б). Такой характер распределения обнаружен в топяно-лесных залежах болота Гусевское. Гораздо реже в низинных болотах встречается синхронное распределение Са и Fe по глубине залежей. В частности, монотонное снижение содержания Са и Fe от поверхности к подошве залежи отмечается на мелкозалежных участках болота Аркадьево (рис. 5, кривые 1а, 1б).

Соотношение Ca/Fe в низинных залежах колеблется в более широком интервале, чем в верховых. Особенно велик размах колебаний этого показателя (R=0,25...25) в залежах с минерализованными слоями торфа (рис. 4). При этом пониженные значения R свойственны поверхностным слоям низинных залежей, а высокие — средним и глубоким. Такая закономерность согласуется с известной локализацией карбонатных и железистых слоёв [2, 11, 12] в низинных болотах южной тайги.

Следует отметить, что карбонатная и железистая минерализация торфяной залежи болота Аркадьево свойственна и другим низинным болотам. Нередко она встречается в небольших (менее 1000 га) долинных болотах южной тайги со средней зольностью торфа выше 25 %. Особенно распространены минерализованные болота на Обь-Иртышском междуречье. Наряду с болотом Аркадьево

Рис. 4. Послойное распределение Ca и Fe в залежах с нормальной и повышенной зольностью (низинные болота речных долин): 1 – низинная осоково-гипновая (Суховское); 2 – низинная осоковая (Аркадьево)

Рис. 5. Послойное распределение Са и Fe в минерализованных залежах (низинные болота речных долин): 1 – низинная осоково-гипновая (Аркадьево); 2 – низинная топяно-лесная (Гусевское)

(зольность A=26,7 %) к ним относятся [13] Карбышевское (A=31,5 %), Усть-Кандинское (A=27,5 %), Чилинское (A=32,4 %), Колмахтон (A=45,2 %). Перечисленные болота имеют природоохранное значение, как геохимические барьеры на путях водной миграции в речную сеть Обского бассейна. Наиболее крупным представителем подобных болот является болотный массив Обское (1,2), протянувшийся в левобережной пойме Оби на расстояние 100 км от с. Кожевниково до устья р. Шегарки.

Заключение

Таким образом, по результатам обследования 17 болотных массивов (200 скважин) торфяные залежи таёжной зоны Западной Сибири можно разделить на две крупные группы с качественно разным послойным распределением Са и Fe.

В первую группу входят залежи со сходным (синхронным) накоплением Са и Fe по глубине за-

лежи (рис. 2, 3). Таким распределением характеризуются крупнейшие олиготрофные болотные массивы преимущественно водораздельного залегания: северо-восточные отроги БВБ, болотные массивы Айгарово, Семиозёрье, Полудёновское, Колпашевское (рис. 1). Выявленное сходство в накоплении элементов обусловлено преимущественно атмосферным питанием болот. Благодаря своему автономному положению в системе сопряжённых геохимических ландшафтов (автоморфных и гидроморфных) эта группа болот оказывает наибольшее влияние на формирование почвенно-грунтовых вод таёжной зоны Западной Сибири [14].

Во вторую группу включены залежи с выраженными отличиями в накоплении Са и Fe по глубине залежи. Кривые послойного распределения Са и Fe во второй группе залежей существенно различаются по своей форме (рис. 4, 5), что свидетельствует о разных источниках поступления элементов в торф-

яную залежь. Такое распределение Са и Fe характерно для низинных болот долин рек с нормальнозольными и минерализованными залежами (осоково-гипновые, древесно-осоковые, топяно-лесные). Болота такого строения (Суховское, Гусевское, Клюквенное, Аркадьево) широко распространены в южной тайге, занимая, как правило, речные террасы и поймы рек. Качественно разный характер накопления Са и Fe в залежах такого строения обусловлен сложным режимом питания с преобладанием поверхностно-сточных и грунтовых вод. Занимая подчинённое положение в системе сопряженных геохимических ландшафтов, эти болота играют роль сложных комплексных геохимических барьеров и имеют определённое водоохранное значение.

СПИСОК ЛИТЕРАТУРЫ

- Архипов В.С., Бернатонис В.К., Резчиков В.И. Распределение соединений железа в торфяных залежах Центральной части Западной Сибири // Почвоведение. – 1994. – № 9. – С. 37–42.
- Архипов В.С., Бернатонис В.К. Распределение кальция в торфяных залежах Центральной части Западной Сибири // Почвоведение. 2006. № 3. С. 293–302.
- 3. Лиштван И.И., Базин Е.Т., Гамаюнов Н.И., Терентьев А.А. Физика и химия торфа. М.: Недра, 1989. 304 с.
- Бернатонис В.К., Архипов В.С., Здвижков М.А. и др. Геохимия растений и торфов Большого Васюганского болота // Большое Васюганское болото. Современное состояние и процессы развития / под ред. М.В. Кабанова. – Томск: Изд-во ИОА СО-РАН, 2002. – С. 204–215.
- Лисс О.Л., Абрамова Л.И., Аветов Н.А. и др. Болотные системы Западной Сибири и их природоохранное значение.

 Тула: Гриф и К°, 2001.

 584 с.
- Шварцев С.Л., Рассказов Н.М., Сидоренко Т.Н., Здвижков М.А. Геохимия природных вод района Большого Васюганского болота // Большое Васюганское болото. Современное состояние и процессы развития / под ред. М.В. Кабанова. — Томск: Изд-во ИОА СО РАН, 2002. — С. 139—149.
- Лапшина Е.Д., Мульдияров Е.Я. Основные этапы развития Большого Васюганского болота // Большое Васюганское болото. Современное состояние и процессы развития / под ред. М.В. Кабанова. – Томск: Изд-во ИОА СО РАН, 2002. – С. 36–44.

- 8. Предтеченский А.В. Основные особенности торфяных месторождений юго-западной части Кеть-Тымского междуречья // Исследование торфа и торфяных месторождений / под ред. В.Д. Маркова. М.: Торфгеология, 1972. С. 35—55.
- 9. Научные предпосылки освоения болот Западной Сибири / под ред. М.И. Нейштадта. М.: Наука, 1977. 227 с.
- Лисс О.Л., Березина Н.А. О взаимодействии болот и окружающей среды (на примере болот центральной части Западно-Сибирской равнины) // Значение болот в биосфере. – М.: Наука, 1980. – С. 95–112
- 11. Елисеева В.М. О путях сельскохозяйственного освоения низинных болот таёжной зоны Томской области. Томск: Изд-во ТГУ, 1963. 98 с.
- Бахнов В.К. Биогеохимические аспекты болотообразовательного процесса. Новосибирск: Наука СО АН СССР, 1986. 192 с.
- Отчёт по теме 1/414 «Обобщение материалов и прогнозная оценка торфяных ресурсов в перспективных районах интенсивного хозяйственного освоения Западной Сибири». Т. 2. Кн.3. Томский район / Мингео РСФСР. ПГО «ТОРФГЕОЛОГИЯ». М.: 1983. 64 с.
- Орлов Д.С., Лыткин И.И. Сорбционная способность торфянистых почв и их роль в формировании состава почвенно-грунтовых вод // Водные ресурсы. 1983. № 1. С. 81–83.

Поступила 14.11.2012 г.