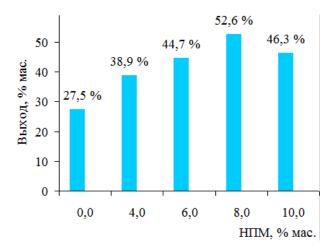
Таблица 1. Состав продуктов крекинга

Компоненты	Исходный мазут	Продукты крекинга Содержание НПМ*, % мас.								
								0%	2%	4%
		газ	_	1,83	1,58	2,25	1,58	3,15		
твердые	_	5,59	4,25	3,64	2,55	2,66				
жидкие	100,00	92,58	94,17	94,11	95,87	94,19				
В составе жидких продуктов:										
– асфальтены	0,40	4,95	4,92	3,60	3,82	3,81				
– смолы	25,50	12,52	12,54	13,00	10,94	8,98				
– масла	74,10	75,11	76,71	77,51	81,11	81,40				


^{*}НПН – нерафинированное подсолнечное масло.

но, т.к. при дальнейшем увеличении выход дистиллятных фракций не возрастает (см. рис. 1).

Введение НПМ сказывается как на количественный, так и на качественный состав продуктов крекинга. При увеличении доли НПМ в продуктах крекинга снижается доля высокомолекулярных соединений (асфальтенов, смол, твердых продуктов), и возрастает доля углеводородных компонентов (масла).

В продуктах крекинга содержание асфальтенов снижается с 4,95 (для продуктов, полученных без добавки НПМ) до 3,60–3,81 % мас. (для продуктов, полученных в присутствии НПМ), доля твердых продуктов с 5,59 до 2,55–2,66 % мас., смол с 12,52 до 8,98 % мас. соответственно (табл. 1).

Таким образом, введение растительных масел в процессе крекинга тяжёлого углеводород-

Рис. 1. Выход светлых фракций ($HK - 360\,^{\circ}C$) в продуктах совместной конверсии мазута и НПМ

ного сырья позволяет увеличить выход дистиллятных фракций и снизить образование твёрдых продуктов.

Список литературы

- 1. Капустин В.М., Глаголева О.Ф. // Нефтехимия, 2016.— Т.56.—№1.— С.3—12.
- 2. Магарил Р.З.. Теоретические основы химиче-

ских процессов переработки нефти.– Ленинград: Химия, 1985.– 280с.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ НА КОНВЕРСИЮ УГЛЕВОДОРОДОВ НА ЦЕОЛИТНОМ КАТАЛИЗАТОРЕ

В.Д. Брыль, В.В. Норин Научный руководитель – к.т.н., доцент М.А. Самборская

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, viktoriyabryl@mail.ru

Процесс каталитической переработки низкооктановых бензиновых фракций в высокооктановые автобензины на цеолитных катализаторах является перспективным, поскольку цеолитные

катализаторы показали высокую активность, устойчивы по отношению к каталитическим ядам, в их составе отсутствуют дорогостоящие благородные металлы.

10.1462

		,	1				
Т,	T, °C	Расход н-гекса-	Давле-	Время отбора жид-	Масса жидко-	Масса газово-	Показатель
	1, C	на/азота, мл/ч	ние, атм	кого продукта, ч	го продукта, г	го продукта, г	преломления
	375	19,8 (5,5 • 10-3 мл/с)	20	2	15,2000	10,8000	1,5224
	375	19,8 (5,5 • 10-3 мл/с)	15	2	14,5200	11,4800	1,5255
	400	19,8 (5,5 • 10-3 мл/с)	20	2	12,3789	13,6211	1,5275
	400	19,8 (5,5 • 10-3 мл/с)	20	2	13,0000	13,0000	1,5316
	450	19 8 (5 5 • 10 ⁻³ мп/с)	15	2	9.8516	16 1484	1 5335

Таблица 1. Результаты эксперимента

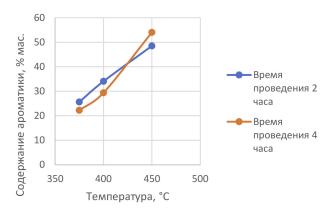
 $19,8(5,5 \cdot 10^{-3} \text{ мл/с})$

450

Превращение низкооктановых компонентов в высокооктановые происходит при сравнительно низких температурах 340–460 °C и давлениях 5–15 атм, что значительно снижает энергоемкость процесса.

15

Короткий период между регенерациями и высокая крекирующая способность — основные факторы, ограничивающие промышленное применение цеолитных катализаторов.


Целью данной работы являлось изучение влияния технологических параметров на активность и селективность цеолитсодержащего катализатора КН-30, что необходимо для построения адекватной модели дезактивации катализатора, оптимизации процесса и выбора направления и условий переработки различных видов сырья.

Процесс проводили в реакторе проточного типа, технологические параметры процесса и выходы продуктов представлены в таблице 1.

Состав жидких и газообразных продуктов анализировали на хроматографе «Хроматек Кристалл 5000 исп. 2», для контроля активности измеряли показатель преломления жидкого продукта (таблица 1).

Список литературы

1. Optimal design of straight- run gasoline conversion on zeolite catalyst [Electronic resource] / M.A. Samborskaya [et al.] // Petroleum and Coal., 2016.– Vol.58.– Iss.7.– [P.721–725].–

15,8538

1,5335

Puc. 1. Зависимость изменения содержания ароматических углеводородов от температуры проведения процесса

Установлено, что зависимость выхода коксогенных ароматических соединений от температуры процесса близка к линейной (рис. 1) и рост показателя преломления жидкого продукта прекращается через восемь часов проведения эксперимента, что позволило дополнить разработанную математическую модель [1] составляющей, учитывающей изменение активности катализатора.

Title screen.— Свободный доступ из сети Интернет. Режим доступа: http://www.vurup.sk/sites/vurup.sk/files/downloads/pc_7_2016_samborskaya_503.pdf.