ения эмульсии.

Полученные результаты показали высокую эффективность применения Unidem ES-304 без образования промежуточных слоев на границе раздела фаз. При добавлении деэмульгатора в

количестве 19 г/т уже через 5 минут наблюдается расслоение водной и нефтяной фазы по сравнению с холостой пробой, в которой граница раздела фаз появляется через 30 минут.

МОДЕЛИРОВАНИЕ КИНЕТИКИ СИНТЕЗА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ ИЗ СО И Н,

М.М. Григорьева, К.Б. Шалжанова Научный руководитель – к.х.н., доцент Н.В. Ушева

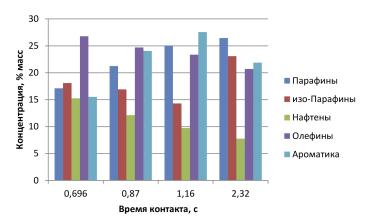
Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, masha5091994@mail.ru

Истощение мировых запасов нефти, удорожание энергоносителей, резкое ухудшение экологической ситуации внесло существенные изменения во взгляды на будущее энергоемких отраслей промышленности и роль различных источников углеводородного сырья. Главным направлением в производстве топлива на базе альтернативных источников является получение синтез-газа с последующей переработкой его в углеводороды по методу Фишера – Тропша (ФТ) [1].

На кафедре XTT и XK были разработаны катализаторы синтеза ФТ на основе ультрадисперсных порошков (УДП) железа.

Целью данной работы является моделирование кинетики синтеза органических соединений из ${\rm CO}$ и ${\rm H}_2$.

Были проведены экспериментальные исследования процесса синтеза Фишера — Тропша на лабораторной каталитической установке при следующих параметрах: давление 1,0 МПа, соотношение $CO: H_2 = 1:2$, варьировании расхода и температуры в интервале от 270 до 290 °C.


Из полученной зависимости (рис. 1) можно сделать вывод о том, что с увеличением времени контакта возрастает концентрация парафиновых углеводородов, алкены являются промежуточными продуктами. Как показывают результаты исследований (рис. 1) нафтеновые и ароматические углеводороды претерпевают

вторичные превращения. Концентрация олефинов уменьшается.

В механизме образования продуктов синтеза Фишера-Тропша при разработке кинетической модели учитывалось параллельное образование углеводородов [2]. Полученные результаты экспериментальных исследований показали, что механизм образования органических соединений является более сложным, что требует корректировки кинетической модели.

С использованием полученных экспериментальных данных были уточнены значения кинетических параметров.

Результаты расчетов с применением данной кинетической модели показали удовлетворительное соответствие расчетных и экспериментальных данных (табл. 1), средняя погрешность

Рис. 1. Зависимость концентраций углеводородов от времени контакта $(T = 280 \, ^{\circ}\text{C}, CO: H_2 = 1: 2)$

Таблица 1. Сравнение расчетных и экспериментальных данных продуктов синтеза (T=280 °C, расход 150 мл/мин.)

Компонент	CH ₄	CO ₂	CO+H ₂	$C_2 - C_4$	C ₅₊
Эксперимент	28,86	38,07	17,05	9,54	6,48
Расчет	28,47	38,99	17,55	9,63	6,14

не превышает 3%.

Таким образом, разработанную кинетическую модель можно применять при исследо-

вании влияния параметров на выход и состав продуктов синтеза ФТ на ультрадисперсном железном катализаторе.

Список литературы

- 1. Крылов О.В. Вестник РАН // 2000.— Т.70.— №2.— С.136.
- 2. Ефремова Е.В., Григорьева М.М. Разработка кинетической модели синтеза органических соединений из СО и H,/ Материалы

XVII Международной научно-практической конференции студентов и молодых ученых, Химия (Томск, 17–20 мая 2016 г.).— Томск: Издательство ТПУ, Химия, 2016.— С.341.

КОНВЕРСИЯ ПРОПАН-БУТАНОВОЙ ФРАКЦИИ В АРЕНЫ НА ЦЕОЛИТНЫХ КАТАЛИЗАТОРАХ, МОДИФИЦИРОВАННЫХ ОКСИДОМ ГАЛИЯ

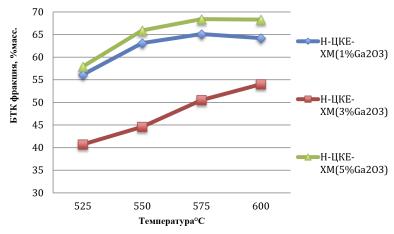
С.Н. Джалилова

Научный руководитель – д.т.н., профессор В.И. Ерофеев

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, dzhalilovasn@mail.ru

В настоящее время актуальным является вопрос рационального использования попутного нефтяного газа (далее – ПНГ), представляющий собой один из видов природного газа. Особое внимание уделяется углеводородным фракциям, извлеченным из ПНГ, являющимся дополнительным сырьевым источником развития нефтяной отрасли. В ПНГ основными компонентами являются углеводороды от метана до гексана, включая изомеры C_4 – C_6 .

Рациональное использование ПНГ одна из важнейших задач развития нефтегазового комплекса страны. Уровень утилизации ПНГ оказывает значительное влияние не только на экономический фактор, но и на экологическую и


природоохранную составляющую, так как сжигание ПНГ в факелах приводит к значительному выбросу углекислого газа в атмосферу.

Для выполнения принятых в соответствии с Киотским протоколом обязательств, Правительство РФ 8 января 2009 года приняло Постановление №7 «О мерах по стимулированию сокращения загрязнения атмосферного воздуха продуктами сжигания попутного нефтяного газа на факельных установках» которое требует предусматривать утилизацию не менее 95 % попутно добываемого нефтяного газа при разработке нефтяных месторождений [2].

Одно из направлений повышения уровня использования попутного нефтяного газа является процесс превращения газов в жидкость, позволяющая получать из углеводородных фракций ПНГ химические продукты с высокой добавленной стоимостью.

Целью настоящей работы являлось исследование процесса превращения пропан-бутановой фракции на цеолитсодержащих катализаторах в высокооктановые бензины, модифицированных оксидом галия.

Микропористые цеолиты синтезировали из щелочных алюмокремнегелей при 170–175 °C в течение 4 суток с применением спиртовой фракции по методике, описанной в [3].

Рис. 1. Влияние температуры процесса на выход жидкой фазы на катализаторе *H-ЦКЕ-ХМ*, модифицированном оксидом галия БТК фракция – бензол, толуол, ксилол фракция.