РАЗРАБОТКА ИНГИБИТОРОВ КОРРОЗИИ СТАЛЕЙ НА ОСНОВЕ ТИОМОЧЕВИНЫ И НАНОЧАСТИЦ МЕТАЛЛОВ Цоцорина Е.С.

Томский политехнический университет E-mail: tsotsorina_elena@mail.ru

Научный руководитель: Лямина Г.В., к.х.н., доцент отделения материаловедения Томского политехнического университета, г. Томск

Анализ литературы показывает, что разработано множество различных соединений, оказывающих ингибирующее действие при коррозии сталей. Одним из наиболее эффективных и экономичных средств контроля коррозии является использование полифункциональных органических ингибиторов [1–3]. Однако на дефектных поверхностях адсорбция ингибитора протекает хуже. Решить эту проблему можно добавляя в растворы наночастицы, которые размещаясь преимущественно в щелях и трещинах, увеличили бы эффективность использования ингибиторов.

Целью данного этапа работы было сравнить коррозионную устойчивость сталей марок У8А и 440С в различных средах до и после обработки. В качестве ингибирующей основы была выбрана тиомочевина. Оценку проводили с применением метода гравиметрии и оптической микроскопии (табл).

Таблица. Результаты коррозионных испытаний

	$\Delta m/m_0$, %				Изображения	
Среда	У8А		440C		У8А (после обработки ультразвуком)	
	_	+	1	+	_	+
_	0	0	0	0		
0,9% NaCl	0.12	0.11	0.09	0.08		
УЗ	0.038	0.040	0.01	0.03	<u>100 um.</u>	րա <u>100 հա</u> ՝
+ после обработки ингибитором, – без обработки ингибитором						

Литература

- 1. El Ibrahimi B., et al. Arab. J. Chem., 2017.
- 2. Verma C., et al. J. Mol. Liq. 2017, 248, 927–942.
- 3. El-Taib Heakal F., et al. J. Mol. Liq. 2017, 230, 395-407.