ПРИМЕНЕНИЕ МОДИФИЦИРОВАННЫХ НЕФТЕПОЛИМЕРНЫХ СМОЛ ДЛЯ УЛУЧШЕНИЯ ТРАНСПОРТНЫХ ХАРАКТЕРИСТИК ПАРАФИНИСТЫХ НЕФТЕЙ

Е.А. Саврасова¹, И.В. Литвинец² Научный руководитель – к.х.н., доцент Л.И. Бондалетова¹

¹Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30

²Институт химии нефти СО РАН 634055, Россия, а.Томск, пр. Академический 4, kat-21-03@mail.ru, iralitvinets@yandex.ru

В последнее время среди добываемого углеводородного сырья преобладают высокопарафинистые высокосмолистые нефти, процесс добычи и транспорта которых осложнен образованием асфальтосмолопарафиновых отложений (АСПО) на поверхности нефтепромыслового оборудования [1].

Предотвращение осадкообразования нефтей осуществляется введением полимерных присадок. Актуальным направлением повышения эффективности действия присадок является использование низкомолекулярных и олигомерных добавок, при этом положительное влияние на низкотемпературные свойства нефтей отме-

чается при добавлении компонентов с азотсо-держащими группами [2].

Целью работы является изучение влияния композиций на основе полиалкилакрилата (ПАА) и модифицированных нитрованием нефтеполимерных смол (N-HПС) на вязкостно-температурные свойства нефти Южно-Табаганского месторождения.

В работе были использованы модифицированные азотной кислотой нефтеполимерные смолы на основе ароматической фракции C_9 жидких продуктов пиролиза, синтезированные термической (N-HПС $_{\text{перм}}$), инициированной (N-HПС $_{\text{перм}}$) и ионной (N-HПС $_{\text{перм}}$) полимериза-

Таблица 1. Характеристика нефти Южно-Табаганского месторождения

	Температура засты-		
Масла (Парафины)	Смолы	Асфальтены	вания (T_z) , °C
85,8 (7,0)	13,0	1,2	+8,3

Таблица 2. Влияние ПАА и нитрованных НПС (N-НПС) на низкотемпературные свойства нефти Южно-Табаганского месторождения

Ингибирующая композиция	T _z , °C	АСПО, г/100 г нефти	Степень ингиби- рования I, %
_	+8,3	18,3	_
ПАА	+1,8	9,2	49,7
ПАА+N-НПС	-6,7	6,9	62,3
$\Pi AA + N-H\Pi C_{\text{терм}}$	-4,7	8,9	51,3
ПАА+N-НПС ион	-7,4	6,3	65,6

Таблица 3. Влияние ПАА и нитрованных НПС (N-НПС) на динамическую вязкость нефти Южно-Табаганского месторождения

Ингибирующая композиция	η при 0°С, мПа•с	η при 5°С, мПа•с	η при 10°С, мПа•с
_	+8,3	18,3	_
ПАА	+1,8	9,2	49,7
ПАА+N-НПС	-6,7	6,9	62,3
$\Pi AA + N-H\Pi C_{\text{терм}}$	-4,7	8,9	51,3
ПАА+N-НПС ион	-7,4	6,3	65,6

цией. Характеристика исследуемой нефти приведена в табл. 1.

Показано (табл. 2), что количество осадка, полученного в присутствии композиций на основе ПАА и N-НПС (N-НПС или N-НПС N-НПС или на основе ПАА и N-НПС или N-НПС или N-НПО нефти. Следует отметить, что максимальная депрессия температуры застывания нефти наблюдается также в присутствии композиций на основе ПАА и N-НПС (N-НПС или N-НПС) и составляет около 15°С. Установлено (табл. 3), что в присутствии композиций на основе ПАА и всех N-НПС снижается динамическая вязкость (η) нефти примерно в 1,3 раза по сравнению со значениями вязкости нефти в присутствии ПАА.

Таким образом, композиции на основе ПАА и N-НПС оказывают положительное влияние на вязкостно-температурные свойства нефти Южно-Табаганского месторождения. В присутствии композиций на основе ПАА и N-НПС (N-НПС или N-НПС или) происходит максимальное снижение количества АСПО, температуры застывания и динамической вязкости нефти Южно-Табаганского месторождения.

Список литературы

- 1. Mohammed AI-Yaari, King Fahd. Paraffin wax deposition: mitigation and removal techniques. Society of Petroleum Engineers, SPE 155412, 14–16 March 2011.
- 2. Khidr T.T., Ghuiba F.M. Nitrogen-based copolymers as wax dispersants for paraffinic gas oils // Fuel, 1998.—№77(5).— P.375–385.

ОПТИМИЗАЦИЯ ПРОЦЕССА КОМПАУНДИРОВАНИЯ ТОВАРНЫХ БЕНЗИНОВ С УЧЕТОМ ИЗМЕНЕНИЯ СОСТАВА ВОВЛЕКАЕМЫХ КОМПОНЕНТОВ

А.А. Солопова, И.М. Долганов Научный руководитель – к.т.н., доцент И.М. Долганов

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30

Процесс компаундирования является завершающим этапом в формировании качественных и количественных характеристик товарных бензинов. Вовлекаемые в смешение потоки компонентов представляют собой продукты процессов первичной и вторичной переработки нефти, поэтому составы потоков, и, соответственно, их показатели качества не постоянны в разные периоды времени. Таким образом, существует необходимость подбора рецептур для каждой марки бензинов в зависимости от свойств потоков, поступающих на установку компаундирования.

С целью выявления влияния составов исходных потоков на показатели качества получаемых продуктов, были произведены расчеты октановых чисел смешения товарных бензинов при помощи компьютерной моделирующей системы. Расчеты производились на основании данных с промышленной установки компаундирования товарных бензинов. В таблице 1 приведены результаты расчета рецептур бензина марки Пре-

миум – 95.

В таблице 2 приведены показатели качества полученных бензинов.

Анализ результатов расчетов показывает, что с увеличением содержания ароматических и олефиновых углеводородов, значение октанового числа растет.

Однако содержание бензола в товарных бензинах ограничено, в связи с тем, что ароматические углеводороды увеличивают количество углеродистых отложений в камере сгорания двигателя. Помимо того, бензол является канцерогенным и наносит вред, как окружающей среде, так и здоровью человека.

Таким образом, при подборе рецептур смешения бензинов наибольшее влияние оказывало соответствие продуктового потока экологическим требованиям, предъявляемых к топливу, а так же наличие компонентов на предприятии и их стоимость.

Наиболее дорогостоящие, но, в то же время,