АНАЛИЗ ВЫРАБОТКИ ЗАПАСОВ НЕФТИ ИЗ ПЛАСТА АС₁₂ ПРИОБСКОГО НЕФТЯНОГО МЕСТОРОЖДЕНИЯ

Д.М. Минин, К.К. Чепала

Научный руководитель доцент Г.Ф. Ильина

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Приобское нефтяное месторождение находится в центральной части Западно-Сибирской равнины. В административном отношении месторождение расположено в Ханты-Мансийском районе Ханты-Мансийского автономного округа Тюменской области РФ. Основными нефтегазоносными объектами в разрезе Приобского месторождения являются неокомские отложения, в частности, серия пластов АС7 - АС12. Для пластов характерна резкая изменчивость литолого-физических свойств пород-коллекторов, как по разрезу, так и по латерали, что обусловлено условиями их формирования в краевой части палеошельфа и склона аккумулятивной террасы. Продуктивность неокомских отложений Приобского месторождения определяется наличием в разрезе проницаемых пластов-коллекторов. Залежь нефти продуктивного пласта АС12 охватывает практически всю территорию лицензионного участка, её размеры составляют 67,3 км с севера на юг и 53,2 км с запада на восток по самой длинной оси. Площадь залежи 2107 км². Перепад отметок кровли продуктивного пласта по площади составляет 326 м, от минимальной -2420 м (район скважины 430) до -2751 м (район скважины 611). Залежь вскрыта 1286 скважинами.

Коллекторы продуктивного пласта представлены серией линзовидных песчаных тел, невыдержанных по простиранию. Их формирование происходило в фондоформной части циклита AC_{12} . На площади залежи отмечается наличие пяти локальных малоразмерных зон отсутствия коллекторов. Восточная граница осложнена двумя узкими полосами зон замещения. Эффективные нефтенасыщенные толщины варьируют в пределах от 0,4 м (скважина 3744) до 55,7 м (скважина 2246), в среднем по залежи составляя 13 м. На площади отмечается две области развития максимальных нефтенасыщенных толщин. Одна в зоне сочленения южной части правобережного эксплуатационного участка и острова, другая – в зоне эксплуатационного участка в левобережной части площади. Песчанистость пласта составляет в среднем 0,21 при коэффициенте расчлененности пласта, равным 8. Дебиты нефти при испытании пласта в колонне изменяются от единиц м³/сут до 48 м³/сут в скважине 262 на 6 мм штуцере.

Основными породообразующими минералами рассмотренных продуктивных пластов являются кварц и полевые шпаты с некоторым преобладанием полевых шпатов. Цементируются породы в основном глинистым материалом хлоритового состава с примесью гидрослюд и каолинита. Различие в коллекторских свойствах пластов связаны с литологическими факторами (гранулометрия, степень неоднородности пласта и другие) (табл. 1, 2, 3).

Гранулометрический состав пород пласта АС12 Приобского месторождения

Таблица 1

Пласт	Гранулометрический состав пород, %						Суммарное содержание фракции, мм			SO	Md,
	>0.5 _{MM}	0.5-0.25	0.25-0.1	0.1-0.05	0.05-0.01	< 0.01	>0.1	0,1-0.01	< 0.01		MM
AC ₁₂	0.21	2.32	34.26	32.74	19.60	11.39	36.4	52,3	11.3	1.798	0.082

Таблица 2 Минералогический состав обломочной части пород-коллекторов пласта AC_{12} Приобского месторождения

	Породообразующие минералы,%						
Пласт	Кварц	Полевые шпаты	Обломки горных пород	Слюды			
AC_{12}	44.5	44.3	10.1	1.9			

Таблица 3 Распределение числа анализов коллекторских свойств по пласту АС 12 Приобского месторождения

1 испревенение числи инилизов колмекторских своиств по имисту АС12 привоского месторожовних									
		В целом п	В эффективной части						
Пласт	Кол-во скважин	Кп. откр.	Кпр	Квс	Кол-во скважин	Кп. откр.	Кпр	Квс	
AC_{12}	78	3780	2864	1928	73	2439	2013	1490	

Повышение извлекаемых запасов углеводородов является одной из самых актуальных и важных задач в нефтедобывающей промышленности. Продление срока службы скважины является также важной задачей, потому что эксплуатационная нефтяная скважина является очень дорогим и технически сложным сооружением. Блок добывающих скважин Северо-Западной части Приобского нефтяного месторождения, согласно данным по разработке, имеет низкий дебит флюида — менее 10 т/сут и высокую обводненность — более 90%. Эксплуатация скважин с дебитом менее 10 т/сут не рентабельна. Для увеличения извлекаемых запасов и продления срока службы скважин, а также контроля за процессом разработки применяется метод индикаторных исследований.

Данный метод позволяет оценивать фильтрационно-емкостные свойства пластов, распределение

фильтрационных потоков, скорость движения фронта воды, устанавливать гидродинамическую связь между добывающими и нагнетательными скважинами. На основании полученных данных возможно регулирование системы разработки месторождения, производить оптимизацию работы системы ППД, устанавливать источник обводнения скважин, уточнять геологическое строение продуктивного пласта (рис. 1).

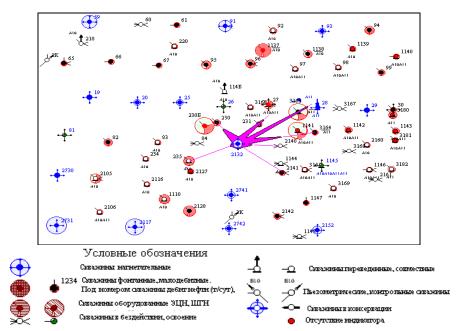


Рис. 1 Розы-диаграммы распределения основных потоков фильтрации на исследуемом участке в районе нагнетательной скважины 2132 пласта AC_{12} Приобского месторождения

Трассирование фильтрационных потоков по направлениям осуществляется следующим образом: в восточной части Левобережного участка (район скважин 1765, 2132 и 28) фильтрация осуществляется в северозападном направлении, в юго-восточной части Левобережного эксплуатационного участка Приобского месторождения. В ходе исследований на левобережном участке обнаружена гидродинамическая связь между пластами AC_{11} и AC_{12} , что, скорее всего, связано с наличием заколонных перетоков в нагнетательных или добывающих скважинах. Одним из таких участков является район нагнетательной скважины № 2132. При закачке индикатора в перфорированные пласты AC_{10} и AC_{12} скважины № 2132, наблюдался вынос индикаторной жидкости в продукции добывающих скважин № 230, 3163, 3164 перфорированных только на пласт AC_{11} . На основании индикаторных исследований, проведенных на Левобережном эксплуатационном участке, делается вывод о том, что наибольшая гидродинамическая активность существует на объектах пласта AC_{11} . Выработка пласта AC_{11} происходит намного быстрее, чем пластов AC_{10} и AC_{12} .

Геология месторождения такова, что запасы нефти распределены неравномерно как по площади месторождения, так и по разрезу. Коллекторские свойства пластов сильно меняются от участка к участку, что влияет на выработку запасов. На Правом берегу в основном вырабатывается пласт AC_{11} . На севере горизонт AC_{10} практически отсутствует. Пласт AC_{11} на Правобережном участке характеризуется лучшими условиями вытеснения по сравнению с пластами AC_{10} и AC_{12} . На Островном участке вырабатывается пласт AC_{12} . По мере вовлечения в разработку Островного участка, с преобладанием пласта AC_{12} , будет происходить увеличение темпов отбора по данному горизонту и равномерное снижение темпов по пласту AC_{11} . Таким образом, темпы отбора будут изменяться в соответствии со степенью ввода пластов в разработку, что указывает на равномерность выработки запасов по горизонтам. В целом на Левобережном участке выработка запасов идет меньшими темпами (4,23%), чем на других участках разработки. На Левом берегу в основном вырабатываются пласты AC_{12} и AC_{10} . Кроме того в разбуренной части Левого берега выделяются несколько кустов с ухудшенной выработкой запасов (кусты №140, 104, 107, 108, 101, 102).

Выводы:

По результатам работ будут определены:

- количественная оценка дебита скважин и их контрольных параметров;
- повышение извлекаемых запасов УВ;
- рекомендации по дальнейшей эксплуатации скважины.

Литература

1. Дворкин В.И., Орлинский Б.М. Обработка результатов ГИС, анализ выработки запасов нефти и разработка рекомендаций по совершенствованию разработки Мамонтовского и Приобского месторождений // Отчет ОАО НПФ «Геофизика». – Уфа, 2003. – 782 с.