машину САМ L 252 фирмы КЕКО. После отливки шликер в машине проходит 3 зоны: зона интенсивного испарения легких фракций органической части шликера, зона сушки потоком теплоносителя (горячего воздуха), зона вентиляторной сушки.

Результаты. Определили изменение состава шликера в зависимости от времени вакуумирования, методом измерения потери массы при 110 °С и 500 °С в сушильном шкафу. Первая температура соответствует потери растворителя, вторая - окислению органической составляющей. Количество твердого определяется вычитанием из 100. Данные изменения состава при вакуумировнии шликера представлены на диаграмме рис. 1.

На рисунке 2 представлена зависимость вязкости шликера от времени вакуумирования. Из графика видно, что все соотношения (составы) можно отнести к неньютоновским псевдопластичным жидкостям.

СВОЙСТВА ЦЕМЕНТА С ГИДРОАЛЮМИНАТНОЙ ДОБАВКОЙ

Н.В. Бранькова

Научный руководитель – д.т.н., профессор Ю.Р. Кривобородов

Российский химико-технологический университет имени Д.И. Менделеева 125480, Россия, г. Москва, ул. Героев Панфиловцев 20, minnie_eee@mail.ru

В строительстве часто возникает необходимость в интенсификации схватывания и твердения цементного теста в бетонных или растворных смесях. Добавки относятся к одному из самых универсальных, доступных способов регулирования этих процессов, позволяющих в ряде случаев повысить активность вяжущих, сократить их расход, сроки изготовления изделий, увеличить оборачиваемость форм и опалубок [1, 2]. В качестве таких интенсификаторов твердения ряд исследователей предлагают использовать различные добавки кристаллогидратов, являющимися аналогами продуктов твердения цементного камня [3, 4].

В связи с этим представляет научный интерес изучение действия добавок гидроалюминатов кальция (ГА) совместно с суперпластификаторами на процессы твердения портландцемента.

Таблица 1. Водопотребность (нормальная густота, %) исследуемых составов вяжущих

Состав вяжущего							
ПЦ	ПЦ+С-3	ПЦ+ГА	ПЦ+ГА+С-3				
28.25	26.0	29.25	25.5				

Таблица 2. Сроки схватывания цементного теста с добавками гидроалюминатов кальция и суперпластификатора

Сроки схваты-	Состав вяжущего				
вания, мин.	ПЦ	ПЦ+С-3	ПЦ+ГА	ПЦ+ГА+С-3	
Начало	35	30	20	15	
Конец	120	70	60	45	

Таблица 3. Прочностные свойства портландцемента с добавкой гидроалюминатов кальция и суперпластифи-

Прочность при сжатии, МПа

	Состав цемента	Сроки твердения, сут.					
		1	3	7	28		
	ПЦ	10,3	36,7	56,6	63,4		
	ПЦ+С-3	11,6	42,2	59,2	66,7		
	ПЦ+ГА	9,4	41,4	61,4	67,4		
	ПЦ+ГА+С-3	13,8	49,7	65,5	69,1		

При выполнении работы в качестве исходных материалов использовали портландцемент М500 Д0 и алюминатный цемент состава (мас. %): $C_{12}A_7 - 90$, $C_3A - 5$, CA - 5, производства ОАО «Подольск-Цемент». Мономинеральный алюминатный цемент обрабатывали в водной среде в роторно-пульсационном аппарате до полной гидратации алюминатов кальция. Полученную добавку вводили в состав вяжущего в количестве 1-10%. Изучение основных строительно-технических свойств цемента показало, что оптимальное количество вводимой добавки составляет 3%. При этой концентрации еще сохраняются приемлемые сроки схватывания цементного теста, а прочность камня увеличивается.

Следующим этапом работы было исследование совместного действия ГА и суперпластификатора С-3 на свойства цемента.

Список литературы

- 1. Гусев Б.В., Ин Иен-лян Самуэл, Кузнецова Т.В. Цементы и бетоны тенденции развития.— М.: Научный мир, 2012.— 134с.
- 2. Кузнецова Т.В., Самченко С.В. Микроскопия материалов цементного производства.— М.: МИКХиС, 2007.— 304с.
- 3. Кривобородов Ю.Р., Еленова А.А. Примене-

Установлено, что составы с добавкой гидроалюминатов кальция и суперпластификатора имеют водопотребность, близкую к исходному портландцементу (табл. 1), сроки схватывания теста закономерно сокращаются (табл. 2), причем интервал между началом и концом схватывания существенно меньше, чем у портландцемента.

Прочностные свойства цементного камня с комплексной добавкой выше, чем у бездобавочного вяжущего и у составов с вводом добавок по отдельности (табл. 3).

Выводы. Совместное использование добавок гидроалюминатов кальция и суперпластификатора в составе портландцемента обеспечивает высокие прочностные свойства цементного камня, причем как в раннем возрасте, так и при длительном твердении.

- ние микродисперсных добавок для ускорения твердения цемента // Строительные материалы, $2016.-N_29.-C.65-67$.
- 4. Кривобородов Ю.Р., Еленова А.А. Твердение цементного камня с микродисперсными добавками // Техника и технология силикатов, 2015.— Т.22.— №4.— С.18—20.

ПОЛУЧЕНИЕ И ТЕРМИЧЕСКИЕ СВОЙСТВА МОЛИБДЕНОФОСФАТНЫХ СТЁКОЛ

А.В. Васильева¹, С.В. Першина² Научный руководитель – к.х.н., н.с. С.В. Першина²

¹Уральский федеральный университет имени первого Президента России Б.Н. Ельцина 620002, Россия, г. Екатеринбург, ул. Мира 19

²Институт высокотемпературной электрохимии УрО РАН Россия, г. Екатеринбург, ул. Академическая 20, allavasilyeva1995@gmail.com

В условиях постоянно растущего энергопотребления важную роль в жизни человека играют электрохимические системы, в частности литий-ионные аккумуляторы (ЛИА), спектр применения которых в современном мире достаточно широк, а в дальнейшем будет только увеличиваться. Они применяются для электропитания устройств самого различного назначения. Молибденофосфатные стёкла вызывают значительный интерес как перспективные электродные материалы для ЛИА, но их свойства до сих пор малоизученны [1–4]. Целью данной работы является получение стекол в системе $MoO_3-P_2O_5$ и исследование их характеристических температур и термической стабильности.

Стекла $xMoO_3$ – $(100-x)P_2O_5$ при x=65, 70, 75, 80, 85, 90 мол% были приготовлены методом закаливания расплава. Исходные компоненты MoO_3 (ч.д.а.) и $NH_4H_2PO_4$ (ч.д.а.) тщательно смешивали в соответствующих пропорциях, нагревали и выдерживали в платиновом тигле на воздухе при температурах $800-1000\,^{\circ}$ С в течение 60 минут в зависимости от состава. Расплав отливали на стальную подложку с последующим прессованием другой стальной пластиной.

Аморфное состояние полученных стекол